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Abstract: In mammals, adipose tissue is an active secretory tissue that responds to mild hypothermia
and as such is a genuine model to study molecular and cellular adaptive responses to cold-stress.
A recent study identified a mammal-specific protein of the endoplasmic reticulum that is strongly
induced in the inguinal subcutaneous white adipocyte upon exposure to cold, calsyntenin 3β
(CLSTN3β). CLSTN3β regulates sympathetic innervation of thermogenic adipocytes and contributes
to adaptive non-shivering thermogenesis. The calcium- and zinc-binding S100B is a downstream
effector in the CLSTN3β pathways. We review, here, the literature on the transcriptional regulation
of the S100b gene in adipocyte cells. We also rationalize the interactions of the S100B protein with
its recognized or hypothesized intracellular (p53, ATAD3A, CYP2E1, AHNAK) and extracellular
(Receptor for Advanced Glycation End products (RAGE), RPTPσ) target proteins in the context of
adipocyte differentiation and adaptive thermogenesis. We highlight a chaperon-associated function for
the intracellular S100B and point to functional synergies between the different intracellular S100B target
proteins. A model of non-classical S100B secretion involving AHNAK/S100A10/annexin2-dependent
exocytosis by the mean of exosomes is also proposed. Implications for related areas of research are
noted and suggestions for future research are offered.
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1. Introduction

Mild-to-moderate hypothermia (28–32 ◦C) induces cold-shock protein expression and mild
endoplasmic reticulum (ER) stress with full activation of the unfolded protein response (UPR) [1,2].
These adaptive responses are sufficient to protect the cells from more severe stress—an effect known
as ER hormesis—[3] and are recognized to be neuroprotective [3,4]. At the core of this mechanism of
cellular protection is the mitochondria [5]. Deterioration of these homeostatic mechanisms is a general
feature of ageing, neurodegenerative disease, and obesity [6,7]. Cellular pathways behind the hormetic
response are poorly understood, although increases in the levels of reactive oxygen species (ROS)
production by mitochondria and molecular chaperone syntheses are part of mechanisms involved
in cold stress protection and recovery [1,4,8,9]. In mammals, adipose tissue is a genuine model to
study proteostasis and metabolism associated with cold-stress [10]. Adipose tissues are under the
neural control of the sympathetic nervous system, mediated by tyrosine hydroxylase (TH)-positive
catecholaminergic neurons that innervate from the paravertebral sympathetic ganglia into adipose
tissues [11,12]. Cold exposure stimulates sympathetic nerves to release catecholamine, which then
activates adrenergic receptors expressed in adipocytes and stromal cells to trigger lipolysis, white
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adipose browning, and adaptive thermogenesis [12,13]. Cold exposure also stimulates sympathetic
nerve branching, suggesting the existence of positive-feedback regulation [14]. A recent study identified
a mammal-specific protein of the ER, called calsyntenin 3β (CLSTN3β) that plays a role in both white
(WAT) and brown (BAT) adipose tissues’ sympathetic innervation [15]. CLSTN3β is strongly induced
in the inguinal subcutaneous white adipocyte following exposure to cold [15]. CLSTN3β-knockout
mice show a defective adaptive thermogenesis, and absence of CLSTN3β expression in adipocytes
reduces functional sympathetic innervation in adipose tissues [15]. The zinc (Zn2+) and calcium (Ca2+)
binding protein S100B is a downstream effector of the signaling pathway activated by CLSTN3β in
response to the cold [15]. S100B is a member of the S100 family of proteins, the largest group of EF-hand
Ca2+-binding protein found exclusively in vertebrates [16], and is highly expressed in brain and adipose
tissues [17]. In solution, the S100B associates as a non-covalent homodimer with rather low Ca2+

