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We combine theories of scattering for linearized water waves and flexural waves in thin elastic plates to
characterize and achieve control of water wave scattering using floating plates. This requires manipulating a
sixth-order partial differential equation with appropriate boundary conditions of the velocity potential. Making
use of multipole expansions, we reduce the scattering problem to a linear algebraic system. The response of a
floating plate in the quasistatic limit simplifies, considering a distinct behavior for water and flexural waves.
Unlike for similar studies in electromagnetics and acoustics, scattering of gravity-flexural waves results in
a nonvanishing scattering cross-section in the zero-frequency limit, dominated by its zeroth-order multipole.
Potential applications lie in floating structures manipulating ocean water waves.
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I. INTRODUCTION

In recent years, there has been a growing interest in study-
ing the scattering of various kinds of waves from random
and composite media [1,2]. Scattering cancellation technique
(SCT) is an active topic of research directly related to scat-
tering analysis, and it relies on covering objects with shells
of opposite dipole moment to cancel their scattering response
in the quasistatic limit [3–5]. This technique has been gen-
eralized to account for various types of waves [2]. In the
same vein, the practical importance of designing offshore
floating structures and buildings, such as airports or oil plants,
triggered the interest in characterizing water wave propagation
and its effects on these structures [6–18]. These structures can
be modeled as thin elastic plates (TEPs), and their interaction
with water waves obeys a modified version of the biharmonic
equation [19]. In this paper, we make use of the scattering the-
ory to rigorously characterize this interaction. Moreover, the
present study is motivated by earlier work on manipulation of
water waves via lensing [20] and cloaking [2] with structures
clamped to the waterbed, which may be transposed to floating
structures [21–23].

In this contribution, an equation with sixth-order deriva-
tives and its appropriate boundary conditions are used to
model the scattering and propagation of linearized water
waves, off TEPs. This equation is derived from the combined
Euler and plate theories [24–28] and used in characterizing
scattering from an object floating on shallow water [29] as
schematized in Fig. 1(a). We then analyze the scattering
response of the floating elastic structure shown in Fig. 1(b),
which consists of a cylindrical disc in a TEP, in the presence of
a water wave excitation (time-harmonic vibration of the liquid
free surface in the vertical z direction). It is assumed that the
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out-of-plane dimension [the xz plane in Fig. 1(a)] of the float-
ing plate is negligible compared to its in-plane dimensions
[the xy plane in Fig. 1(a)] [24]. We show that in the quasistatic
limit, i.e., for β1r1 � 1, where β1 is the gravity-flexural wave
number and r1 is the radius of the scatterer, the scattering
is dominated by the zeroth-order multipole term unlike for
electrodynamics where the first significant order is the dipolar
one. This is not the only marked difference between the two
scenarios: the sixth-order gravity-flexural partial differential
equation (PDE), which typically describes the propagation of
bending waves in TEP floating atop incompressible fluids,
is not equivalent to the vector/scalar wave equations that
describe electromagnetic or acoustic wave propagation. Con-
sequently, in view of Ref. [30], one can anticipate new types
of Mie resonant modes and different wave physics.

II. FORMULATION OF THE PROBLEM

In the case of isotropic and uniform physical parameters,
the equation governing gravity-flexural waves (in terms of the
velocity potential) can be simplified to (See Eqs. (S1)–(S9) in
the Supplemental Material [31])

�3ξ1 + β6
1ξ1 = 0, (1)

where � is the Laplacian operator and β1 = (ρω2/hD)1/6 is
the gravity-flexural wave number, with ρ the density of the
fluid (taken to be 1029 kg/m3), h its depth (taken to be 20 m,
except if otherwise stated) ξ1 represents the velocity potential
(See Supplemental Material [31]). It should be understood
that the operator is defined in the two-dimensional space
(thin-plate approximation) of the free water surface. The wave
number of the water wave satisfies the dispersion relation
ω2 = gk0 tanh(hk0). The dispersion relations for β1 and k0

are depicted in Fig. S1 [31] along with that for the flexural
wave number β = (Mω2/D)1/4, where M is the mass density
of the plate. Similarly, for the water waves, one obtains in the
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FIG. 1. (a) A thin cylindrical elastic plate of thickness δ floating atop water of depth h and regions of the scattering problem. The water
region is denoted by 0 and the plate region by 1. (b) Top view of a cylindrical thin scatterer to be considered in the first part of this study.

