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Approachability with Constraints∗

Gaëtan Fournier†, Eden Kuperwasser‡, Orin Munk§, Eilon Solan¶, and Avishay Weinbaum‖

October 31, 2020

Abstract

We study approachability theory in the presence of constraints. Given a repeated
game with vector payoffs, we study the pairs of sets (A,D) in the payoff space such that
Player 1 can guarantee that the long-run average payoff converges to the set A, while
the average payoff always remains in D. We provide a full characterization of these
pairs when D is convex and open, and a sufficient condition when D is not convex.
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1 Introduction

Approachability theory, which was first introduced in Blackwell 1956, is an extension
of the theory of zero-sum strategic-form games to the situation where the outcome
is multidimensional. In a two-player repeated game in which the outcome is an n-
dimensional vector, a target set A in Rn is approachable by Player 1 if she has a strategy
that ensures that the long-run average payoff converges to the set, whatever strategy
Player 2 uses. Blackwell 1956 provided a geometric condition that ensures that a set is
approachable by Player 1. Hou 1971 and Spinat 2002 completed the characterization of
approachable sets, by showing that a set is approachable only if it contains a set that
satisfies Blackwell’s geometric condition.

Approachability theory was used to study no regret with partial monitoring (see
Perchet 2009, Perchet and Quincampoix 2014 and Lehrer and Solan 2016). In fact,
approachability is equivalent to regret minimization and calibration (see Cesa-Bianchi
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and Lugosi 2006 and Perchet 2014). The theory was also used to study continuous-
time network flows with capacity and unknown demand (Bauso, Blanchini, et al. 2010),
production-inventory problems in both discrete and continuous-time (Khmelnitsky and
Tzur 2004), and to construct normal numbers (Lehrer 2004). The geometric principle
that lies behind approachability theory has been studied by Lehrer 2002, the rate of
convergence to the target set was studied in Mannor and Perchet 2013, and variants
of the basic notion of approachability have been studied by, e.g., Vieille 1992, Lehrer
and Solan 2009, Shani and Solan 2014, Mannor, Stoltz, et al. 2014, and Bauso, Lehrer,
et al. 2015.

In various situations, in addition to having a target set, the player has constraints
that have to be satisfied. For example, an investment firm makes daily investment
decisions and may have various goals, like maximizing the value of its portfolio, keeping
the value of its portfolio higher than the value of other investment firms, and attracting
investors. The firm may also have various constraints, like keeping its Sharpe ratio
above a certain level, or its conditional value at risk below a certain threshold, see, e.g.,
Uziel and El-Yaniv 2018. A second example concerns fellowships obtained by students
in various universities. In every quarter or semester the student has to dedicate her
time to several activities, like studying, extracurricular classes, and spending time with
friends and family. In addition, to keep receiving the fellowship, the student must keep
her average grade above a certain level. A third example concerns decision problems
like expert selection and regret minimization, see Chapter 13 in Maschler et al. 2013.
In these applications, constraints arise naturally. For example, in expert selection, the
decision maker may be required to select experts from each gender with some minimal
frequency, and regret minimization with constraints has been studied by, e.g., Mannor,
Tsitsiklis, et al. 2009, Mahdavi et al. 2012, Sadeghi and Fazel 2020, Liakopoulos et al.
2019, and Du and Lehrer 2020.

The goal of this paper is to study approachability in the presence of constraints.
Specifically, we consider a two-player repeated game with vector payoffs, and are given
two sets A and D in the payoff space. The set A is the target set that Player 1 would
like to approach, and the set D represents the set of allowable average payoffs: after
every history that occurs with positive probability, the average payoff must be in D.
We call this problem approaching A while remaining in D.

If the set A is approachable by Player 1 while remaining in the set D, then as we
prove below the set A∩D is approachable by Player 1, where A and D are the closures
of A and D, respectively. Since the outcome after the first stage must be in D, a second
necessary condition is that Player 1 has a safe action; that is, an action s such that
when Player 1 plays s the outcome is in D, whatever Player 2 plays. We will show that
the first condition, together with a stronger version of the second condition, is sufficient
for approachability with constraints: when D is convex, if the set A∩D is approachable
by Player 1, and if there is an action s of Player 1 that ensures that the outcome is
in the interior of the closure of D, then the set A is approachable by Player 1 while
remaining in D. When the set D is open, the necessary conditions coincide with the
sufficient conditions, and we obtain a characterization of the pairs of sets (A,D) such
that A is approachable by Player 1 while remaining in D.

As we will prove, to approach the set A while remaining in D, Player 1 can follow
a strategy that approaches the set A∩D, and, whenever the average outcome becomes
close to the boundary of D, she should play a safe action, which ensures that the
average outcome gets farther away from the boundary of D. We will show that under
this strategy, the number of stages up to stage t in which the average outcome is close
to the boundary of D is of the order

√
t, hence this strategy indeed approaches A while

remaining in D. We moreover show that the rate of convergence of the average payoff
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to the set A in our setup is the same as the rate of convergence given by Blackwell 1956
or Mannor and Perchet 2013, so that the presence of constraints does not slow down
the rate of convergence to A.

We then study the case where the set D is not convex, provide two sufficient condi-
tions that guarantee that the set A is approachable while remaining in D, and provide
an example that shows that the conditions are not necessary. This example exhibits the
difficulty in providing a general characterization of the pairs of sets (A,D) such that A
is approachable by Player 1 while remaining in D.

In Section 2 we define the model and the concept of approachability while remaining
in a set and state our main result. In Section 3 we prove Proposition 3. This Proposition
and Proposition 2 directly imply our main result, Theorem 4. Section 4 is devoted to the
case in which the set D is not convex. In Section 5 we discuss the effect of constraints
on variants of approachability, like weak approachability and strong approachability,
and present open problems.

2 The Model and the Main Result

A two-player repeated game with vector payoffs is a triplet (I, J, U), where I and J
are finite sets of actions for the two players, and U = I × J → Rn is a vector payoff
matrix. We assume w.l.o.g. that payoffs are nonnegative and bounded by 1, that is
0 ≤ Uk(i, j) ≤ 1 for every i ∈ I, every j ∈ J , and every 1 ≤ k ≤ n. To eliminate trivial
cases we assume that both players have at least two actions: |I| ≥ 2 and |J | ≥ 2. The
bilinear extension of U to ∆(I)×∆(J) is still denoted by U , where ∆(A) is the space
of probability distributions over A = I, J .

