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Abstract: Fuel cells are key elements in the transition to clean energy thanks to their neutral carbon
footprint, as well as their great capacity for the generation of electrical energy by oxidizing hydrogen.
However, these cells operate under straining conditions of temperature and humidity that favor
degradation processes. Furthermore, the presence of hydrogen—a highly flammable gas—renders
the assessment of their degradations and failures crucial to the safety of their use. This paper deals
with the combination of physical knowledge and data analysis for the identification of health indices
(HIs) that carry information on the degradation process of fuel cells. Then, a failure prognosis method
is achieved through the trend modeling of the identified HI using a data-driven and updatable state
model. Finally, the remaining useful life is predicted through the calculation of the times of crossing
of the predicted HI and the failure threshold. The trend model is updated when the estimation
error between the predicted and measured values of the HI surpasses a predefined threshold to
guarantee the adaptation of the prediction to changes in the operating conditions of the system. The
effectiveness of the proposed approach is demonstrated by evaluating the obtained experimental
results with prognosis performance analysis techniques.

Keywords: remaining useful life; health index identification; discrete state model; trend modeling;
fuel-cell systems

1. Introduction

In the specialized literature, we can distinguish two main families of approaches for
fault diagnosis and failure prognosis: approaches using physical models and data-driven
ones. These large families can then be decomposed according to the tools used in each
work, as proposed by Lin et al. [1] and Djeziri et al. [2]. The use of physical or data-driven
models is a function of the compromise that has to be found between the advantages and
the drawbacks of each of them.

Model-based methods are well suited when the physical knowledge of the systems
is rich enough to make modeling assumptions and to build physical models that best
represent the real dynamics of a system. Renewable energy systems are among the systems
of which physical knowledge is rich; it is even at the origin of the development of these
systems. When the physical model is well constructed, it takes into account all the possible
operating points of a system, which makes methods based on physical models more generic.
However, the step of identifying the numerical values of the model parameters is done
using data-driven methods, which can lead to the identification of inadequate numerical
values with the physical meanings of the parameters.
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Data-driven methods are easier to implement compared to model-based ones, and are
perfectible thanks to the ability to update the models online by learning whenever new data
become available. On the other hand, the performance of these methods depends directly
on the quality and quantity of the available data. Often, data regarding degraded system
operations are not available, and the cause-and-effect relationship between degradation
and the variables measured is not formally demonstrated. So-called attribute selection
techniques, such as ReliefF, allow automatic selection of relevant variables from a set of
measured variables [3-5]. Two main approaches can be found in the literature: filter-based
methods and wrapping-based ones. Filter-based methods evaluate datasets using their
information content, such as inter-class distance and statistical dependence. Wrapping-
based methods use a classifier to evaluate subsets according to their predictive accuracy
using statistical sampling or cross-validation. Their limitation lies in the fact that they
are random search algorithms for an optimal set of attributes, so it is possible to obtain a
different set of attributes for each launch of the selection algorithm. These methods can
be an alternative when the number of measured variables is large and when the physical
relationship between the measured variables is not sufficiently known to make the selection
through physical reasoning.

The hybrid method proposed in this paper aims to capitalize on all the available
information (physical knowledge and data history) to build an algorithm for predicting
the failure of dynamic systems. The physical model is used to formally identify the
measured variables that carry useful information about the degradation process, and it
can also be used for optimal sensor placement in fault diagnosis and failure prognosis
contexts. The failure prediction is then carried out by a data-driven model and updated
online. Identifying relevant features using a physical approach significantly reduces the
uncertainty that can be generated by a large number of input variables used for learning
in the trend model. Model updating is only calculated when needed according to the
estimation error of the health index, and the update is done with the recursive least squares
algorithm. The proposed method is applicable on a wide range of systems, and is easy
to implement online. The physical model, which was built with the bond graph (BG)
methodology [6] and experimentally validated in several works [7-11], is firstly used for
structural analysis in order to identify the relevant measures that carry the information
about the degradation process. The degradation due to wear is manifested by the gradual
deviations of the characteristics of one or more system components from their nominal
values. In the BG methodology, these components correspond to well-identified BG
elements, and thanks to the notion of analogy, it is possible to represent all the hardware
components and the physical phenomena in a system with BG elements.

