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Demyelination and axon degeneration are major events in all neurodegenerative
diseases, including multiple sclerosis. Intoxication of oligodendrocytes with
lysophosphatidylcholine (LPC) is often used as a selective model of focal and
reversible demyelination thought to have no incidence for neurons. To characterize the
cascade of cellular events involved in LPC-induced demyelination, we have combined
intravital coherent antistoke Raman scattering microscopy with intravital two-photon
fluorescence microscopy in multicolor transgenic reporter mice. Moreover, taking
advantage of a unique technique of spinal glass window implantation, we here provide
the first longitudinal description of cell dynamics in the same volume of interest over
weeks after insults. We have detected several patterns of axon–myelin interactions
and classified them in early and advanced events. Unexpectedly, we have found that
oligodendrocyte damages are followed by axon degeneration within 2 days after LPC
incubation, and this degeneration is amplified after the recruitment of the peripheral
proinflammatory cells at day 4. Beyond day 7, the recovery of axon number and
myelin takes 3 more weeks postlesion and involves a new wave of anti-inflammatory
innate immune cells at day 14. Therefore, recurrent imaging over several weeks
suggests an important role of peripheral immune cells in regulating both the axonal
and oligodendroglial fates and thereby the remyelination status. Better understanding
the recruitment of peripheral immune cells during demyelinating events should help to
improve diagnosis and therapy.

Keywords: lysophosphatidylcholine, demyelination, neurodegeneration innate immune cells, CARS, spinal glass
window
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INTRODUCTION

Myelin sheath, generated by oligodendrocytes (OLs) in the
central nervous system (CNS), is a multilayer membrane
wrapping axons and providing electrical insulation, high-speed
axonal conduction, and trophic support (Kaplan et al., 1997).
Demyelination that occurs in most neurodegenerative diseases
is due to the pathological destruction of myelin sheaths and
subsequent degeneration of myelinating OLs. Various models of
demyelination have been established in rodents, among which
oligodendroglial intoxication by lysophosphatidylcholine (LPC)
is the most common (El Waly et al., 2014).

Lysophosphatidylcholine is a glycerophospholipid naturally
occurring in all cell membranes that is particularly enriched
in the CNS white matter. Generated through the hydrolysis of
membrane plasmalogens by phospholipase A2 (Kougias et al.,
2006), it can also be supplemented directly from emulsifier-rich
food (Shah et al., 2017). LPC plasmatic concentration must be
regulated physiologically because 100-µM doses already turn
out toxic for most cell types, from OLs (Plemel et al., 2018)
to endothelial cells (Akerele and Cheema, 2015). Endogenous
LPC is indeed likely involved in atherosclerosis (Chang et al.,
2017) and affects the occurrence of major depressive disorders
(Liu et al., 2016).

At the cellular level, low-dose 1% LPC (∼10 µM) has
been reported to trigger the selective death of spinal OLs
but not the death of axons (Hall, 1972). Seven days after
exposure, demyelination reaches a peak that is followed by
a remyelination process of axons close to completion within
4 weeks after exposure (Jeffery and Blakemore, 1995). Despite
its lack of direct effect on axons, LPC injection was reported
to trigger inflammation and subsequent secondary Wallerian
degeneration characterized by dystrophic axonal retraction bulb
at the injury site and discontinuous spherical debris along
their distal part (Ousman and David, 2000, 2001). From these
experiments, it remains, however, unclear whether LPC itself
generates an inflammatory environment because of the release of
damage-associated molecular patterns from permeabilized OLs
or because its injection pipette induced mechanical destruction
of the parenchyma.

To address this question, we have thus established a unique
murine model of focal LPC incubation that does not sever axons
mechanically. Using a combination of intravital two-photon
microscopy and coherent antistoke Raman scattering (CARS)
microscopy, we have then simultaneously obtained access in real-
time to the label-free detection of myelin (Shi et al., 2011), as
well as the fate of fluorescent axonal networks in the presence
of recruited inflammatory cells (Fenrich et al., 2013b). Taking
advantage of the unique glass window protocol developed in
our laboratory, we have thus obtained a highly time-resolved
description of LysM+ myeloid cell contribution to axons and
myelin reorganization. We report for the first time that initial
intoxication of OLs is itself responsible for the early recruitment
of proinflammatory immune cell coincident with the onset of
Wallerian degeneration. Soon after, it, however, converts into a
prohealing inflammation that is coincident with remyelination
and prior to the delayed increase of fully remyelinated axons.