At every stage t ≥ 1, Player 1 (resp. Player 2) chooses an action it ∈ I (resp. jt ∈ J),
which is observed by the other player.1 A history of length t is a sequence ht =
(i1, j1, i2, j2, · · · , it, jt) ∈ (I × J)t for some t ≥ 0. The empty history is denoted ∅. We
denote by H := ∪∞t=0(I×J)t the set of all histories. When ht = (i1, j1, i2, j2, · · · , it, jt) ∈
H and t′ ≤ t we denote by ht′ = (i1, j1, i2, j2, · · · , it′ , jt′) the prefix of ht of length t′.

We assume perfect recall, and consequently by Kuhn’s Theorem we can restrict
attention to behavior strategies. A (behavior) strategy for Player 1 (resp. Player 2) is
a function σ : H → ∆(I) (resp. τ : H → ∆(J)). We denote by S and T the strategy
spaces of Players 1 and 2, respectively.

The set F of feasible payoffs is the convex hull of possible one stage payoffs, that is,

F := conv{U(i, j) : (i, j) ∈ I × J} ⊂ Rn.

The set of plays is H∞ := (I × J)∞. This set, when supplemented with the sigma-
algebra generated by all finite cylinders, is a measurable space. Every pair of strategies
(σ, τ) ∈ S × T defines a probability distribution Pσ,τ over H∞. We denote by Eσ,τ the
expectation with respect to this probability distribution.

The average vector payoff up to stage t ≥ 1 is

gt :=
1

t

t∑
l=1

U(il, jl).

Note that for every t ≥ 1, the average vector payoff gt is a random variable with values
in Rn, whose distribution is determined by the strategies of both players. When we

1As in Blackwell 1956, for our results it is sufficient to assume that the players observe the outcome
U(it, jt) at every stage t.
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wish to calculate the average payoff up to stage t along a history ht ∈ H we use the
notation gt(ht).

Let d(x, y) := ||x − y||2 denote the Euclidean distance between the points x and y
in Rn.

Blackwell 1956 defined the concept of approachable sets in repeated games with
vector payoffs. A subset A ∈ Rn is approachable by Player 1 if there exists a strategy
σ ∈ S such that for every ε > 0 there exists an integer T ≥ 1 such that for every
strategy τ ∈ T of Player 2 we have

Pσ,τ

[
∀t ≥ T, d(gt, A) < ε

]
> 1− ε. (1)

We say that the strategy σ approaches the set A. This paper concerns the concept of
approachability with constraints, which is defined as follows.

Definition 1. Let A and D be two subsets of Rn. The set A is approachable by Player 1
while remaining in the set D if there exists a strategy σ ∈ S such that for every ε > 0
there exists an integer T ≥ 1 such that for every strategy τ ∈ T of Player 2, we have

Pσ,τ

[
∀t ≥ T, d(gt, A) < ε

]
> 1− ε, (2)

Pσ,τ

[
∀t ≥ 1, gt ∈ D

]
= 1. (3)

Condition (4) ensures that the strategy σ approaches the set A. Condition (3) is
concerned with the constraints: when playing σ, Player 1 guarantees that the sequence
of realized average payoffs always remains in the set D. Our main goal is the char-
acterization of the pairs of sets (A,D) such that A is approachable by Player 1 while
remaining in D.

For every mixed action p ∈ ∆(I) define

R1(p) := {U(p, q) : q ∈ ∆(J)} = conv{U(p, j) : j ∈ J}.

This is the set of all possible expected outcomes when Player 1 plays the mixed action
p. For every set X in a Euclidean space we denote by X the closure of X.

The following proposition lists two necessary conditions to approaching A while
remaining in D.

Proposition 2. Let A and D be two subsets of Rn. If the set A is approachable by
Player 1 while remaining in the set D, then the following two conditions hold.

(C1) The set A ∩D is approachable by Player 1.

(C2) There exists an action s ∈ I such that for every action j ∈ J we have U(s, j) ∈ D.

An action s ∈ I that satisfies Condition (C2) is termed a safe action, since it ensures
that the stage payoff is in D.

Proof. To see that Condition (C1) is necessary, we recall the following equivalent defi-
nition of approachability, see Hou (1971): A set A is approachable by Player 1 if, and
only if, there is a strategy σ for Player 1 such that

Pσ,τ [ lim
t→∞

d(gt, A) = 0] = 1 (4)

for every strategy τ for Player 2. To see that the two definitions are indeed equivalent,
note that if Eq. (4) holds then for every ε > 0 there is a Pσ,τ -a.s. finite stopping time
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τε such that Pσ,τ [∀t ≥ τε, d(gt, A) ≤ ε] = 1, hence Eq. (1) holds with T such that
Pσ,τ [τε ≤ T ] ≥ 1− ε. Conversely, if Eq. (4) does not hold, then there exists δ > 0 such
that Pσ,τ [lim supt→∞ d(gt, A) ≥ δ] ≥ δ, and then Eq. (1) does not hold for ε < δ.

Suppose that the set A is approachable by Player 1 while remaining in the set D,
and let σ be a strategy for Player 1 that guarantees that the average payoff converges
to A while remaining in D. In particular, the strategy σ approaches the set A, hence
by the equivalent definition of approachability, for every strategy τ for Player 2 we
have Pσ,τ [limt→∞ d(gt, A) = 0] = 1. Moreover, Pσ,τ [∀t ≥ 1, gt ∈ D ⊆ D] = 1, hence
Pσ,τ [limt→∞ d(gt, A∩D) = 0] = 1. By the equivalent definition of approachability once
again, this implies that the set A ∩D is approachable by Player 1.

We now argue that Condition (C2) is necessary. Denote by s any action that the
strategy σ plays with positive probability at the first stage. Let τ be any strategy
for Player 2 that plays all actions in J with positive probability. Under the strategy
pair (σ, τ) the probability that the action pair (s, j) is played is positive, and therefore
Eq. (3) implies that U(s, j) ∈ D, for every j ∈ J .

The next proposition asserts that Condition (C1) together with a variation of Con-
dition (C2) are sufficient for approachability with constraints, provided the set D is
convex.