In addition, the causal and structural properties of the BG make it possible to browse
a BG as a directed graph, and thus to visualize the causal paths between the measurements
and the BG parameters whose physical meanings are clearly known. Once the relevant
measurements are identified, failure prognosis is achieved using a data-driven method.
Thus, the use of the physical model will be limited to structural and causal analyses that
require only a symbolic model, which is more generic and corresponds to a wide range of
fuel cells. The complex steps of parameter identification and model implementation are not
necessary in the approach proposed in this paper. After the identification of the measures
carrying the degradation process, these raw signals are preprocessed to extract the useful
information; then, the usability of the processed signals as health indicators for failure
prognosis is analyzed. The processing of the raw signals is performed using an automatic
smoothing process based on the Savitzky—Golay filter [12], where the sliding window
value that conserves only the appearance of the signal by removing noise and outliers is
calculated automatically. The usability analysis is carried out according to the scores of
the monotonicity metric [13]. The evolution trend of the health indices (HIs) is modeled
by a data-driven state model and is updated periodically to adjust the Remaining Useful
Lifetime (RUL) prediction to changes in condition monitoring. The RUL is calculated
through the temporal projection of the HI estimates up to the total failure threshold.
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The rest of the paper is organized as follows: Related works are given in Section 2.
Section 3 presents the proposed approach. Structural analysis for HIs identification, mea-
surement smoothing, and the analysis of the usability of the smoothed HI for failure
prognosis are developed in Section 4. The trend modeling method and RUL prediction are
described in Section 5. The application to the fuel cell system and the obtained results are
shown and analyzed in Section 6, and a conclusion is given in the last section.

2. Related Works

Fuel-cell systems are increasingly used in the fields of transport and energy production.
This evolution motivated the scientific community to develop physical models that are
widely used for simulation [14], control [7], and condition monitoring [9].

The fuel cell is a multi-physics system with interactions of hydro-pneumatic, electrical,
chemical, and thermal phenomena. The BG formalism, as a unified tool for all domains of
physics, is naturally used for the modeling of this system [7,8,11,15,16].

In the field of fault diagnosis, Yang et al. [17] used BG for the identification of detectable
faults in a fuel cell; then, the principle of analytical redundancy was used for the generation
of Hls. In the context of failure prognosis, the bond graph methodology is often associated
with data-driven trend models, as in [18], where the authors used a bond graph model in
linear fractional transformation (LFT) form, initially proposed in [19], for the generation of
HIs, as well as a particle filter for failure prognosis.

Although the proposed BG models differ in granularity, they are causally and struc-
turally equivalent. The difference in granularity essentially comes from modeling assump-
tions and from the purpose for which the model is built. For example, Saisset et al. [7]
created a dynamic model of a proton exchange membrane fuel cell (PEM-FC) for analyz-
ing the interactions between a fuel cell and DC/AC converters without considering the
hydraulic losses in the gas channels and the hydration changes of the membrane, and
the model validation was limited to the electrical performance. The BG model proposed
in [16,20] was built for control purposes on the basis of the model of Saisset et al. [7];
by including a more refined description of the cooling process, neglecting heat transfer
between individual layers of the cell to simplify the thermal dynamics, disregarding the
pressure losses within channels and constant membrane hydration, and using a controller
for the solenoid valve to control hydrogen flow rate and the air compressor as transfer
functions, the coefficients were tuned by using an iterative approach. This improvement
and adaptation of BG models to the context of use is possible thanks to their modular and
hierarchical appearance. The system is seen as a set of interconnected causal subsystems,
where the model of each subsystem can be modified or enhanced independently of other
subsystems, as long as its causal link with other subsystems is correctly defined. This BG
property has been effectively highlighted in the model of Vasilyev et al. [11], where the
BGs model of the PEM-FC was built in an object-oriented modeling environment. The
model proposed in Vasyliev et al. [11] was structurally equivalent to the models presented
in [16,20]; however, it included the main physical phenomena occurring in the fuel-cell
system by considering the thermal and water management, the chemical composition
of the inlet gases, and the electrolyte ionic resistance. This object-oriented presentation
furnishes an opportunity to study the system as a whole while keeping the possibility of
analyzing individual cells located in different parts of the stack.