MATERIALS AND METHODS

Mice
All experimental and surgical protocols were performed
following the guidelines established by the French Ministry
of Agriculture (Animal Rights Division). The architecture
and functioning rules of our animal house, as well as our
experimental procedures, have been approved by the “Direction
Départementale des Services Vétérinaires” and the ethic
committee (ID numbers #18555-2019011618384934 and
A1305532 for animal house and research project, respectively).

Seven- to Ten-week-old fluorescent reporter mice were
used for spinal cord glass window implantation (Fenrich
et al., 2013a) and LPC demyelination. Thy1–CFP and/or
Thy1–CFP//LysM-EGFP//Cd11C-EYFP triple-heterozygous
transgenic mice were used.

Spinal Cord Glass Window Implantation
and LPC Model of Demyelination
The window was applied as described in Fenrich et al. (2012)
study. Prior to glass window sealing, the dura mater was opened
locally to directly expose the dorsal white matter to 1% LPC
(Sigma, L1381) in 0.9% NaCl that we incubated for 1 h (Figure 1).

Biphoton and CARS Microscopy
Methods
Coherent antistoke Raman scattering imaging was done using
OPO femtosecond laser source (80 MHz 150 fs; Coherent,
Santa Clara, CA, United States) with excitation wavelengths
λp = 806 and λs = 1,050 nm, temporally synchronized and
spatially overlapped on the sample plane. The corresponding
excited resonances correspond to lipid vibrations approximately
2,850 cm−1 with a bandwidth 150 cm−1, dominated by the
CH2 and CH3 stretching modes. Whereas nonlinear excitations
of CFP fluorescence and EYFP fluorescence were optimal at
λp = 806 and λs = 1,050 nm, respectively, wavelengths mixing
between λp and λs provided the excitation of EGFP (Ricard et al.,
2016). The CARS intensity was determined based on day 0 (D0);
indeed, all our acquisitions were made in the same way and using
the same CARS intensity.

Cells Dissociation, Sorting, and
Quantitative PCR
Spinal cords were extracted 4, 7, or 14 days after LPC incubation.
Spinal cords were dissected manually. Cells were dissociated
using the MACs Adult Brain Dissociation Kit, mouse and rat
(Miltenyi Biotec, Paris, France). GFP+ cells were sorted using
FACS (fluorescence-activated cell sorting) into lysis buffer (10:1
mix of Resuspension Buffer and Lysis Enhancer from Cells Direct
one-step quantitative reverse transcription–polymerase chain
reaction (RT-PCR) kit; Thermo Fisher Scientific, Waltham, MA,
United States). Reverse transcription reactions were performed
using 5 µg total RNA. Polymerase chain reaction reactions
were performed in 20 µL of Superscript II reaction buffer
(Invitrogen, Carlsbad, CA, United States) containing 0.01 M
dithiothreitol, 7.5 ng/µL of dN6, 20 U of RNase inhibitor
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FIGURE 1 | Lysophosphatidylcholine incubation on the spinal cord surface avoids artifactual mechanical insult to axons. (A) Schematic description of the three
different ways tested to make LPC model of demyelination: vertical injection, transversal injection, and superficial incubation. (B–D) In vivo biphoton acquisition
through the dorsal implanted windows showing the dorsal Thy1–CFP axon network 2 days after vertical injection of PBS, transversal injection of PBS, and superficial
PBS incubation, respectively. (E) In vitro incubation of either PBS or LPC 1% on the surface of sciatic nerve for 30 min, 1 h, 4 h, and 5 h. (F) In vivo biphoton
acquisition through the implanted dorsal windows showing F1: CARS signal (magenta) starting 3 h after LPC incubation at low (top) and high magnification (bottom).
F2: Average intensity projection of time-coded color images highlighting the evolution of myelin degradation over time at low (top) and high magnification (bottom).
F3: CARS signals in the regions of interest outlined in F2 (bottom) are represented at two different times points, 3 and 4 h, respectively.
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(Invitrogen), 10 mM dNTP and 200 U of Superscript II reverse
transcriptase (Invitrogen) for 1 h at 42◦C. Real-time PCR
reactions on cDNA were performed using the LightCycler 480
system (Roche, Indianapolis, IN, United States) using the SYBR
Green I Master Kit (Eurogentec, Seraing, Belgium) with 2 µL
of cDNA and 200 nM of each PCR primer. Each reaction was
performed in triplicate.