Proposition 3. Let A be a subset of Rn and let D be a convex subset of Rn. If
Condition (C1) and the following Condition (C2’) hold, then Player 1 can approach A
while remaining in D:

(C2’) There exists an action s ∈ I such that for every action j ∈ J the vector U(s, j) is
in the interior of the closure of D.

We note that if Condition (C2’) holds, then, provided D is convex, we have R1(s) ⊆
D and, moreover, δ := d(F \ D,R1(s)) > 0. Section 3 is devoted to the proof of
Proposition 3.

As a conclusion from Propositions 2 and 3 we obtain our main result, which is a
characterization of the pairs of sets (A,D) such that the set A is approachable while
remaining in D, and it is valid whenever the set D is open and convex.

Convexity is a natural assumption, as often constraints have the form of linear
inequalities. The requirement that the set D is open means that these inequalities
should be strict.

Theorem 4. Let A be a subset of Rn and let D be an open and convex subset of Rn.
Player 1 can approach A while remaining in D if and only if Conditions (C1) and (C2)
hold.

The following example shows that when D is not open, Conditions (C1) and (C2)
are not sufficient to imply that A is approachable while remaining in D.

Example 5. Consider the game that is depicted in Figure 1 with A = {(0, 0)} and
D = {(x, y) ∈ R2 : x ≥ 0}. For convenience we consider, in this example and in the
following ones, payoffs that do not necessarily belong to the interval [0, 1].

The set A = A∩D is approachable by Player 1, for example, by the stationary strat-
egy [ 1

2 (B1), 1
2 (B2)], and therefore Condition (C1) holds. The action T is a safe action

for Player 1, and therefore Condition (C2) holds, yet since (0, 1) is on the boundary of
D, Condition (C2’) does not hold.

We argue that the set A is not approachable by Player 1 while remaining in D.
Indeed, to approach A Player 1 has to play one of the action B1 and B2 at least once
(in fact, with probability 1 she should play these actions infinitely often). Suppose that
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L R

T (0, 1) (0, 1)

B1 (1, 0) (−1, 0)

B2 (−1, 0) (1, 0)

1

1−1

D

A
x

y

Figure 1: The payoff matrix in Example 5 and the payoff space.

Player 2 plays the stationary strategy [ 1
2 (L), 1

2 (R)]. Then in the first stage in which
Player 1 plays B1 or B2, there is a probability 1

2 that the outcome is (−1, 0), in which
case the first coordinate of the average payoff is negative, so that the average payoff is
not in D.

Example 12 in Section 4 shows that when D is not convex, Conditions (C1) and
(C2) are not sufficient to imply that A is approachable while remaining in D.

3 The Proof of Proposition 3

This section is devoted to the proof of Proposition 3. In particular, the set D is assumed
to be convex.

3.1 B-Sets and Blackwell’s Characterization of Approachable
Sets

Blackwell 1956 provided a geometric characterization for approachable sets (without
constraints). The basic concept that Blackwell used was that of B-sets. In this subsec-
tion we review the definition of B-sets and Blackwell’s characterization.

A hyperplane in Rn is any set of the form H := {x ∈ Rn :
∑n
k=1 α

kxk = β}, where
α1, · · · , αk, β ∈ R. For every hyperplaneH we denote byH+ := {x ∈ Rn :

∑n
k=1 α

kxk ≥
β} and H− := {x ∈ Rn :

∑n
k=1 α

kxk ≤ β}. These are the two half-spaces defined by H.

Definition 6. A set A ⊂ Rn is a B-set for Player 1 if for every point x ∈ F \A there
exists a point y ∈ A and a mixed action p ∈ ∆(I) such that (a) y minimizes the distance
to x among the points in A, and (b) there is a hyperplane H that is (i) perpendicular
to the line that connects x to y, (ii) passes through y, and (iii) separates x from R1(p),
that is, x ∈ H− and R1(p) ⊆ H+, or x ∈ H+ and R1(p) ⊆ H−.

Blackwell 1956 proved that every B-set is approachable. Hou 1971 and Spinat 2002
proved that every approachable set contains a B-set.

3.2 A Definition of a Strategy σ∗.

We now define a strategy σ∗ for Player 1 that, as will be shown later, approaches A
while remaining in D. This strategy is based on two components: a strategy σ̂ that
approaches the set A ∩D, and a set Hunsafe of histories that we now define. Roughly,
the strategy σ∗ follows the strategy σ̂ that approaches the set A∩D, but whenever the
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average payoff gets close to the boundary of D, it plays the safe action, ensuring that
the average payoff gets farther away from the boundary.

Let Hunsafe ⊆ H be the set of all histories ht ∈ H that satisfy d(gt(ht), F \ D) ≤√
n
t . We also add the empty history ∅ to Hunsafe. Such histories are called unsafe

histories. The complement Hsafe := H \ Hunsafe contains all histories ht ∈ H that

satisfy d(gt(ht), F \D) >
√
n
t . Such histories are called safe histories. As we will show

in the proof of Lemma 7 below, because payoffs are bounded by 1, whatever Player 1
plays at stage t+ 1 after a history ht ∈ Hsafe, the average payoff up to stage t+ 1 will
be in D.

For every history ht ∈ H denote by ϕ(ht) the history where we only keep actions
played at stages t′ ≤ t that follow a safe history (i.e., ht′−1 ∈ Hsafe); actions at stages
t′ ≤ t that follow an unsafe history (i.e., ht′−1 ∈ Hunsafe) are deleted. Formally, we
define ϕ recursively as follows.

ϕ(∅) := ∅, (5)

ϕ(ht, it+1, jt+1) :=

{
ϕ(ht) if ht ∈ Hunsafe,
ϕ(ht) ◦ (it+1, jt+1) if ht ∈ Hsafe,

(6)

where ϕ(ht) ◦ (it+1, jt+1) is the concatenation of the history ϕ(ht) with the action pair
(it+1, jt+1).

We turn to the definition of the strategy σ∗. Let σ∗ be the strategy of Player 1 that
plays the safe action s whenever ht ∈ Hunsafe, and plays the strategy σ̂ that approaches
A ∩D whenever ht ∈ Hsafe: after a history ht ∈ Hsafe, when determining which mixed
action she should play, Player 1 ignores past stages that followed unsafe histories, and
follows σ̂ as if past play is ϕ(ht). Formally,

σ∗(ht) :=

{
s if ht ∈ Hunsafe,
σ̂(ϕ(ht)) if ht ∈ Hsafe.