In the context of fault diagnosis and failure prognosis, Lin et al. [1] proposed a
classification of existing methods into three categories: model-based methods [21], filter-
based methods [22], and data-driven methods [23-25]. Wu et al. [26] proposed a method
that simultaneously performs fault diagnosis and failure prognosis for the solid oxide fuel
cell (SOFC), where a least squares support vector machine (LS-SVM) classifier was used to
identify the fault type, and hidden semi-Mark models (HSMMs) were employed to estimate
the RUL, assuming that the fuel cell passes through several intermediate degradation states
before reaching total failure. The use of a new neural network paradigm, based on the Echo
State Network, which is part of a group of reservoir computing methods, is explored in [27]
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for the aging forecasting of PEM-FC. The signals used for failure prognosis are filtered
by the combination of the wavelet filter and Hurst coefficient. An algorithm of optimal
sensor selection for predicting PEM-FC performance was proposed in [28]. The method is
based on the largest gap and exhaustive brute-force searching techniques; then, the optimal
sensor set is studied to predict fuel-cell performance using test data from a PEM-FC system.
The Elman neural network state prediction model combined with multivariable dynamic
response analysis of an SOFC system was used in [29] to predict the future voltage of a
solid oxide fuel cell under various operating modes, including system start-stop, long-term
operation, and hot standby. Unlike the majority of work employing stack/cell voltage as a
direct link for RUL predictions, the method proposed in [30] is based on the stack’s ohmic
area-specific resistance (ASR), and consists of three steps: Firstly, the current ASR value
is estimated using an unscented Kalman filter based on a lumped stack model. Then, the
temporal drift in the ASR is recursively estimated using a linear Kalman filter. Finally,
based on the identified drift model, a Monte Carlo simulation is performed to predict the
RUL. D. Hissel and M. C. Perra [31] dealt with the state of the art and the motivations
regarding diagnostic and state-of-health estimation methodologies applied to fuel cells, and
presented a selection of recent developments and experimentations. In their conclusion,
the authors of [31] presented the RUL prediction of fuel cells as a research theme that is
still open, which will contribute to the development of the design and large-scale operation
of fuel cells.

3. RUL Prediction Schema

The presented approach is given in three steps, as illustrated in Figure 1. The first two
steps are offline analysis steps. The first one concerns the use of a generic BG model of
the system for causal and structural analysis in order to identify the causal path between
measures and all BG elements whose variation represents a degradation. The presence
of the causal path formally demonstrates that the measurement is sensitive to the fault
considered. The second step of the offline analysis is to demonstrate that the variables
selected in the first step satisfy the monotonicity condition, which is necessary for the
usability of the selected measurement as an HI for failure prognosis. Then, the initial
values of the state model are identified. The last step is the online monitoring, where the
state model is implemented and updated online, and then an RUL is predicted by a time
projection of the HI estimation until a predefined failure threshold.

Offline Stage

Step 1

Structural analysis for theldentification of
the relevant measurement

vReIevent measurement

BG model

Step 2

Learning
|Off-|ine data|—-|smoothing I—. a-r:;?;;jis > trend
model

v Trend model

Hi(k+1) RL.JL' UL
Prediction

/

Hi(k) Tre}z'ﬁ

Figure 1. Overview of the RUL estimation process.
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4. Health Indices Identification
4.1. Structural Analysis

The notion of causality is one of the major advantages of the BG methodology. It
allows one to highlight, in the block diagram sense, the relationships of: cause—effect,
input—output, and known-unknown variables. The causality rule in a BG model is defined,
by convention, as illustrated in Figure 2: The causal stroke is placed near (or far from) the
element for which the effort (or flow) is an input (known).

Causal strok

=]

Figure 2. Causality assignment convention.

A causal path in a junction structure (0, 1, T E, or GY) is defined as an alternation
of bonds and elements (R, C, or I) called nodes, such that all nodes have a complete and
correct causality, and two bonds of the causal path have opposite causal orientations in the
same node. Depending on the causality, the variable crossed is effort or flow. To change
this variable, it is necessary to pass through a junction element, GY, or through a passive
element (I, C, or R).