Immunolabeling on Spinal Cord Sections
Mice were transcardially perfused with 4% paraformaldehyde.
The spinal cords were removed, postfixed overnight, and
cut into 100-µm coronal and sagittal sections using a
vibratome (Leica Microsysteme, Rueil-Malmaison, France).
Immunofluorescent labeling was performed on sections fixed
with paraformaldehyde 4%. The following antibody was used:
anti-MBP (rat, 1/500; BioRad MCA409S, CA, United States).
The sections and cells were incubated with appropriate Alexa-
conjugated secondary antibodies and then counterstained with
Hoechst 33258 (1/1,000; Sigma-Aldrich, St. Louis, MI, United
States).

Image Analysis, Quantification, and
Statistical Analysis
Images were handled using ZEN 2.1 (Zeiss, Oberkochen,
Germany) and ImageJ software (ImageJ, NIH, United States).
Axons and cells were counted manually. All the presented
values are means ± SEM unless otherwise stated. Data were
statistically processed with nonparametric Mann–Whitney U
tests for independent two-group comparison.

RESULTS

Development of LPC Model of Focal
Demyelination in the Spinal Cord Without
Mechanically Induced Axonal Damages
Our aim was to take advantage of innovative intravital imaging
modalities to describe the direct and indirect effects of LPC
on spinal myelin and axons. In earlier studies (Jeffery and
Blakemore, 1995), the vertical needle used to inject LPC in the
spinal cord likely produced significant Wallerian degeneration,
which occurs even in absence of chemical injection (Dray
et al., 2009; Fenrich et al., 2013b). Therefore, we first tried to
minimize nonchemical contaminating sources of axonal death
in this focal demyelination protocol by changing the penetration
angle of the injection pipette from vertical to transversal
(Figure 1). Two days after phosphate-buffered saline (PBS)
1 × injection (0.7 µL), we then compared the densities of
suffering axons in these two conditions based on the presence
of retraction bulbs, spherical debris, or wavy morphologies that
precede Wallerian degeneration. Although transversal injection
improved axonal sparing, PBS delivery through the capillary
still resulted into significant axonal degeneration (31% ± 3%,
n = 3 in transversal injection, vs. 57% ± 4.0%, n = 3 in vertical
injection; Figure 1C). Noteworthy, this degeneration was totally
avoided when replacing the intraparenchymal injection by PBS

incubation of the spinal cord surface following the calibrated
opening of the dura mater. One-hour PBS incubation left axons
virtually undisturbed (3% ± 1.5%, n = 3), and axonal networks
remained stable after 2 days (3.9%± 0.7%, n = 3, Figure 1D).

Taking advantage of a simple in vitro sciatic nerve preparation,
we next established the incubation conditions required to visibly
destabilize the myelin sheath. Fresh sciatic nerve slices were
incubated in 1% LPC for 30 min to 4 h prior to paraformaldehyde
fixation and subsequent imaging by CARS microscopy. Coherent
antistoke Raman spectroscopic microscopy is a nonlinear
imaging technique revealing the endogenous contrast of lipids
based on the vibrational signature of their CH2 bond. The high
density of phospholipid chains in myelin sheath is responsible
for a significant CARS contrast compared to unmyelinated
regions of the CNS tissue. Unhealthy ruffling of myelin sheath
was thus observed on 6% of axons after 30-min incubation. It
was observed in 85% of axons following a 60-min incubation,
and myelin was finally completely destroyed after 3- to 4-h
incubation (Figure 1E).