3.3 The strategy σ∗ approaches A while remaining in D

The proof that the strategy σ∗ approaches A while remaining in D is done in four steps.

1. In Lemma 7 we prove that when Player 1 plays σ∗, the average payoff always
remains in D, whatever Player 2 plays.

2. In Lemma 8 we prove that when Player 1 plays σ∗, the frequency of stages at
which the realized history is unsafe goes to 0.

3. In Lemma 9 we prove a geometric inequality used in the proof of Lemma 8.

4. In Lemma 10 we prove that the strategy σ∗ approaches the set A.

Lemma 7. For every strategy τ of Player 2, we have

Pσ∗,τ [∃t ≥ 1, gt /∈ D] = 0.

The properties that are needed to prove Lemma 7 are that (a) after histories in
Hunsafe the strategy σ∗ plays a safe action s, and (b) the set D is convex.

Proof. Fix a strategy τ of Player 2. For every history ht ∈ H, denote by Pσ∗,τ [ht] the
probability that, under the strategy pair (σ∗, τ), the realized history of length t is ht.
We will prove by induction on t that for every history ht ∈ H that satisfies Pσ∗,τ [ht] > 0,
we have gt(ht) ∈ D.

7



Since at the first stage the strategy σ∗ plays a safe action, the claim holds for t = 1.
Assume then by induction that the claim holds for t − 1, and let ht be a history of
length t with Pσ∗,τ [ht] > 0. In particular, ht−1, the prefix of ht of length t− 1, satisfies
Pσ∗,τ [ht−1] > 0, and consequently, by the induction hypothesis, we have gt−1(ht−1) ∈ D.

If ht−1 ∈ Hunsafe then at stage t the strategy σ∗ plays a safe action. Since the set
D is convex, since gt−1(ht−1) ∈ D, and since R1(s) ⊆ D, it follows that gt(ht) ∈ D.

If ht−1 ∈ Hsafe then d(gt−1(ht−1), F \D) >
√
n

t−1 . Because payoffs are in [0, 1]n, we

have that d(gt−1(ht−1), gt(ht)) ≤
√
n
t . This implies that d(gt(ht), F \ D) > 0, so that

gt(ht) ∈ D as well.

Denote by f(ht) the number of times along the history ht in which the subhistory
ht′ is unsafe for t′ < t, that is,

f(ht) := #{0 ≤ t′ < t : ht′ ∈ Hunsafe}.

For every history ht ∈ H, we denote the average payoff during the stages in which the
subhistory is unsafe by

αt :=
1

f(ht)

∑
0≤l<t,hl∈Hunsafe

U(il+1, jl+1) =
1

f(ht)

∑
0≤l<t,hl∈Hunsafe

U(s, jl+1),

and the average payoff up to stage t during the stages in which the history is safe by

βt :=
1

t− f(ht)

∑
0≤l<t,hl∈Hsafe

U(il+1, jl+1).

Note that αt ∈ R1(s), so in particular d(αt, F \D) ≥ δ > 0, where δ was defined to be
d(F \D,R1(s)). Note also that

gt =
1

t

t∑
l=1

U(il, jl) =
f(ht)

t
αt +

t− f(ht)

t
βt. (7)

The following result, which provides a uniform upper bound on f(ht), implies that
with high probability, the frequency of stages at which the realized history is unsafe
goes to 0. Recall that δ was defined to be d(F \D,R1(s))

Lemma 8. For every ε > 0 there exists a constant c′ > 0 such that for every strategy
τ of Player 2 we have

Pσ∗,τ

[
∀t ≥ 1, f(ht) ≤ c′

√
t

δ

]
≥ 1− ε.

To prove Lemma 8 we need the following technical result.

Lemma 9. For every x ∈ D, every y ∈ Rn, and every λ ∈ [0, 1], we have

d(λx+ (1− λ)y, F \D) ≥ λd(x, F \D)− (1− λ)d(y,D)

Proof. Step 1: Definitions.
Define two continuous functions g1, g2 : [0, 1]→ R by

g1(λ) := d(λx+ (1− λ)y, F \D), ∀λ ∈ [0, 1],

and
g2(λ) := λd(x, F \D)− (1− λ)d(y,D).

8



Since the set D is open, g1(1) = g2(1) = d(x, F \D) > 0. Define

λ0 := inf{λ ∈ [0, 1] : g1(λ) > 0}.

The intuition of the proof of the lemma is as follows. The point λx+ (1− λ)y is in
D whenever λ ∈ [0, λ0), and outside D whenever λ ∈ (λ0, 1]. By definition, g1(λ) = 0
for every λ ∈ [0, λ0]. The convexity of D will imply that the function g1 is concave on
(λ0, 1] (Step 2) and that g2(λ) ≤ 0 for every λ ∈ [0, λ0) (Step 3). This will imply that
g1(λ) = 0 ≥ g2(λ) for every λ ∈ [0, λ0]. Since g1(1) = g2(1) while g1(λ0) ≥ g2(λ0), it
will then follow that g1(λ) ≥ g2(λ) for every λ ∈ [λ0, 1].

Step 2: The function g1 is concave on (λ0, 1].
The claim holds since the set D is convex. Indeed, suppose that λ, λ′ ∈ (λ0, 1],

g1(λ) = c > 0, and g1(λ′) = c′ > 0. This implies that d(λx + (1 − λ)y, F \ D) =
c and d(λ′x + (1 − λ′)y, F \ D) = c′. Consequently, B(λx + (1 − λ)y, c) ⊆ D and
B(λ′x + (1 − λ′)y, c′) ⊆ D, where B(z, r) is the open ball around z with radius r, for
every z ∈ Rn and every r ≥ 0. It follows that B(λ′′x + (1 − λ′′)y, c′′) ⊆ D, where
λ′′ := 1

2λ+ 1
2λ
′ and c′′ := 1

2c+ 1
2c
′. Therefore g1(λ′′) = d(λ′′x+ (1− λ′′)y, F \D) ≥ c′′.

The function g1 is therefore mid-point concave and continuous, hence concave.

Step 3: g2(λ) ≤ 0 for every λ ∈ [0, λ0).
The claim holds trivially whenever λ0 = 0. We therefore assume that λ0 > 0, so in

particular y is not in D. We will show that g2(λ0) ≤ 0. The result for every λ ∈ [0, λ0)
will follow since the function g2 is monotone increasing.