affinity (KD 20 µM). S100B also binds Zn2+ [18]. Zinc binding studies revealed two sites with strong
affinity (KD < 0.1 µM), as well as a variable number of sites with weaker affinities (KD > 1–10 µM).
By using coordinating residues on both protomers, zinc ions bridge the dimeric structure of S100B [19],
increase the Ca2+ affinity of S100B, and promote the Ca2+-dependent interactions of the S100B
dimer with intracellular target proteins (reviewed in [20]). In addition to two Zn2+ equivalents per
S100B dimer, weak binding of Zn2+ leads to S100B aggregation. Zn2+-mediated S100B aggregation
contributes to the extracellular function of S100B [21]. The Ca2+/Zn2+-dependent interaction of S100B
with intracellular proteins regulates post-translational modifications such as phosphorylation [22],
transcriptional activities [23], enzymatic activities [24], and the assembly state of certain cytoskeletal
components and control of their oxidation state [25] (reviewed in [26]). Intracellular S100B also operates
within multichaperone scaffolding complexes in adaptive cellular stress responses [20]. Consistent
with a direct implication of S100B in adaptive thermogenesis, S100B expression level decreases in
warm-acclimatized new-born rat adipose tissues [27], and S100B is up-regulated in progenitor cells
committed to thermogenic brown adipocytes [28]. In addition, the S100b gene is under the control of
the transcription factor PRDM16, which is responsible of the induction of the thermogenic program in
brown adipocyte cells [15]. Several recognized or putative intracellular S100B targets (p53, ATAD3A,
CYP2E1, AHNAK) harboring consensus S100B binding motifs (Figure 1) have recognized functions
in the physiology of adipose tissues. In addition to its intracellular functions, S100B is secreted by
adipocytes in response to β-adrenergic receptor stimulation [29,30] where it operates as a neurotrophic
factor involved in the sympathetic innervation of thermogenic fat [15]. The paracrine functions of S100B
in adipose tissues leaves open two major issues: the mechanism for S100B secretion by adipocytes and
the identity of extracellular S100B targets receptors on sympathetic neurons and satellite cells.
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Figure 1. Sequence alignment of the S100B binding domains on p53 and ATAD3A defines a consensus
sequence motif called NEAL motif. [20]. The consensus S100B-binding NEAL motif is present in the
mitochondrial protein CYP2E1 and in the extracellular receptor protein RPTPσ.

Here, we review the links between the transcriptional regulation and interactions of S100B with
its intracellular and extracellular targets involved in brown adipocyte differentiation and adaptive
thermogenesis. A chaperone-associated function for intracellular S100B in adaptive cold-stress responses
and a new model of non-classical S100B secretion by adipocytes by the mean of exosomes are proposed.
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Finally, we identify two putative receptors targets for extracellular S100B (Receptor for Advanced Glycation
End products (RAGE), RPTPσ) harboring consensus S100B binding motifs that may contribute to the
extracellular S100B functions in both adipocyte innervation [15] and inflammation associated with
obesity [31,32]. Modelling the functions and secretion of the S100B protein in adipocytes should lead
to a better understanding of the contributions of brain S100B protein to glial cell differentiation [33],
neuron-glia communication [34,35], tissue protection [36], and neural disorders [37].

2. Transcriptional Regulation of S100B in BAT Differentiation

S100B is expressed in both WAT and BAT and regulated following a variety of physiological
signals [17,27]. S100B expression in adipose tissues is under direct control of the transcription
factor PRDM16, a key regulator of BAT differentiation and adaptive thermogenesis [15]. In the
immortalized C2C12 mouse myoblast cell line, sustained accumulation of reactive oxygen species
(ROS) upregulates S100B [28]. S100B up-regulation cooperates with NF-kB activation to decrease
miR-133, a promyogenic and anti-adipogenic factor targeting the degradation of PRDM16 mRNA.
As a consequence of the inhibitory effect of S100B on miR-133, PRDM16 is expressed and promotes BAT
differentiation [28]. Taken together, these results suggest that PRDM16- and ROS-dependent pathways
act synergistically to up-regulate S100B expression in adipocyte in a self-amplification loop (Figure 2).
This self-amplification loop likely mobilizes two S100B target proteins, the transcription factor p53 and
the oxidative stress-associated Cytochrome P450 2E1 (CYP2E1), that may synergize in order to induce
the transcription and translation of PRDM16 and, finally, BAT cell differentiation (see Section 3).
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Figure 2. Schematic model of the transcriptional regulation of S100B for brown adipocyte differentiation.
Activation of brown adipocyte differentiation triggers S100B transcriptional activation through ROS
and PRDM16 pathways [15,28]. Increase in cytoplasmic S100B amplifies nuclear targeting of p53 and
p53 transcriptional activation [38] and decreases miR-133 [28]. A negative regulation of p53 through
cytoplasmic interaction with AHNAK is also suggested based on a study that characterized physical
interactions between AHNAK and p53 and AHNAK-dependent inhibition of p53 nuclear activity [39].
Nuclear translocation of p53 further increases S100B expression level through synergistic transcriptional
activation of both PRDM16 and CYP2E1-ROS pathways. Enhanced S100B expression results in S100B
nuclear accumulation and down regulation of p53 transcriptional activity [20]. It is hypothesized that
the nuclear S100B enhances survival of differentiated BAT by inhibition of nuclear p53-dependant
apoptosis [40]. A contribution of S100B to the mitochondria addressing of CYP2E1 and p53 is also
suggested (see Section 3 for details).
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3. The Intracellular S100B Targets in BAT Differentiation

Several well-characterized and putative intracellular S100B target proteins (p53, ATAD3A, CYP2E1,
AHNAK) have recognized functions in adipocyte differentiation and homeostasis. In Figures 2 and 3,
we summarize the interactions of the S100B protein with its intracellular targets in the context
of adipocyte differentiation. S100B interaction models take into account ultrastructural studies in
epididymal adipocytes showing a cytoplasmic S100B localization in polysomes and ribosomes of the
rough ER and accumulation on the outer membrane of mitochondria and in the nuclei of almost all
adipocytes [41]. Importantly, S100B does not localize on the Golgi apparatus. The interaction models
are also consistent with the hypothesis that S100B operates in multichaperone scaffold complexes to
aid in the synthesis and the subcellular sorting of its nuclear (p53) and mitochondrial (ATAD3A and
CYP2E1) binding partners [20].