A 1-h incubation time was then chosen to conduct intravital
experiments in the spinal cord. This exposition produced
detectable effect while limiting the overall surgery time prior
to the final glass window implantation and the subsequent
longitudinal imaging. In brief, LPC 1% was rinsed with PBS after
1 h, and the glass window was sealed before time lapse imaging of
the lesion site over 4 h. Our focal incubation model conclusively
triggered demyelination over a region that progressively spread
to cover a surface that doubled over time (192% ± 13% n = 4)
(Figure 1F) and reaching a depth of 156 µm (±18 µm) below
the surface. As highlighted in Figure 1F2, lesion surrounding
whitish myelin represents the stable myelin whose density is
conserved in all time-coded color images. Red areas represent
the initial demyelination zone, where myelin was present in the
initial images but had disappeared at the time coded in green and
blue. A second wave of degeneration was obvious in the green
areas were myelin density had strongly declined at the time of
blue–pink coding of the images. Because the intensity of CARS
signal correlated almost perfectly with the level of MBP labeling
on postmortem immunohistological staining (Supplementary
Figure S1), we concluded that the combination of glass window
and CARS imaging was ideal to follow the evolution of myelin
degradation over time in vivo.

Demyelination-Induced Wallerian
Degeneration Following LPC Intoxication
The average CARS signal in a region of interest reported the lipid
density irrespective of their distribution into structured myelin
sheath or into degenerative myelosomes (Gasecka et al., 2017).
The long-term consequences of a 1-h exposition to LPC were
next characterized over weeks by 2 Photon-CARS microscopy.
The same volume of interest was repeatedly acquired on the
same animal at various postincubation times, and we compared
the evolution of myelin coverage, with regard to the changes of
fluorescent axon densities (Figure 2). Whereas 100% of Thy1–
CFP axons are usually myelinated in the dorsal spinal cord
region, LPC incubation immediately triggered demyelination
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FIGURE 2 | Longitudinal imaging reveals LPC-mediated myelin and axon degenerations and rescue. (A) Follow-up of the same LPC incubated zone through the
dorsal implanted windows showing myelin content at days 0, 7, 14, 21, and 28 as detected with CARS in myelin sheath (magenta, top) and Thy1–CFP fluorescence
(cyan, middle) and overlay (middle). (B) Intravital images of dorsal spinal cord 7 days following incubation of LPC or PBS. Note the localized disappearance of CARS
signal and of axons selectively for LPC incubation. But not PBS. (C) Bar graphs presenting the evolution of the axonal density and the CARS signal both normalized
to their value on the first day at days 0, 1, 2, 4, 7, 14, 21, 28, and 35 (we used at least five mice for each condition and for each time; total number n = 22). Bar
graph showing the evolution of the percentage of myelinated axons over total axons in the receiver operating characteristic curve on days 0, 1, 2, 4, 7, 14, 21, 28,
and 35 after LPC incubation. Asterisk indicate statistical significance p < 0.05.
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that further extended during the following days. On D4, CARS
intensity reached a minimal value that represented 42% of the
initial intensity (Figure 2C). After quantifying the Thy1–CFP
axons in a volume of interest representing 400 by 400 µm over
a depth of 100 µm, we found that LPC exposure also triggered a
brutal axonal degeneration in the first 2 days that left only 44%
of the initial axonal density on D2. This initial loss of axons was
followed by a second wave of degeneration that brought axonal
density to 28% of its initial value on D4 (Figure 2C). Axonal
degeneration was thus faster and larger than the demyelinating
events highlighted by CARS and resulting either from the loss of
myelin coverage or the clearance of myelin debris.

Conversely, axons regenerated linearly from D4 to D14,
although CARS signal remained stuck at its minimal value in
the first week and then promptly recovered during the second
week (Figure 2C). On D14, however, axonal density represented
only 57% of its initial value, whereas CARS signal exhibited an
80% recovery. Both myelin and axons were finally fully recovered
by D28 (Figure 2C). The delay between the two phenomena
suggested that the fate of neuronal and oligodendroglial
networks is regulated by independent mechanisms. This idea
was further supported by the observation of the delayed
remyelination of axons that were already regenerated at D7
(Supplementary Figures S2A,B).