frequency domain

�ξ0 + k2
0ξ0 = 0, (2)

for the velocity potential in region 0. Equation (1) is supple-
mented with six boundary conditions, in the case of a plate-
plate interface, namely, ξ1, ∂rξ1, �ξ1, ∂r (�ξ1), Mr (�ξ1), and
Vr (�ξ1) (see the Supplemental Material [31]). An object of
radius r1 is located atop an incompressible liquid. For r � r1,
the wave number is β1. For r > r1, the wave number is k0.
The object is a TEP that can be made of lightweight concrete,
made with low-density aggregate (to make it floating) that has
Young modulus E1 = 25 × 109 Pa, Poisson’s ratio v1 = 0.2,
and density of 800 kg/m3 [32]. NB that the density of the plate
does not intervene in Eq. (1) nor in the dispersion relation and
boundary conditions; only the density of the fluid has an ef-
fect, through the dispersion relation of gravity-flexural waves.
We assume that the object is illuminated by a water plane
wave propagating in the x-direction, so that kx = k0r cos θ .
The water wave velocity potential due to the incident plane
wave is thus expressed as ξ inc = eik0r cos θ , equivalently it can
be expanded as ξ inc(r, θ ) = ∑∞

n=0 εninJn(k0r) cos nθ , where
the coefficients ε0 = 1 and εn = 2, n � 1. At this point a
rewriting of Eq. (1) is mandatory to expand the remaining
displacement fields in terms of Bessel and Hankel functions.
In fact, the velocity potentials ξ (r, θ ) must be finite at r = 0
and satisfy the radiation condition at r → ∞. Thus, Eq. (1) is
recast as

�3ξ1 + β6
1ξ1 = (

� + β2
1

)(
� − β2

1α
)(

� − β2
1α∗)ξ1 = 0,

(3)

where α = 1/2(1 + i
√

3) and the superscript star denotes the
complex conjugate here and in the sequel. Hence ξ1 is a
superposition of solutions to the Helmholtz equation with
real (first) and complex (second and third terms) conjugate

gravity-flexural wave numbers βα = β1
√

α and β∗
α = β1

√
α∗

with
√

α = 1/2(
√

3 + i). Thus, the first term in Eq. (3) results
in expansion in terms of Jn(β1r). The second and third terms
result in expansions in terms of In(βαr) and In(β∗

αr), respec-
tively, the modified Bessel functions of order n. Using all these
assumptions, the field inside the object is

ξ1(r, θ ) =
∞∑

n=0

εnin[BnJn(β1r) + CnIn(βαr)

+ EnIn(β∗
αr)] cos nθ, r < r1, (4)

whereas the scattered velocity potential field in region 0, by
taking into account Eq. (2) is

ξ sca
0 (r, θ ) =

∞∑
n=0

εnin
[
AnH (1)

n (k0r)
]

cos nθ, r > r1. (5)

Here, H (1)
n (.), Jn(.), and In(.) are cylindrical Hankel functions

of the first kind, Bessel and modified Bessel functions, respec-
tively. To solve for the coefficients in the above equations,
continuity relations (detailed in the Supplemental Material
[31]) are used at the boundary at r = r1, for each azimuthal
order n. This yields a matrix system of equations in unknown
coefficients An, Bn, Cn, and En. The far-field scattering ampli-
tude f (θ ) = √

2re−i(k0r−π/4) limr→∞ ξ sca
0 (r, θ ) is a measure of

the object’s visibility in direction θ and has the unit of a square
root of length [26]. The total scattering cross-section (SCS) is
σ sca = 1/2

∫ 2π

0 dθ | f (θ )|2. It may thus be expressed as

σ sca = 4

k0

∞∑
n=0

εn|An|2. (6)

The unknown coefficients in Eqs. (4) and (5) satisfy the linear
system

⎛
⎜⎜⎜⎝

−H (1)
n (k0r1) Jn(β1r1) In(βαr1) In(β∗

αr1)

−k0H (1)′
n (k0r1) β1J ′

n(β1r1) βαI ′
n(βαr1) β∗

αI ′
n(β∗

αr1)
0 VJn (β1r1) VIn (βαr1) VIn (β∗

αr1)
0 WJn (β1r1) WIn (βαr1) WIn (β∗

αr1)

⎞
⎟⎟⎟⎠

⎡
⎢⎢⎣

An

Bn

Cn

En

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Jn(k0r1)
k0J ′

n(k0r1)
0
0

⎤
⎥⎥⎦, (7)

with the prime denoting the first derivative of the special
functions, and the expressions of the functionals VZn and WZn

given in the Supplemental Material [31]. The expression of
An can be obtained from Eq. (7) by using the Cramer’s rule