Thanks to the causal and structural properties, an analysis of the observability of the
considered faults can be done directly on the BG model of the system by following the
causal paths relaying the faults to the sensors. To illustrate these properties, let us consider
the example of the mechanical system given in Figure 3a and its BG model, which is given
in Figure 3b. The causal path relaying the input force Se : F and the measured output
De : Fc is illustrated in the model in Figure 3c and is given as follows:

Se:F—sel—se2—=-1:M—f2—fi—f5+C:1/K—eb—e6—De:Fc (1)

I:M C:1K
b, 2 I5
F(t) N
I — Se:Fﬁ|1 1|7 0 —+De:Fc
3 7
R:b1 R:b2
(@) (b)
I:M C:1K I:M C:1K
& i e f
Se :F—>{ 11—, 0—>»De:Fc Se:F— 11— 0—>»De:Fc
1 g
R:b1 R:b2 R:b1 R:b2

(c) (d)

Figure 3. Illustration of an example of the causal paths following from an input to an output: (a)
example of the mechanical system, (b) its corresponding BG model, (c,d) causal paths.
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The same reasoning is considered with an external fault or a component fault; the
causal path makes it possible to visualize the fault path in the system up to the measured
output. A component fault results in a deviation of the corresponding BG element from
the nominal value identified during normal operation. In the example of the mechanical
system in Figure 3, a degradation of the damper will result in a deviation of the BG element
R : b2 from its nominal value. Since there is an indirect causal path between this R element
and the measure De : Fc (illustrated in Figure 3d and given in Equation (2), this measure
will be sensitive to this degradation, and will consequently carry the information on the
degradation process of the damper.

R:b2— f7 — f5—+e5 —e6— De: Fc 2

4.2. Preprocessing

The sensor measurements are extremely noisy raw signals, which do not satisfy the
properties required for the use of these raw measurements for failure prognosis. The
most common method used to avoid the noise is smoothing. The smoothing methods
are multiple, and every method has its advantages and limitations. In this work, an
automatic smoothing process based on the Savitzky—Golay (SG) filter is considered. Unlike
conventional filters, which require noise characterization, the adopted filter makes it
possible to obtain the smoothed signal and its derivatives through a simple and fast
calculation.

The Savityzky—Golay filter formalism is given by Equation (3) for equally spaced
input data x;, Yis withj=1,...,n, and = is the data amount.

m
Si= Y CiYksi 3)
i=—m
wherei = —m,...,A,...,m and A is the center point index. A table of Savitzky—Golay

coefficients is obtained using | = 2m + 1 as a window length and the polynomial degree
k [32,33]. The performance of Savitzky—Golay filters depends on the choice of the poly-
nomial order and the window length. In this work, the sliding window J is computed
automatically by keeping only the appearance of the signal and cancelling noise and the
outlier’s components. The polynomial order is fixed to 2 to avoid any intense wiggling
in the smoothed signal. The proposed calculation of the | value is based on the similarity
between the kernel estimation and Savitzky—Golay filter.

n

fly) = % Y w(y —yih), (4)

1

where f is the kernel estimator, # is the size of the dataset y, and w is the kernel function
whose variance is controlled by the parameter /. h is called the smoothing function or the
bandwidth. In order to smooth f, the optimum formula to calculate 4 is given by:

N

where ¢ is the standard deviation of the signal. In order to avoid over-smoothing when
dealing with non-normal data, ¢ is adjusted as follows.

median{abs(y; — i) }
0.6745 ’

5’:

(6)

where i denotes the median of the sample.
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4.3. Usability Analysis of the Smoothed Signal for Failure Prognosis

The degradation process is a progressive and irreversible phenomenon, so the Hls
that carry information on the degradation process must have a high level of monotonicity
for better prognostic performance.

The monotonicity analysis of HIs generated by data-driven methods has been the
subject of several research works [13,34]. The monotonicity metric presented below is
the one proposed in [13,34], as its score is easily interpretable (between 0 and 1), where 1
indicates the most satisfactory and 0 the least satisfactory level of the specific HI property:

N

LM

1
Monoton = —
onoton N -

, @)

where M,; is the monotonicity of a single run-to-failure trajectory, given by:

M=——— 1 _i=1,...,N 8
1 ni—l ni_lll 7 7 7 ()

where 7; is the total number of observations in the i run-to-failure trajectory and nt(n;)
is the number of observations characterized by a positive (negative) first derivative.