Sequential Disruption of Myelin Sheath
and Delayed Degeneration of Axons
To clarify the sequence of cellular events responsible for the
brutal loss of axons despite a progressive decline of CARS
signal, we next looked for subtle changes of myelinated axon
morphologies as readouts of the effect of LPC on OLs and
their axonal counterpart. Eight typical morphological patterns
of degeneration were established from the pool of images
acquired from five animals (Figure 3A). (1) Both axon and
myelin were straight and smooth, two markers of cellular
health; (2) axon and surrounding myelin presented a wavy
appearance; (3) axon and myelin formed bubble-like swellings;
(4) disconnected axonal bubbles inside apparently healthy myelin
sheath; (5) small axonal bubbles surrounded with myelin sheath;
(6) discontinuous axon bubbles surrounded by myelin sheath;
(7) pure myelin debris interleaved with mixed myelin/axons
debris; and (8) debris of mixed composition. Immediately
after LPC incubation, approximately 33% of axons exhibited
a pathological spring-like wavy shape that suggested the likely
occurrence of mechanical constraints on otherwise linear healthy
axons sheaths (Figure 3A2); 14.5% of axons presented neuronal
swelling apparently resulting from presumed lipidic constrictions
(Figure 3A3). One day later, the incidence of spring-like
shapes declined in favor of neuronal swelling (Figure 3A3),
whereas Wallerian-like features (Figure 3A6) became the most
represented pattern (Figure 3B). Wallerian degeneration further
proceeded until D2 when fluorescent degenerative axonal
bodies became sparser (Figures 3A7,B) and when large areas
were covered with high background CARS signal overlaid
with scattered nonfluorescent liposomes (Figure 3A8). The
set of morphological patterns mainly observed in the earliest

postincubation hours progressively evolved toward a set of
patterns mainly observed on the second day postincubation
(Figures 3A,B) as expected if the described degenerative stages in
fact resulted from a morphological continuum of axonal shapes
driven by biomechanical constraints.

Time-lapse images over hours conclusively demonstrated
the possible evolution from one type of pattern to the
next (Figure 3C), suggesting a gradual remodeling. Time-
coded images of myelin and axons, respectively, highlighted
a distortion of the myelin sheath that subsequently induced
axonal deformation.

Most axons were in advanced degenerated states
(Figures 3A6–8) by D2 (Figure 3B), a time when the background
CARS signal was high despite the sparseness of structured myelin
sheath segments (Figure 3A). Such degenerative events remained
predominant until D7 when they started to decline massively,
leaving space to the progressive recolonization by healthy
axons (Figure 3D). Our results altogether support that early
disorganization of myelin structure could trigger axonal
fragmentation and neurodegeneration. Axonal recovery finally
occurs even before the remyelination process starts.

Inflammatory Cell Infiltration
Concomitant With Axon Degeneration in
LPC Model
Demyelination has been associated with the activation of
phagocytic inflammatory cells (Chu et al., 2019; McMurran
et al., 2019). Whether these inflammatory cells contribute to
the degenerative processes was investigated by the application
of our demyelination model on Thy1–CFP//LysM-EGFP mice.
In these mice, monocytes, granulocytes, and macrophages are
labeled with EGFP throughout their lifetime in the CNS
unless they differentiate into monocyte-derived dendritic cells
(Caravagna et al., 2018). We thus quantified in real time
the density of these inflammatory cells in the dorsal spinal
cord and found that inflammation is significantly increased
4 days after LPC incubation (Figures 4A,B). A significant
reduction was then transiently observed on D7 prior to
a large second accumulation of GFP+ cells that peaked
on D14 and completely resorbed by D28, time of full
axonal recovery (Figure 4B). Whereas inflammatory response
presented significant intersubject variability, we found at all
time points that the axonal densities observed in every subject
correlated linearly with the corresponding GFP+ cell densities
(Figure 4C). Noteworthy, though, axonal densities were all
the more preserved in animals for which GFP+ cell densities
were low during the first week; axons were all the more
regenerated in animals for which GFP+ cell densities were
high when considering the second and third week (Figure 4C).
These results therefore suggested that the two peaks of
GFP+ cell densities observed, respectively, on D4 and D14
(Figure 4B) corresponded to inflammatory responses with
different functional phenotypes.