Set q := λ0x+ (1− λ0)y (see Figure 2). Then q lies on the boundary of the set D.
Since the set D is convex, so is its closure D. Hence there is a unique closest point to
y in D, denoted z. Denote by θ the angle between the line segment [y, z] and the line
segment [y, x]. If θ > 0, denote by w the intersection point of the half line [z, q], and
the half line that starts at x, lies on the plane defined by x, y, and z, and has angle θ
relative to the line segment [x, y]. Since D is convex, since the points q and z are on
the boundary of D, and since q lies on the line segment [w, z], we have w ∈ F \D. The
triangles (x,w, q) and (y, z, q) are similar, hence (1 − λ0)d(y, z) = λ0d(x,w). If θ = 0,
define w := z, and then (1− λ0)d(y, z) = λ0d(x,w) holds as well. We conclude that

(1− λ0)d(y,D) = (1− λ0)d(y, z) = λ0d(x,w) ≥ λ0d(x, F \D),

where the last inequality follows from the fact that w is in F \D. Consequently,
g2(λ0) ≤ 0 as desired.

Step 4: g1(λ) ≥ g2(λ) for every λ ∈ [0, 1].
For λ ∈ [0, λ0) we have by Step 3

g1(λ) = 0 ≥ g2(λ).

By the continuity of g1 and g2 this inequality extends to λ = λ0. By Step 2 the function
g1 is concave on (λ0, 1] and by its definition the function g2 is linear on this interval.
Since g1(1) = g2(1) while g1(λ0) ≥ g2(λ0), it follows that g1(λ) ≥ g2(λ) for every
λ ∈ [λ0, 1].

Proof of Lemma 8. It is sufficient to prove the claim for histories ht ∈ H that satisfy
f(ht) ≥ 2. Fix ε > 0, a strategy τ of Player 2, and a history ht ∈ H that satisfies
f(ht) ≥ 2. Denote by m = m(ht) ∈ {1, 2, · · · , t} the last stage along ht such that
hm ∈ Hunsafe. Note that if m < t then f(ht) = f(hm) + 1, while if m = t then
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Figure 2: The construction in the proof of Lemma 9.

f(ht) = f(hm). Since hm ∈ Hunsafe we have d(gm, F \ D) ≤
√
n
m . By Eq. (7) and

Lemma 9 we deduce that
√
n
m ≥ d(gm, F \D)

= d
(
f(hm)
m αm + m−f(hm)

m βm, F \D
)

≥ f(hm)
m d(αm, F \D)− m−f(hm)

m d(βm, D). (8)

Since αm ∈ R1(s) we have d(αm, F \ D) ≥ δ. Since βm is the average payoff when
playing the approachability strategy for m− f(hm) stages, there is a constant c ≥

√
n,

such that2

Pσ∗,τ

[
∀t ≥ 1, d(βm, D) ≤ c√

m−f(hm)

]
≥ 1− ε. (9)

Together with Eq. (8) this implies that on the event

{
∀t ≥ 1, d(βm, D) ≤ c√

m−f(hm)

}
we have

c
m ≥

√
n
m ≥ f(hm)

m δ − m−f(hm)
m · c√

m−f(hm)

= f(hm)
m δ − c

√
m−f(hm)

m (10)

≥ f(hm)
m δ − c

√
m
m , (11)

which solves to f(hm) ≤ c(1+
√
m)

δ . Consequently, on this event

f(ht) ≤ f(hm) + 1 ≤ c(1+
√
m)

δ + 1 ≤ c(2+
√
t)

δ ,

where the first inequality holds by the choice of m and the last inequality holds since

m ≤ t. Therefore, on an event of probability larger than 1−ε, we have that f(ht) ≤ c′
√
t

δ
where c′ = 3c, and the result follows.

2To properly interpret Eq. (9) and the event {∀t ≥ 1, d(βm, D) ≤ c√
m−f(hm)

}, recall that m depends on

t.
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We now complete the proof of Theorem 4 by showing that the strategy σ∗ approaches
the set A∩D, and, in particular, approaches the set A. This result holds since in most
stages Player 1 plays a strategy that approaches the set A ∩D.

Lemma 10. The strategy σ∗ approaches the set A ∩D.

Proof. Fix ε > 0. Since the strategy σ̂ approaches the set A ∩D, there is T0 ∈ N such
that for every strategy τ of Player 2,

Pσ̂,τ

[
∀t ≥ T0, d(gt, A ∩D) < ε

]
> 1− ε. (12)

Consider an outside observer who observes the play only at stages t such that ht−1 ∈
Hsafe. This observer is not aware of the stages t such that ht−1 ∈ Hunsafe and from
her point of view Player 1 follows the strategy σ̂. Let c′ be the constant of Lemma 8,

and let T1 ≥ 1 be sufficiently large so that T1 − c′
√
T1

δ ≥ T0. By Lemma 8, with high
probability the number of stages which the observer missed up to stage T1 is at most
c′
√
T1

δ . Hence, up to stage T1 of the actual game, with high probability the observer
observed at least T0 stages.

Recall that βt is the average payoff up to stage t during the stages m in which the
partial history up to stage m is in Hsafe; that is, this is the average payoff as observed
by the observer. Let Ω′ be the event that, for the observer, d(βt, A ∩D) ≤ ε for every
t ≥ T0:

Ω′ := {d(βt, A ∩D) ≤ ε,∀t such that ht ∈ Hsafe, t− f(ht) ≥ T0}.

By Eq. (12) we have Pσ∗,τ (Ω′) > 1− ε.
Denote by Ω′′ the event

Ω′′ := Ω′ ∩
{
f(ht) ≤ c′

√
t

δ ,∀t ≥ 1
}
.

By Lemma 8 we have Pσ∗,τ [Ω′′] ≥ 1− 2ε.
From now on we restrict our attention to the event Ω′′ and we fix t ≥ T1. By

definition we have d(βt, A ∩ D) ≤ ε. Since payoffs are between 0 and 1, we have
d(αt, A ∩D) ≤ 1, which implies that

d(gt, A ∩D) ≤ f(ht)
t + t−f(ht)

t d(βt, A ∩D) ≤ ε+ c′

δ
√
t
. (13)

Taking T2 := max {T1,
c′2

ε2δ2 } we obtain that on Ω′′

d(gt, A ∩D) ≤ 2ε, ∀t ≥ T2,

and the desired result follows.

