

Corrigendum: Myelination Increases the Spatial Extent of Analog-Digital Modulation of Synaptic Transmission: A Modeling Study

Mickaël Zbili, Dominique Debanne

▶ To cite this version:

Mickaël Zbili, Dominique Debanne. Corrigendum: Myelination Increases the Spatial Extent of Analog-Digital Modulation of Synaptic Transmission: A Modeling Study. Frontiers in Cellular Neuroscience, 2020, 14, 10.3389/fncel.2020.00099. hal-03139013

HAL Id: hal-03139013 https://amu.hal.science/hal-03139013v1

Submitted on 11 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Corrigendum: Myelination Increases the Spatial Extent of Analog-Digital Modulation of Synaptic Transmission: A Modeling Study

Mickaël Zbili 1,2* and Dominique Debanne 2*

¹ Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292-Université Claude Bernard Lyon1, Lyon, France, ² UNIS UMR 1072 INSERM, AMU, Marseille, France

OPEN ACCESS

Edited and reviewed by:

Josef Bischofberger, University of Basel, Switzerland

*Correspondence:

Mickaël Zbili zbili.mickael@gmail.com Dominique Debanne dominique.debanne@inserm.fr

Specialty section:

This article was submitted to Cellular Neurophysiology, a section of the journal Frontiers in Cellular Neuroscience

> Received: 23 March 2020 Accepted: 31 March 2020 Published: 04 May 2020

Citation:

Zbili M and Debanne D (2020)
Corrigendum: Myelination Increases
the Spatial Extent of Analog-Digital
Modulation of Synaptic Transmission:
A Modeling Study.
Front. Cell. Neurosci. 14:99.
doi: 10.3389/fncel.2020.00099

 $Keywords: myelin, axon, axonal\ space\ constant, analog\ digital\ facilitation, spike\ shape, ion\ channels,\ axonal\ length\ constant$

A Corrigendum on

Myelination Increases the Spatial Extent of Analog-Digital Modulation of Synaptic Transmission: A Modeling Study

by Zbili, M., and Debanne, D. (2020). Front. Cell. Neurosci. 14:40. doi: 10.3389/fncel.2020.00040

In the original article, there was an error in the equation $W = A * Q_{Ca}^{2+}$ describing how we computed the synaptic strength from the calcium charge in the presynaptic terminals. Actually, we used the following equation in the model: $W = A * (Q_{Ca}^{2+})^{2.5}$. In consequence, a correction has been made to the Materials and Methods section, subsection Postsynaptic Responses, first paragraph:

"To obtain the postsynaptic responses, we used Alpha Synapse Point Processes from Neuron 7.6 inserted into postsynaptic cells. The weights of the synapses were calculated using the charge of the spike-evoked Ca^{2+} entry in the presynaptic sites with the following power law:

$$W = A* (Q_{Ca}^{2+})^{2.5}$$

where W is the synaptic weight, A is a scaling factor and Q_{Ca} is the charge of the spike-evoked Ca^{2+} current (Scott et al., 2008). Therefore, an increase in the Ca^{2+} entry produced by an increase in presynaptic spike amplitude or duration led to an increase in the postsynaptic response amplitude."

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

1

REFERENCES

Scott, R., Ruiz, A., Henneberger, C., Kullmann, D. M., and Rusakov, D. A. (2008). Analog modulation of mossy fiber transmission is uncoupled from changes in presynaptic Ca2+. J. Neurosci. 28, 7765–7773. doi: 10.1523/JNEUROSCI.1296-08.2008

Copyright © 2020 Zbili and Debanne. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.