[24], i.e., An = det(Mn,1)/det(Mn), where Mn is the matrix in
the LHS of Eq. (7) and the matrix Mn,1 is obtained from Mn

by interchanging H (1)
n and Jn (see the Supplemental Material

[31] for more details). If we consider objects satisfying the
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FIG. 2. (a) Normalized scattering coefficients (for n = 0, 1, and 2) versus the normalized wave number obtained using Eqs. (8) and (9)
and Eqs. (S15) and (S16) plotted using markers, and numerically using Eq. (7) plotted using lines. (b) Upper panel: Zoom of the dominant
scattering order 4/k0|A0|2. Middle and lower panels give the dependence of 8/k0|A2|2 and 8/k0|A3|2 versus the Young modulus and Poisson’s
coefficient of the TEP.

quasistatic condition k0r1 � 1 and β1,αr1 � 1, then only the
first few of the scattering terms contribute to the scattering
cross-section.

III. ANALYTICS AND NUMERICS

In fact, solving Eq. (7) for n = 0, 1, 2, 3 under the qua-
sistatic condition yields the coefficients

A0 = 2iπ

1 − 4γe + 2iπ + log(16) − 4 log(k0r1)
+ o((k0r1)2/3),

(8)

A1 = −i
3π

16
(k0r1)2 + o((k0r1)2). (9)

The expressions of A2 and A3 are given in the Supplemental
Material [31]. It can be seen that the dominant orders A0 and
A1 depend only on the radius of the object. Also, one has
An�2 = O((k0r1)2(n+1)). Additionally, the observation that the
contribution of A0 to the SCS is infinite at zero frequency is
intriguing, since it means that σ sca diverges at zero-frequency,
which is counterintuitive. The only example that possesses
somehow similar features is that of pinned holes in TEP, in the
context of flexural waves (obeying the biharmonic equation),
as was analyzed in Refs. [26,33,28,34]. However, in that case,
the scattering object was described only by its radius, i.e.,
there was no flexural field inside it, and the object had no
other physical parameters, except its geometrical dimension.
By contrast, here, the object is a TEP, floating atop of water,
and there is a field inside it, as can be seen from Eq. (4). The
object has also physical parameters (density, Young modulus,
Poisson’s ratio, etc.). And still, the dominant scattering order
A0 is independent of all these properties, except for the radius
r1. This observation is of tremendous importance to the last
section of this paper, where SCT is considered for such class
of waves. It is also reminiscent of zero-frequency bandgaps
[33,34]. Figure 2(a) gives the plot of these coefficients versus

the normalized wave number which are compared against the
numerical calculations using Eq. (7).

The dependence of An,n = 2, 3 on the Young modulus
and the Poisson ratio of the TEP for k0r1 = 0.1 is given
in Fig. 2(b) middle and lower panels, respectively. These
have dips (zeros) and they occur for example for A2 when
r4

1 (ρ0g/D1)(303 − ν1(ν1 − 18)) = −ι1(ν1 − 1)(ν1 + 3) ι1 =
3840 (See Supplemental Material [31]). The expressions
given in Eqs. (8) and (9) and Eqs. (S15) and (S16) are only
valid for small arguments. So to characterize the scattering
from the objects shown in Fig. 1, one needs to numerically
solve the algebraic system of Eq. (7) and compute the different
scattering coefficients, and ultimately the SCS, and verify the
convergence with respect to N, that is the number of coeffi-
cients used in Eq. (6). Then, by verifying the convergence of
the SCS, we plot it versus the normalized wave number in
Fig. 3(a), where it can be seen that multiple Mie resonances
occur across the considered spectral region. This plot is given
for a moderate value of the thickness of the plate, i.e., δ = 1m,

compared with the water wave wavelength.
In this case for small wave numbers, the quasistatic limit

applies and the scattering coefficients follow Eqs. (8) and (9)
and Eqs. (S15) and (S16). However, for very small thickness
on the order of a few centimeters, this limit does not apply
anymore, since k0r1 � 1 but β1r1 > 1. This change of regime
is shown in the inset of Fig. 3(b). The SCS is given for
this scenario in Figs. 3(b) and 3(c), where the latter is a
magnified view of the former. These plots show a completely
different behavior, whereby one observes scattering maxima,
for small wave numbers, and these scattering resonances are
dominant, compared to the classical higher frequency Mie
resonance [35]. In Fig. 3(c) we can see that these resonances
are ultra-narrowband and of Fano line-shape. We further note
that the smaller the thickness of the plate, the higher the
zero-frequency scattering, as can be clearly seen in Figs. 3(b)
and 3(c).