3.4 Rate of Convergence

In addition to proving that every B-set is approachable, Blackwell identified a strategy
for Player 1 that guarantees that the average payoff converges to A at a rate of O( 1√

t
),

where t is the number of stages played so far; that is, there is a strategy σ for Player 1
such that for every ε > 0 there is a constant c > 0 (which depends only on the payoff
function U) such that for every strategy τ of Player 2 and every t ≥ 1,

Pσ,τ [∀t ∈ N, d(gt, A) < c√
t
] ≥ 1− ε, (14)

11



see, e.g., Corollary 14.16 in Maschler et al. 2013.
We now show that the rate of convergence to the target set A is not harmed by the

introduction of constraints. In particular, remaining in D as part of the approachability
strategy does not incur additional penalties on the rate of approachability from an
asymptotic perspective.

Theorem 11. The rate at which the strategy σ∗ approaches A ∩D is O( 1
δ
√
t
); that is,

for every ε > 0 there exists a constant c′′ > 0 (which depends only on the payoff function
U) such that for every strategy τ of Player 2 we have

Pσ?,τ

[
∀t ≥ 1, d(gt, A ∩D) <

c′′

δ
√
t

]
≥ 1− ε.

Proof. We use the notations of Lemma 10. Fix ε > 0. Recall that βt is the average
payoff up to stage t in safe stages . In these stages the strategy σ∗ follows the strategy
σ̂ that approaches A ∩ D. Hence, there is c > 0 (which depends only on the payoff
function U)such that with probability at least 1−ε we have d(βt, A∩D) ≤ c√

t−f(ht)
for

every t ≥ 1 and every strategy τ of Player 2 (see Eq. (14)). By Eq. (13) and Lemma 8,
with probability at least 1− ε we have

d(gt, A ∩D) ≤ t−f(ht)
t d(βt, A ∩D) + f(ht)

t

≤ c
√
t−f(ht)

t + c′
√
t

δt (15)

≤ c√
t

+ c′

δ
√
t

=

(
c+

c′

δ

)
1√
t
, (16)

and the claim follows.

4 The Case that D is not Convex

The proof of Theorem 4 hinges on the assumption that the set D is convex. In this
section we study approachability with constraints when the set D is not convex. We
start with an example, which shows that in the absence of convexity, Conditions (C1)
and (C2) are not sufficient to guarantee that Player 1 can approach A while remaining
in D. This example will lead us to a weaker concept of approachability with constraints
that we will examine.

Example 12. Consider the game that appears in Figure 3, where Player 1 has four
actions, T1, T2, B1, and B2, Player 2 has two actions, L and R, and the payoffs are
two-dimensional.

L R
T1 (1, 2) (2, 2)
T2 (2, 2) (1, 2)
B1 (1, 1) (2, 1)
B2 (2, 1) (1, 1)

Figure 3: The payoff matrix in Example 12.

Let 0 < α′ < α < 1
2 and define A := B(( 3

2 , 1), α′) the ball with center ( 3
2 , 1) and

radius α′, and D := ([1− α, 2 + α]× [2− α, 2 + α]) ∪ ([ 3
2 − α,

3
2 + α]× [1− α, 2 + α]),

see Figure 4.
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A

D

1 2

1

2

Figure 4: The sets A and D in Example 12.

Conditions (C1) and (C2) are satisfied; indeed, the actions T1 and T2 are safe ac-
tions, and the strategy 1

2B1 + 1
2B2 approaches the set A, which is a strict subset of D,

and therefore it also approaches the set A ∩D.
Player 1 cannot approach A while remaining in D. Indeed, assume to the contrary

that Player 1 has a strategy σ that approaches A while remaining in D, and let τ be
the stationary strategy of Player 2 that plays L and R with equal probability at every
stage. Fix ε > 0 sufficiently small and suppose that the average payoff at stage t0 is in
the set B(A, ε). It might happen with positive probability, albeit small, that in the next
t0
ε stages the first coordinate of the outcome is 1. In this case there will be t > t0 such

that the average payoff at stage t is not in D.
Nevertheless, as we now argue, Player 1 can approach A while remaining in D with

high probability. To do so, Player 1 plays the mixed action 1
2T1 + 1

2T2 for K stages,
where K ≥ 1 is sufficiently large, and afterwards she plays the mixed action 1

2B1 + 1
2B2.

During the first K stages the average payoff is in the convex hull of (1, 2) and (2, 2), and
in particular it remains in D. Moreover, by the strong law of large numbers, provided
K is sufficiently large, with high probability the first coordinate of the average payoff at
stage K is between 3

2−
α
2 and 3

2 + α
2 . By the strong law of large numbers once again, and

provided K is sufficiently large, with high probability the first coordinate of the average
payoff at every stage t ≥ K is between 3

2 −α and 3
2 +α, in which case the average payoff

remains in D. It follows that Player 1 can indeed approach A while remaining in D
with high probability.

Example 12 leads us to the study of probabilistic approachability with constraints,
which requires that the constraints are satisfied with high probability.

Definition 13. Let A and D be two subsets of Rn. Given ε > 0, we say that Player 1
can approach A while remaining in D with probability at least 1 − ε if there exist a
strategy σε and an integer Tε ≥ 1 such that for every strategy τ of Player 2 we have

P
[
∀t ≥ Tε, d(gt, A) < ε

]
> 1− ε, (17)

P
[
∀t ≥ 1, gt ∈ D

]
> 1− ε. (18)

We say that Player 1 can approach A while remaining in D with high probability if,
for every ε > 0, Player 1 can approach A while remaining in D with probability at least
1− ε.
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To prove Theorem 4, which studied the case in which the set D is convex, we
constructed a strategy that “directly” approaches A ∩ D: the strategy attempted to
approach the set A∩D, and played a safe action only to ensure that the average payoff
does not leave D. In the next example, we illustrate a more complex strategy that
handles the nonconvexity of the set D by setting intermediate goals to Player 1.

Example 14. Consider the game that is displayed in Figure 5, where Player 1 has
four actions, x0, x1, x2, and x3, Player 2 has two actions, L and R, and the payoff is
two-dimensional.

L R
x0 (1, 1) (1, 1)
x1 (4, 1) (4, 1)
x2 (2, 3) (4, 3)
x3 (4, 3) (2, 3)

Figure 5: The payoff matrix in Example 14.