To further characterize this phenotypic switch, we tested
by RT-qPCR on GFP+ FACS-sorted cells the expression of six
proinflammatory genes [tumor necrosis factor α (TNF-α), CD86,
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FIGURE 3 | Subcellular effects of LPC incubation on myelin sheath and axons classified according to eight canonical features. (A) Intravital images and schematic
representations of typical morphological features encountered in the lesion area. CARS signals (myelin, magenta) and Thy1–CFP fluorescence (axon, cyan).
(B) Graph showing the relative occurrence of each event numbered from 1 to 8 in the lesion zone at days 0, 1, and 2 after LPC incubation (n = 5 mice for each time).
(C) Outlining intravital time lapse images showing the transitions from event 1 to event 2 (top) and from event 3 to event 6 (Bottom). For each transition,
temporal-color coding of the CARS channel and its corresponding CFP channel showing the subcellular morphological evolutions. (D) Graph showing the
percentage of each event from 1 to 8 in the lesion zone at days 0, 7, 14, 21, 28, and 35 after LPC incubation (we used at least five mice for each condition and for
each time; total number n = 13).
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FIGURE 4 | LysM-GFP+ cell infiltration in the Spinal cord and their contribution to axon degeneration. (A) Follow-up of the same zone showing LysM-GFP+ cells
(green) and Thy1–CFP axons (cyan) at days 0, 7, 14, 21, and 28 after LPC incubation (B). Graph comparing the number of GFP+ cells infiltrating the spinal cord at
days 0, 1, 2, 4, 7, 14, 21, 28, and 35 after LPC or PBS incubation (n = 5 mice for each time and each condition). (C) Graph showing the correlation between the
number of axons counted in a given mouse and the number of GFP+ cells present in the same field of view at days 0, 1, 2, 4, 7, 14, and 21. Each point represents
one mouse. Note the reversal of the correlation between D4 and D21 (n = 5 mice for each time and each condition). (D) Reverse transcription–qPCR quantifications
of proinflammatory gene expression (TNF-α, CD86, CD32 CD16, NOS2, and IL-6), anti-inflammatory gene expression (TGF-β, IGF-1, Arg1, CD206, and IL-10), and
neutrophil marker (Ly6G) gene expression, respectively, 7 and 14 days after LPC incubation when normalized to the gene expressions observed on D4. Asterisk
indicate statistical significance p < 0.05 (n = 3 mice for each time). (E) Graphs representing the number of cells in subregions of the ipsilateral spinal cord and the
corresponding number of axons counted in the same regions as a function of day after LPC incubation. Regions are defined on the anatomical scheme. Asterisk
indicate statistical significance p < 0.05; two asterisks indicate statistical significance p < 0.01 (we used at least five mice for each condition and for each time; total
number n = 22).
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CD32 CD16, NOS2, and interleukin 6 (IL-6)] and five anti-
inflammatory genes [transforming growth factor (TGF-β), IGF-1,
Arg1, CD206, and IL-10], as well the expression of Ly6G as a
marker of granulocytes and neutrophils. Proinflammatory genes
(Figure 4D, red squares) presented a maximal transcription on
D7, followed by a significant decline at D14 in particular for
TNF-α, CD32 CD16. A significant and continuous decrease over
time was instead observed for NOS2 and IL-6. Conversely anti-
inflammatory genes presented a systematic increase over time
(Figure 4D, green squares), whereas Ly6G expression declined
over time (Figure 4D, yellow square).

The idea of an inflammatory switch was further supported
by the existence of two different patterned distributions of cells
during the first week (Figure 4E). GFP+ cells mostly spread
in the vicinity of the dorsal vein until D4 despite a location
of the lesion site close to the dorsal root. On D7, however,
most GFP+ cells were observed close to the dorsal root, to
finally distribute themselves equally all over the ipsilateral spinal
surface. Interestingly, axon losses between D2 and D4, the peak
of GFP+ infiltration, were all the more important close to the
dorsal vein where cells were located. Conversely, the percentage
of regenerated axons between D7 and D14 was more important
on the side of the dorsal root where GFP+ cell density was
highest (Figure 4E).