The angular dependence of the SCS is depicted in Fig. 3(d),
where we plot it versus the angle of observation for three
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FIG. 3. (a) SCS of the cylindrical TEP (with δ = 1m, ν1 = 0.2, and E1 = 25 GPa), with varying number of multipole orders (e.g., σ scat
5 is

the SCS with 5 scattering orders), until convergence is reached. (b) Total SCS (converged) for the same cylindrical TEP, but with a thickness
of the plate of 0.2 m, 0.1 m, and 0.05 m. The inset shows the regime change of the gravity-flexural wave number versus the thickness of the
plate for different wave numbers of the water waves. (c) Magnified view of (b) in the low-frequency regime. (d) Angular dependence of the
scattering cross-section of the same object as in (a) for k0r1 = 0.1 (blue), k0r1 = 1 (orange), and k0r1 = 10 (yellow).

representative wave numbers. Enhanced and isotropic Mie
resonance can be seen, quite remarkably for the smaller
wave numbers, in contrast to usual scattering scenarios. For
the larger wave numbers, the amplitude of the scattering is
reduced and becomes strongly anisotropic. This features is
unique to this kind of scattering. It should be mentioned
too that for very small thickness [red curve in Fig. 3(c)] for
some modes, the maximum is preceded by a minimum, where
the SCS goes to zero, which is again reminiscent of Fano
resonances. This also shows that the cylindrical plate becomes
nearly invisible for some frequencies without implementation
of a cloaking system.

IV. ON CLOAKING AND SCATTERING CANCELLATION
OF GRAVITY-FLEXURAL WAVES

Let us now consider cloaking the object as can be seen in
the inset of Fig. 4(a). An object (made of lightweight concrete)
of radius r1 with thickness 5 m is thus covered with a shell of
outer radius r2, and both float atop water. Two scenarios can
be considered at this point: (i) The core-shell is immediately
surrounded by water. (ii) The core-shell lies at the center of a
homogeneous TEP floating atop water.

Scenario (i): For r � r1, the gravity-flexural wave number
is β1. For r1 < r � r2, the gravity-flexural wave number is

β2. And for r > r2, the water wave number is k0, as before.
The object and the shell are TEP that have the flexural rigidity
D1,2, the Young modulus E1,2, and the Poisson’s ratio v1,2,
respectively. The field inside region 1 is given by

ξ1(r, θ ) =
∞∑

n=0

εnin[BnJn(β1r) + CnIn(βα,1r)

+ EnIn(β∗
α,1r)] cos nθ, r < r1. (10)

In region 2, i.e., inside the cloaking shell, one has

ξ2(r, θ ) =
∞∑

n=0

εnin[FnYn(β2r) + GnKn(βα,1r)

+ LnKn(β∗
α,2r) + NnJn(β2r) + OnIn(βα,2r)

+ PnIn(β∗
α,2r)] cos nθ, r1 < r � r2, (11)

whereas the scattered velocity potential field (i.e., in region 0)
is similar to Eq. (5). To solve for the 10 unknown coefficients
in the above equations, continuity relations (all details are
given in the Supplemental Material [31]) are used at both
boundaries. If we consider objects satisfying k0r1,2 � 1 and
βα,1r1,2 � 1, then only the first few An coefficients contribute
to the SCS. In fact, solving Eq. (S17) for n = 0, 1, 2, under
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FIG. 4. (a) Normalized scattering coefficients vs. the Young modulus of the core-shell structure, for k0r1 = 0.15 and γ = r1/r2 = 0.5. The
inset gives the geometry of the core-shell structure. (b) Dominant scattering order for various radii of the cloaking structure. (c) Contour plot of
the SCS versus the Young modulus and radius of the cloak. The plot is in logarithmic scale [as shown in the title of Fig. 4(c)] and normalized
to the bare object SCS. (d) Normalized SCS of the same structure for different radii and a fixed wave number (k0r1 = 0.05) and (e) same for
different wave numbers and a fixed radius (γ = 0.25).