Let 0 < α′ < α < 1
2 and define A := B((3, 3), α′) and D := ([1 − α, 3 + α] × [1 −

α, 1 + α]) ∪ ([3− α, 3 + α]× [1− α, 3 + α]), see Figure 6.

A

1 3 5

1

3

5

Figure 6: The sets A and D in Example 14.

To approach the set A while remaining in D with high probability, Player 1 can use
the following strategy.

• Play the action x0 during T0 stages, where T0 ≥ 1 is sufficiently large. Regardless
of the play of Player 2, the average payoff is gt = (1, 1) for every t ∈ {1, 2, . . . , T0}.

• Between stages T0 +1 and T0 +T1, play the action x1, where T1 = 3T0. Regardless
of the play of Player 2, we have gT0+T1

= (3, 1), and for every t ∈ {T0 + 1, T0 +
2, . . . , T0 + T1} the average payoffs gt is in the convex hull of (1, 1) and (3, 1),
hence in D.

• Then play forever the mixed action [ 1
2 (x2), 1

2 (x3)], which approaches the set A.

By the strong law of large numbers, the probability that the average payoff always remains
in D goes to 1 as T0 goes to infinity. Indeed, the average payoff will leave the set D
only if in the last phase of the play, the percentage of the number of stages in which the
outcome is (2, 3) is far from 0.5, an event that occurs with a small probability when T0

is sufficiently large.
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While the strategy used in the proof of Theorem 4 plays either the safe action or
a strategy that approaches the set A ∩ D, the strategy used in Example 14 starts by
playing a sequence of actions that leads the average payoff towards the intermediate
target (3, 1), and then a sequence of actions that leads the average payoff towards
A ∩D. There are two main differences between the two strategies.

• First, since in Theorem 4 the set D is convex, it follows that the convex hull of
R1(s) and any point gt ∈ D is a subset of D. Hence, Player 1 can switch from
playing the safe action s to a strategy that approaches A ∩D, back and forth, to
maintain the average payoff in D. When the set D is not convex, one needs to
“lead” the average payoff from R1(s) to some point x that satisfies that the convex
hull of x and a subset of A ∩ D remains in D, and once the average payoff gets
close to x, switch to the strategy that approaches A ∩D. Thus, the play before
switching to the strategy that approaches A∩D is more involved when the set D
is not convex.

• Second, the convexity of the set D in Theorem 4 ensures that whenever the average
payoff gets close to F \D and the strategy plays the safe action again, the average
payoff, which is the average of two vectors in D, is in D. When the set D is not
convex, this property does not hold, and it may be impossible to play the safe
action, in a way that ensures that the average payoff remains in D. Hence in this
case we have to work with the weaker concept of Definition 13.

Example 14 shows that it is unlikely that there is an elegant characterization to
approachability with constraints when the set D is not convex, because the structure of
the payoff function may allow Player 1 to make the average payoff follow a complicated
path in D that starts in some set R1(s) and ends at A. The next theorem presents one
sufficient condition for a pair of sets (A,D) to be such that Player 1 can approach A
while remaining in D with high probability. This sufficient condition generalizes the
insight of Example 14. A mixed action of Player 1 is called safe if each action in the
support of the mixed action is safe.

Theorem 15. Let A and D be two subsets of Rn, the latter being open. Suppose that

(D1) The set A ∩D is approachable.

(D2) There exist δ > 0, a safe mixed-action x0, a positive integer m, m mixed actions
x1, . . . , xm ∈ ∆(I), and m open subsets A1, . . . , Am of Rn such that Am ⊆ A ∩D
and for every 0 ≤ ` ≤ m− 1 the following hold:

conv[A` ∪B(R1(x`+1), δ)] \A`+1 is not path-connected, and (19)

conv[A` ∪B(A`+1, δ)] ⊆ D, (20)

where A0 := R1(x0).

Then Player 1 can approach A while remaining in D with probability 1 − ε, for every
ε > 0.

Remark 16. Theorem 15 claims that we can weaken the convexity assumption. To
approach A we can specify objective sets A1, A2, . . . , Am and have the average payoff
reach the sets successively. The role of Condition (D2) is to ensure that there exists
actions that makes the move from A` and A`+1 possible, while remaining in D. The
role of Condition (D1) is to ensure that once the average payoff reaches the set Am, it
can remain in A ∩D with high probability.
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Remark 17. The game described in Example 14 satisfies Conditions (D1) and (D2).
Condition (D1) is satisfied because A = A ∩ D is approachable. Condition (D2) is
satisfied because we can define A0 := R1(x1) and A2 = B((3, 1), ε) for a small ε > 0.
The average payoff reaches A1 from A0 by playing x1 and it reaches A2 = A from A1

by playing 1
2x2 + 1

2x3.

Proof. The proof is quite technical, yet it poses no conceptual difficulties. We therefore
only present the main steps of the proof.

Eq. (19) implies that every path in conv[A` ∪ R1(x`+1)] that links A` to R1(x`+1)
intersects A`+1. Moreover, because A`+1 is open while A` and R1(x`+1) are closed, the
length of this intersection is bounded away from 0. Denote by Λ` > 0 a lower bound on
the length of these intersections, and define

Λ := min
0≤`≤m−1

Λ` > 0.

Fix ε > 0 and let T such that T � 1
Λ . Define a collection τ0, τ1, · · · , τm−1 of stopping

times as follows:

τ0 := T, (21)

τ` := min{t > τ`−1 : gt ∈ A`}, ` ∈ {1, 2, · · · ,m− 1}. (22)

For 1 ≤ ` ≤ m, the stopping time τ` is the first stage after stage τ`−1 in which the
average payoff reaches the set A`. Define a strategy σ(T ) as follows:

• Until stage τ0 play the safe mixed action x0.

• Between stages τ`−1 and τ`−1 play the mixed action x`, for each ` ∈ {1, 2, · · · ,m−
1}.

• From stage τm−1 and onward play a strategy σ̂ that approaches the set A ∩D.

Let T0 be sufficiently large. We argue that if Player 1 plays the strategy σ(T0), then
with high probability

• The stopping times τ1, · · · , τm−1 are bounded, regardless of the strategy played
by Player 2.

• The average payoff remains in D.