DISCUSSION

Lysophosphatidylcholine model of demyelination is among
the most used model for studying demyelination, the myelin
repair, and the way to improve it. So far, LPC was always
administered into the brain or spinal cord parenchyma by
capillary injection (Hall, 1972; Arnett et al., 2004; McMurran
et al., 2019). Localized axonal degeneration was thus mainly
attributed to mechanical lesion by injection pipette and hence
LPC effect considered as specific to myelin and OLs. In this
study, we have developed an LPC model without mechanical
injection and monitored cellular interactions at the lesion
site in vivo over time. Implantation of a unique dorsal
glass window on multicolor fluorescent mice (Fenrich et al.,
2012) offered longitudinal imaging access to axonal networks,
myelin sheath, and immune cells after LPC lesion. Thanks to
simultaneous two-photon and CARS microscopies, we evidenced
that LPC that initially targets OL is also responsible for
axonal degeneration.

We already showed in fixed tissue that CARS microscopy
is beneficial for detecting the early changes of myelin in an
experimental autoimmune encephalomyelitis (EAE) model of
demyelination (Gasecka et al., 2017). We have here implemented
intravital CARS microscopy and further showed that the
dynamics of myelin coverage contains crucial information
to elucidate the mechanism by which LPC triggers axon
degeneration as early as D0. This axonal degeneration was
unlikely because of direct action of LPC because neurotoxicity
was not reported in culture (Vereyken et al., 2009) and
because Thy1–CFP+ axons in the imaged zones are in
fact anatomically shielded from extracellular fluids by OLs

in vivo. Time-coded images of the demyelinating events
indicated a clear coincidence between the chemically induced
insults to the myelin sheath and the changes in axonal
morphology. The mechanical constraints exerted by OLs on
axons likely explained the formation of spring-like axonal
shapes and subsequent Wallerian degeneration of axons.
Degeneration indeed started in the first few hours after
exposition and progressed in a two-step process during the
following 4 days.

Myelosomes detection by CARS microscopy (Gasecka
et al., 2017) contributed to the overall CARS intensity until
their complete elimination from the parenchyma. Thus, at
late degenerative stages, the strong CARS background was
likely explained by the lipid spreading from the degenerated
membranes of these myelosomes. As a result, an apparent
uncoupling between the kinetics of CARS signal and the kinetics
of axonal losses in the lesioned area was observed until D4.
Whereas both axonal density and CARS signal recovered to
prelesion values within 4 weeks, a similar decorrelation was
observed during the recovery phase of these two parameters:
recovery was early but slow for axonal density whose recovery
started on D7; it was delayed but rapid for CARS signal
whose recovery started on D14. Such delayed recovery of
the CARS signal might be explained by the requirement
for proliferation, recruitment, and differentiation of OPC
to replace apoptotic OLs whose GPR17 receptor had been
activated (Mayo et al., 2012; Seyedsadr and Ineichen, 2017).
In the case of neurons instead, recruitment of progenitor
cells is unlikely (Mothe and Tator, 2005). The fact that axons
regenerated so early after LPC lesion therefore suggested
that neuronal death was probably not involved and that the
regenerative axonal sprouting instead occurred as soon as their
oligodendroglial and inflammatory environment stopped from
being deleterious.

Individual axon imaging confirmed that axonal regeneration
started between D4 and D7, whereas, at D7, myelin coverage
remaining at the minimal lipid density was present in the
environment. Indeed, the ratio of myelinated axons was
transiently low at D7, and it increases at D14. Our results
therefore confirmed that the regenerative processes were
differently and independently regulated by the postlesion
physicochemical environment in the case of neurons and OLs.
Different chemokines (Balabanov et al., 2007) and cytokines
(Cannella and Raine, 2004; Ramesh et al., 2012) are released in the
environment at the first sign of OLs suffering. These participate
to the activation of microglia and astrocytes and subsequent
recruitment of innate immune cells (Domingues et al., 2016).
These immune cells can be harmful through the disruption
of glutamate hemostasis or the production of nitric oxide and
reactive oxygen species (Peferoen et al., 2014; Domingues et al.,
2016). Yet they can also have a beneficial role through the release
of TGF-b and IL-10, which are anti-inflammatory and prohealing
growth factors (Peferoen et al., 2014).