the quasistatic condition yields

A0 = 2iπ

1 − 4γe + log(16) − 4 log(k0r2) + 2iπ
+ o((k0r1)2/3),

(12)

where γe is the Euler–Mascheroni constant. Since k0r2 � 1,
the expression of Eq. (12) is a constant. Thus, it can be seen
that irrespective of the physical parameters of the coating

shell, A0 cannot be made equal to zero, and thus SCT in this
context is not possible. Moreover, if we normalize it with
respect to the wave number, one can see that the SCS becomes
singular, i.e.,

σ sca ≈ 4

k0
|A0|2 ≈ π2

(k0 log(k0r2))2 . (13)

And owing to the fact that limx→0(x log x) = 0, σ sca di-
verges in the zero-frequency limit. This scenario of singular
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scattering is reminiscent of the case of clamped biharmonic
(purely flexural) obstacles [26]. An analogous scenario occurs
for microwaves of certain polarization in the case of a thin
metal wire, and this has been used to dilute the average con-
centration of electrons and considerably enhance the effective
electron mass through self-inductance [36]. It is interesting to
note also that the dominant order scattering A0 is independent
of the parameters of the inner object, including its radius.
This is interesting for potential applications in control of long
wavelength ocean waves as this indicates some zero frequency
stop-bands could be achieved for water waves propagating
through an array of periodically distributed floating objects
[34]. The analogous scenario occurring for flexural (Lamb)
waves propagating within periodically clamped plates has led
to the design of an earthquake shield [34]. We further note that
zero frequency photonic stopbands associated with periodi-
cally distributed infinite conducting wires [37] are associated
with noncommuting limits in homogenization theory.

Scenario (ii): Let us move now to the second case, de-
scribed earlier. The derivation of the scattering orders is done
in a similar way (all details can be found in the Supplemental
Material [31]). The main difference with scenario (i) is that
here the dominant scattering orders are nonsingular.

The homogeneous TEP has a Young modulus E0 = 25 GPa
and the depth of water is a before assumed to be 20 m. The
object to cloak has a Young modulus E1 = 10 × E0 and a
Poisson ratio ν1 = 2 × ν0 = 0.5. Hence, A0 and A2 (dominant
coefficients) are shown to be of the same order (see Fig. S2 in
the Supplemental Material [31]). In Fig. 4(a) the first three
coefficients (normalized by the bare coefficients) are given
versus the normalized Young modulus of the cloak (the other
physical parameters of the cloak are taken to be equal to those
of the free-space TEP). This plot shows the possibility, in
particular, to separately cancel A0 and A2 but for different
values of E2. Figure 4(b) shows the dependence of A0 on the
Young modulus but for different radii of the cloak.

The main message from this type of cloaking that was
not observed for other types of waves is that to perform
SCT one needs to cancel two different scattering orders. This
happens at different physical parameters of the cloak. Indeed,
this means that optimization may be necessary to drastically
cancel the total SCS in the quasistatic limit. The main result
is thus shown in Fig. 4(c) where the SCS is normalized versus
the SCS of the bare object and plotted against the Young
modulus and radius of the cloak.

For some physical values, a drastic scattering cancellation
takes place (dark blue color). Also for other parameters a
huge scattering can be observed (dark red color), as typically
observed in the SCT, and that may be explained by a Fano-like
behavior of the waves. To clearly show this effect, the SCS is
plotted against E2/E0 for few values of γ for k0r1 = 0.05 in
Fig. 4(d) and for few values of k0r1 for γ = 0.25 in Fig. 4(e).
The same results can be obtained for a thicker object, i.e.,
in the range of 10 m, but for longer wavelengths (see the
Supplemental Material [31] for further characterization of this
type of cloaking).

V. CONCLUSIONS

We analyzed in detail the scattering of gravity-flexural
waves propagating when a TEP lies atop the water surface.
Scattering from a single cylindrical object was first inves-
tigated and low-frequency Mie resonances were discovered.
Additionally, by coating the cylindrical object, SCT was
shown to be impossible to realize, irrespective of the physical
parameters of the shell, which is a paradigm shift compared
with SCT for other types of waves. This unusual behavior can
be understood, since the incident wave is different from the
waves that propagate inside the plate. In a second scenario, we
considered a core-shell structure with a gravity-flexural wave
incident on it (is instead considered and), which was shown
to possess cloaking features. Motivated by the search for
zero frequency stop-band structures in different wave systems,
such as the recently achieved seismic shields in sedimentary
soils structured by arrays of clamped columns to a bedrock
[38], we would like to now build upon the present work to
analyze Floquet-Bloch waves propagating within a doubly
periodic array of floating plates. We believe that our work
opens unprecedented avenues in the control of water waves
making use of floating metamaterial structures.
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