5. Trend Modeling and RUL Prediction

The state model was introduced to build a matrix representation from physical models
in the form of differential equations, as this representation is most suitable for performance
analysis and structural analysis. In this case, the parameters of the model have a physical
meaning. The data-driven state model proposed in this paper is a state model whose
parameters do not have a clear physical meaning, but are identified from the data [35]. The
order of the model is determined according to the profile of the health index available for
learning, or by calculating the Hankel singular values for models of different orders. States
with the smallest Hankel singular values are the most appropriate [36].

The model is then implemented and updated online for HI estimation and RUL predic-
tion. The prediction of the RUL is performed at each update time by the temporal projection
of the model estimate until the output (HI estimated) exceeds the total failure threshold.

The formal description of the data-driven state model is given as follows:

{ x(n+1) = Ax(n) + Ke(n) 9
HI(n) = Cx(n) +e(n) ’

where x(n) is the state vector and contains the slot size, HI(n) is the health index, e(n) is
the noise, and A, C, K are to be identified.

The Kalman filter and its variants (particle filter, strong-tracking filter, etc.) are widely
used for online updating of the parameters of a prediction model [37]. In this case, the
model parameters are updated with each sample. Then, a second instance of the model is
necessary to generate the temporal projection of the output until it reaches the threshold,
which is expensive in computation time and causes a permanent update of the model,
making the decision-making difficult. So, in this work, we opted for a different approach
where the update is only calculated when needed, according the HI estimation error, and
the update is done with the recursive least squares algorithm [38]. This approach frees
up resources for the calculation of the time projection of the health index. In addition, the
projection is only carried out when the model is updated. Otherwise, the RUL is equal to
the value predicted during the last update, which gives more visibility to maintenance
operators for decision-making. This approach also allows the choice of samples used for
updating for better accuracy.
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The RUL can be defined as a function of the operating state of the system, which is
given by the health index (HI(t)) as follows:

RUL(t|HI;) = T —|T > t, HI(t), (10)

where T represents a random variable of the time to failure, ¢ is the current time, and
HI(t) is the past condition profile up to the current time. The pseudocode used for RUL
prediction and model updating is given in Algorithm 1.

Algorithm 1 Pseudocode for RUL prediction and model updating

1: Begin
2: Define endOfLifeThreshold > The limit defining the end of life
3: Define timeBeforeEstimation > Time spent gathering data
4: Define timeBetweenUpdates > Time to wait before updating the model
5: Define samplingTime
6:
7. while t < timeBeforeEstimation do > Gather initial set of data.
8: HlI.append(read(Utot)) > Append the data set with the current Utot Value
9:i=0

10: while HI(t) > endOfLifeThreshold do > Gather initial set of data.

11: if i = 0 then

12: predictionModel = identifyStateSpaceModel(HI, orders)

13: newModel = predictionModel > Initialization

14: else if i > 0 then

15: while ¢ < timeBeforeEstimation do > Gather current data.
16: HI.append(read(Utot))

17: newModel = identifyStateSpaceModel(HI, orders) > Estimate new model
18: > Get the performance of the new model (nM) and the prediction model (pM)

19: SSEum = Yi_y (HI(k) — yum(k))?

20:  SSEpn = Ly (HI(k) — ypm(k))?

21: if SSE,;p <= SSE,p then

22: predictionModel = newModel

23: 7 = predict(predictionModel, HI, numberOfSteps)
24: timeOfRULJ[i] = ¢

25: T = argminf(t) = {t | f(t) = min¢ |HI — J|}

26: RUL[{] ; T—t|T >t HI(t)

27: End

6. Application to a Fuel Cell

The considered system is a PEM-FC with a power of up to 1 kW (electrical power),
proposed by FCLab Research Federation in the data challenge of the Prognostics and
health management (PHM) conference [39]. The system is composed of five-cell stacks
with an active area of 100 cm? for each cell. The PEM-FC is realized here with commercial
membranes, diffusion layers, and machined flow distribution plates. The nominal current
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SE: T—11 =1 —A 1—=0—=1—=A0~—H<—10 <