Since the mixed action x0 is safe, gt ∈ D for every t ≤ τ0.
Assume by induction that, for a given ` ∈ {1, 2, · · · ,m− 1}, there is an integer T`−1

such that Pσ(T ),τ [τ`−1 ≤ T`−1] > 1−`ε. In particular, gτ`−1
∈ A`−1 on the event {τ`−1 ≤

T`−1}. At stage τ`−1 Player 1 starts playing the mixed action x`, so the expected stage
payoff is in R1(x`). The sequence of the average payoffs (gt)

τ`
t=τ`−1

starts at A`−1 and

moves towards R1(x`). Since τ`−1 ≥ τ0 = T0, we have ‖gt − gt−1‖ < 2
T0

< Λ. By the

strong law of large numbers, provided T0 is much larger than 1
Λ , there is T` ≥ T`−1 such

that gt ∈ A` for some t ≤ T`, and therefore τ` is finite. Moreover, Eq. (20) implies that
provided T0 is sufficiently large, Pσ(T0),τ [τ` ≤ T`] > 1− (`+ 1)ε, for every strategy τ of
Player 2.

Since at stage τm−1 Player 1 starts following a strategy that approaches the set A∩D,
there is an integer Tm such that Pσ(T0),τ [d(gt, A ∩D) ≤ ε, ∀t ≥ τm] > 1 − (m + 2)ε.
Eq. (20), applied to ` = m, implies that, provided T0 is sufficiently large, with high
probability gt ∈ D for every t ≥ τm. The result follows.

The next example shows that the sufficient condition provided by Theorem 15 is not
necessary.
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Example 18. Consider the game that appears in Figure 7, where Player 1 has three
actions, T1, T2, and B, Player 2 has two actions, L and R, and the payoff is two-
dimensional.

L R
T1 (1, 2) (1, 2)
T2 (2, 1) (2, 1)
B (2, 3) (3, 2)

Figure 7: The payoff matrix in Example 18.

Let 0 < α′ < α < 1
2 and define A := {(2, 2)} and D := ([2− α, 2 + α]× [2− α, 3 +

α]) ∪ ([2− α, 3 + α]× [2− α, 2 + α]), see Figure 8.

A

1 2 3

1

2

3

Figure 8: The sets A and D in Example 18.

In this game, B is the only safe action of Player 1, yet R1(B) 6⊂ D, and therefore
Eq. (20) is not satisfied for ` = 0. Nevertheless, Player 1 can approach A while remain-
ing in D. To do that, Player 1 plays in blocks of size 2. In the first stage of each block
Player 1 plays the action B. If Player 2 played the action L (resp. R) at the first stage
of the block, then in the second stage of the block Player 1 plays the action T2 (resp.
T1). The average payoff in each block is (2, 2). The reader can verify that the strategy
described above ensures that the average payoff converges to (2, 2) while remaining in
D.

5 Discussion and Open Problems

In this paper we presented two variants of the concept of approachability with con-
straints, characterized approachability with constraints when the set of constraints is
convex (Theorem 4), showed that the rate of convergence in this case is the same as
when constraints are absent (Theorem 11), and provided a sufficient condition for ap-
proachability with constraint with high probability when the set of constraints is not
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convex (Theorem 15). Example 18 shows that the sufficient condition in the latter
case is not necessary. This example highlights the complexity that the presence of con-
straints introduces to the game: Player 1 can ensure that the average payoff satisfies
the constraints by balancing her behavior in different stages. The sufficient condition
of Theorem 15 is useful only in cases that balancing is achieved by means of the strong
law of large numbers: Player 1 ensures that the average payoff is close to the expected
average payoff. In Example 18 Player 1 balances the average payoff in a different way:
in every two consecutive stages the average payoff is a given vector. In such a case, the
sufficient condition of Theorem 15 is not useful.

The difficulty posed by the presence of constraints is not unique to the concept
of approachability. Two other notions of approachability have been studied in the
literature. Vieille 1992 studied the concept of weak approachability: a set A is weakly
approachable if for every t ≥ 1 sufficiently large Player 1 has a strategy σ = σ(t) that
guarantees that gt, the average payoff up to stage t, is close to A, whatever Player 2
plays. Shani and Solan 2014 studied the concept of strong approachability: a set A
is strongly approachable if there is T0 ≥ 1 such that Player 1 can ensure that the
average payoff gt is in A for every t ≥ T0. Introducing constraints to the model of
weak approachability or strong approachability exhibits the same difficulties presented
in this paper. This is because the difficulties arise due to the presence of constraints
and not due to the variant of approachability that is studied: Player 1 has various ways
to ensure that the average payoff satisfies the constraints, and to date we are not aware
of an elegant characterization of these ways. The difficulties are also present if instead
of studying the average payoff gt one considers the average of the expected stage payoff,
namely, 1

t

∑t
l=1 U(σ(hl−1), τ(hl−1)).

A related model that was studied in the literature is that of approachability in
stochastic games with vector payoffs, see, e.g., Shimkin and Shwartz 1993, Milman
2006, Flesch et al. 2018. The main difference between the models is that while in
stochastic games transitions depend on the state variable and on the players’ actions,
in repeated games with constraints the failure of the constraint depends on the average
payoff, and therefore to model a repeated games with constraints as a stochastic game
one needs an infinite state space.

We end the paper by introducing some open problems. The identification of a
necessary and sufficient condition for approachability with constraints in the nonconvex
case is an important open problem that is left for future research. Characterizing pairs
of sets (A,D) such that A is weakly approachable or strongly approachable when D is
convex or not convex is another interesting question.

Once the characterization of approachability with constraints in the general case
will be completed, it will be important to study the convergence rate to the set A ∩D.
By Theorem 11, the rate of convergence when D is convex is O( 1√

t
). We conjecture

that this will be the convergence rate also in the general case, since the two forces that
play role in approachability with constraints are Blackwell’s approachability strategy
and the strong law of large numbers, both of which have a convergence rate of O( 1√

t
).

Another issue, which already arises in the setup of approachability without con-
straints, is what happens when Player 2 (nature) cannot play any mixed action, but is
restricted to a subset of mixed actions. This happens, e.g., when Player 2 is composed
of two players who cannot correlate their actions. A characterization of the collection
of approachable sets in this case, as well as understanding how this collection changes
as the set of mixed action available to Player 2 varies, are two questions that call for
further study.
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