Our results outlined two waves of innate immune cell
infiltrations with different phenotypes, the first between D2 and
D4 and the second between D7 and D14. The negative correlation
between axons and innate immune cell densities observed on
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D4, as well as the significant secondary decrease of axon density
between D2 and D4, supported the idea that the first wave of
infiltration could be harmful to the axons. Similar conclusion
was indeed made in an EAE model of inflammation where
the initial infiltration of EGFP+ neutrophils triggered the fast
degeneration of axons (Caravagna et al., 2018). On the other
hand, the significant positive correlation between axons and
innate immune cell densities observed among mice on D14,
as well as the significant increases of axons between D7 and
D14, supported the idea that the second wave of EGFP+
cell infiltration could be beneficial for axonal regeneration.
Noteworthy, this second wave was coincident with the fast
recovery of CARS signal, as expected from a beneficial impact
on remyelination, and despite the only weak impact observed
on demyelination for the first wave. As the clearance of myelin
debris is a prerequisite for remyelination (Peferoen et al.,
2014), we propose that the second wave is responsible for
an amplification of the environment cleaning and therefore
mainly composed of phagocytic immune cells with rather anti-
inflammatory phenotype.

Two characteristic distribution patterns were evidenced for
these two waves supporting the existence of at least two different
subpopulations. Indeed, EGFP+ cells of the first wave expressed
Nos2 and IL6 significantly more than EGFP+ cells at D14, and
they were significantly more present medially next to the dorsal
spinal vein despite a lateral location of the lesion. However,
cells of the second wave expressed significantly more anti-
inflammatory genes such as Tgf-beta, Igf1, Arg1 cd206, and
IL10, and they were preferentially found on the DRG side
and progressively invaded the lesion. A DRG resident pool of
macrophages (Krishnan et al., 2018) was likely recruited in a
second stage, while initial inflammatory response was led by
vascular neutrophils (Neirinckx et al., 2014).

CONCLUSION

In conclusion, this study shows that LPC exposition can
itself cause axon degeneration first as a consequence of
oligodendroglial suffering and second due to innate immune
cell infiltration. It emphasizes the importance of multimodal
nonlinear optical microscopies to characterize the subcellular
substrate of myelin plasticity. By pointing out the crucial
role of dynamic inflammatory processes, it highlights the
requirement of intravital studies to unravel multicomponents
physiological response involved in neurodegenerative diseases.
On the same animal over time, it finally illustrates the
ambivalence of innate immune responses, thereby paving the
way to immunomodulatory therapies as a strategy to improve
assistance to neurodegenerative patients.
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FIGURE S1 | Comparison of MBP immunolabeling and CARS microscopy. (A)
CARS signal detection and MBP Immunolabeling on the same coronal sections of
the spinal cord at LPC incubation site on D7. Four rectangle areas (dotted lines)
were defined on each section: 1, 2, and 3 are outside the LPC lesion while 4 is
inside the LPC lesion. (B) Graph showing the positive correlation between CARS
and MBP signal intensities (n = 3 mice). (C) High magnification image in the white
matter of the dorsal spinal cord. Scale bars represent 50 µm for (A) and 10 µm
for (C).

FIGURE S2 | Longitudinal imaging of the fate of individual myelinated axons after
LPC incubation. (A) CARS and Thy1–CFP signals collected from the same area
over 14 days showing individual axon bundle at D0. Note that axonal degeneration
was faster and more extensive than the loss of CARS signal. Axonal regeneration
was already significant on D7 when myelin coverage was still minimal. Myelination
was restored by D14. (B) High magnification of the white square in the (A). Scale
bars represent 10 µm. (C) Multicolor images of the mouse presented in Figure 2
showing the superimposition of the following channels: CARS signal (Purple),
Thy1–CFP+ axons (Blue), and LysM-GFP+ cells (Green) 7, 14, and 21 days after
LPC incubation.
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