.
g

C R

density of the cells is 0.70 A/cm?. Their maximal current density is 1 A/cm?. The available
measurements are given as follows:

e  Stack temperature, gas flows, and air and hydrogen hygrometry rates;
¢ Inlet and outlet flows (of hydrogen, air, and cooling water), inlet and outlet pressures
(of hydrogen and air), and temperatures (of incoming and outlet hydrogen, air, and

cooling water).
6.1. Structural Analysis

BG models of fuel cell have been established in several works [7,9,11] and validated

experimentally. In this paper, we use the model of the one-cell fuel cell (FC) presented in
Figure 4 for structural analysis.

v
\ s T Rf /

~—

-

i
A

d
0
1
4
c R R

|
|

—o

1
I
]
]
i
]
c :CR

A4

Figure 4. Causal BG model of the considered FC.

C

P

The power variables used are: torque and angular velocity (T, w), pressure and mass
flow (P, m), temperature and flow of enthalpy (T, H), chemical potential and molar flux
(4, n), and voltage and current (U, i). These variables are respectively associated with the
mechanical, hydraulic, thermal, chemical, and electrical domains. As regards the chemical
reaction of the cell, two types of power variables are used: the chemical potential and the
molar flux for the transformation phenomena, as well as the chemical affinity A (J/mol)
and the speed of the reaction J.

The transformers TFa and TFc modulated by the molar flow represent chemical
transformations that are, respectively, relative to the flow of dihydrogen through the
anode and the flow of oxygen through the cathode. The transformer TFe represents the
transformation of Gibbs free energy (variation of enthalpy) into electrical energy assuming
that Gibbs free energy can be converted into electrical energy. The theoretical potential E of
the fuel cell is related to Gibbs free energy AG, called free enthalpy, as follows:

_AG

nf’
where 7 is the number of electrons exchanged during the reaction and F is the Faraday
constant (96,485 C/mol). In the proposed BG model, there are 10 sensors that make it

possible, respectively, to measure the mass flow, the hydrogen and oxygen temperatures,
the hydrogen and oxygen pressures, the current at the terminals of the stack ,and the

E= (11)
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voltage. The elements RH2 and RO2 represent the valves that control the hydrogen and
oxygen input flow rates. These R elements are, in general, modeled by an information
bond representing the valve control signal. The R element represents friction through the
diffusion layers. The thermal losses are modeled by the RS element, which corresponds
to an active resistance and represents the losses in the activation layer, the losses in the
diffusion layers, and the losses due to the concentration.

Potential degradations of the fuel cell are caused by:

e  Fouling: Can be modeled by a deflection of the hydraulic elements RH2 and RO2;

¢  Degradation of the cooling system: Can be modeled by the deviation of thermal
elements R and the C elements;

¢ Membrane wear: Can be modeled by a deviation of the TF modules, anode side TFa,
cathode side TFc, or in the membrane TFm.

After analysis of the causal paths between the BG elements and the measured outputs,
the signature matrix of the Table 1 is built. It illustrates the causal links between each BG
element and each measurement, and shows that the measurement causally related to all
the BG elements is that of the voltage VFC; the corresponding causal paths are illustrated
in Figure 4. It is also noted that these causal paths are direct causal paths, which means a
direct transfer of the degradation phenomenon towards the measurement.

Table 1. Fault signature matrix for the fuel cell.

Physical Phenomenon

BG Elt PH2 PO2 WH2 WO2 VEFEC IFC TH2 TO2 TCool

Fouling on the O2 side RO2 1 1
Fouling on the H2 side RH2 1 1
Degradation of the cooling system R 1 1
Degradation of the cooling system C 1 1
Stack degradation on the anode side TFa 1 1
Stack degradation on the cathode side TFc 1 1
Degradation of the membrane TFm 1 1 1

To verify that the information carried in the measurement of the voltage is presented
in a usable way for trend modeling and failure prognosis, the raw signal is processed using
an SG filter, and the scores of the monotonicity metric are carried and analyzed.

6.2. Preprocessing

The profile of the available PEM-FC voltage in the presence of degradation is given
in Figure 5. This figure shows that although the profile of the voltage has a tendency, the
signal is highly noisy and presents abrupt variations and some outliers.
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Figure 5. Profile of the available measurement of PEM-FC voltage.

The result of the application of the SG filter on the raw signal is given in Figure 6. This
result shows that the initial profile of the degradation signal is preserved, but the noises
and outliers are eliminated.

3.4 T T T T

Raw data
Filtered Data

3.35

@
w
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N [6;]
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3.1 1 1 1 1
0 200 400 600 800 1000
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Figure 6. Smoothing result of the raw signal using SG filter.

6.3. Usability Analysis of the Smoothed Signal for RUL Prediction

The monotonicity metric is applied to the smoothed voltage measurement, and the
results are given in Figure 7. The monotonicity score is around 0.82, thus demonstrating
that the stack voltage is usable for failure prognosis. This result also shows that, compared
to the other variables measured on the PEM-FC, the stack voltage is the most appropriate
for failure prognosis, as it has the highest monotonocity score.
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Figure 7. Score of Monotonicity analysis of the smoothed signal.

6.4. HI Estimation-Updating and RUL Prediction

The result of the estimation and updating of the HI is given in Figure 8. This result
shows that after each update, a degradation trajectory is generated by the data-driven state
model as a function of the current state of the system (value of the HI at the present time).
This update makes it possible to take accelerations or decelerations of the degradation
process into account. It can be noticed that each update gives an end-of-life (EOL) value.
This property is used to calculate a sliding RUL that takes all the dynamics observed on
the health index into account.

3.36

3.34

3.32

3.3
_.3.28r
S
% Measured HI
326 |— —"— Update at 100 hours
Update at 200 hours
o4k | T T T Update at 300 hours

Update at 400 hours
Update at 500 hours
3.221 Update at 600 hours
Update at 700 hours

3.2 Update at 800 hours
= = = End of life threshold
318 L 1 1 1 1 1 1 1 1
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Time (h)

Figure 8. Result of the HI estimation, updating and time-projection until the failure threshold.

The evolution of the RUL estimation over time is given in Figure 9. It shows that
the prediction of the RUL follows the changes in the degradation process of the system,
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which is manifested by acceleration periods of the HI's progress. Updating the data-driven
state model allows one to obtain an RUL estimation error of less than 100 h over a forecast
horizon of 800 h, as shown in Figure 9.

Real RUL |
700 Predicted RUL

800 T T T

200

100

0 1 1 1 1 1 1
100 200 300 400 500 600 700 800
Time (h)

Figure 9. Result of the online estimation and updating of the health index.

The RUL estimation error is given in Figure 10. It shows that the estimation error of
the RUL remains acceptable, within a confidence interval of less than 60 h. The prediction
error is then reduced considerably when one approaches the real RUL at time ¢ = 500 h,
where the prediction error represents less than 20 h, i.e., less than a day of operation.
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Figure 10. RUL prediction prror.

To better quantify the performance of the failure prognosis method proposed in this
work, the relative error and the mean absolute percentage error (MAPE) are calculated and
given in Figure 11. This figure shows a relative error of less than 20% and an MAPE of less
than 5%. These results show that the performance of the proposed method is acceptable.
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Figure 11. Relative prediction error and MAPE.

7. Conclusions

In this work, a generic method of failure prognosis of dynamic systems is proposed
and applied to a PEM-FC. The first step concerns the system modeling for structural
analysis and the identification of the measurement carrying the degradation process. The
measured raw signal is then smoothed using a Savitsky—Golay filter, and is then analyzed
using the monotonicity metric to check the usability of the measurement identified as the
HI for failure prognosis. The trend of the identified HI is modeled using a data-driven state
model whose order is identified by calculating the Hankel singular values for models of
different orders, and parameters are identified and updated online using the least squares
method. The RUL is then predicted and updated online through the time projection of
the HI estimation until the failure threshold. The application of the proposed method to
the PEM-FC shows its relevance and its ease of deployment. The results obtained show
its effectiveness and the robustness of the RUL prediction to the changes in condition
monitoring.
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