3.1. P53

The protein p53 is a short-lived transcriptional regulator that, in response to various forms of
cellular stress, is translocated to the nucleus in order to control the expression of a variety of genes
involved in metabolism, cell cycle arrest, and cell death [42–44]. Nuclear transcriptional functions of p53
requires p53 tetramerization [45]. p53 may also be translocated to the mitochondria where it contributes
to mitochondrial metabolism and homeostasis [46] or to specialized contact domains between the
ER and mitochondria (mitochondria-associated membranes) where it modulates ER–mitochondria
cross-talk [47]. In adipose tissues, p53 is a crucial regulator of adipocytes development, function,
and maintenance [48] and exerts a dual activity on WAT and BAT differentiation. While p53 directly
drives adipogenic differentiation by increasing the production of mitochondrial reactive oxygen species
(ROS) [49], p53 also inhibits WAT differentiation and promotes BAT differentiation [50]. This dual
role of p53 in the differentiation of WAT and BAT cells likely reflects the complexity of p53 regulation,
stability, subcellular localization (cytoplasmic vs. nuclear), as well as the heterogeneity of its gene
targets. Amongst the p53 binding partners, S100B interacts and regulates p53 functions depending of
the subcellular localization of the complex (reviewed in [20]). In adipocyte, cytoplasmic S100B may
interact with p53 as a co-chaperone to assist in the folding and stability of cytoplasmic p53 monomers
prior to p53 nuclear and mitochondria translocation (Figure 2). In addition, S100B can also release p53
of cytoplasmic anchoring protein such as AHNAK (Figure 2). It has been shown that S100B dissociates
the AHNAK-p53 complex in the presence of calcium [51] and cooperates with Ca2+-dependent protein
kinase C (PKC) to promote nuclear p53 translocation and nuclear functions [38,52]. A physical
interaction between AHNAK and p53 has also been described in non-small-cell lung cancer cells [39].
In these cells, AHNAK inhibits p53 nuclear function, and ubiquitin-mediated AHNAK degradation is
required to activate p53 nuclear activity [39]. Interestingly, in AHNAK-/- mice, the number of brown
adipocytes increases in white fat tissue [53], which is consistent with the p53 role in BAT adipocyte
differentiation. This suggests that, in these mice, AHNAK may not play an inhibitory role on p53
function in pro-BAT differentiation pathways. Studies should further explore the regulation of the
p53-AHNAK interaction by Ca2+-S100B in BAT cell differentiation [50]. In addition, it is possible that
AHNAK may also be involved in S100B secretion in order to promote sympathetic innervation of BAT
tissues (see Section 4 and Figure 3).

In the nucleus, p53 tetramers induce the transcription of PRDM16 [50] and the cytochrome p450
2E1 (CYP2E1), a key enzyme involved in the metabolism of nitrosamines and ROS production [54].
Both PRDM16-dependent transcriptional activities and ROS production contribute to p53-dependent
adipocyte differentiation [49,50] and might synergize to further increase cellular S100B levels [15,28].
Increase in S100B expression level leads to S100B nuclear accumulation as observed in fully differentiated
cells [20,33] and in cancer cells [55]. In the nucleus, S100B inhibits p53 tetramerization [20] and p53
transcriptional activity of the apoptosis program [40], which enhances BAT survival (Figure 2). Hence,
concentration-dependent and subcellular localization of S100B in adipocytes may contribute to the
p53-dependent adipocyte fate. Further studies are needed to provide more insights into the regulation
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of S100B protein expression, subcellular localization, and interactions with partners for a better
understanding of the S100B–p53 axis in adipocyte fate and development.
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Figure 3. Schematic representation of beta-adrenergic receptors signaling and S100B functions for
mitochondrial biogenesis and adipokinesis in brown adipocyte. Mammalian BAT is made up of
specialized adipocytes that express uncoupling protein 1 (UCP1), which dissipates the mitochondrial
proton gradient, forcing increased flux through the electron transport chain and subsequent heat
generation. Brown fat is innervated by nerve endings of the sympathetic nervous system. Sympathetic
neurons release noradrenaline molecules that bind to and activate the β3-adrenergic receptors (β-AR)
on fat cells. This activation triggers a cascade of biochemical events, such as changes in cytoplasmic
Ca2+ concentration, elevations of intracellular cAMP levels, activation of kinases cascades, and
mitochondrial biogenesis [56]. β-AR stimulation also induces S100B transcription [15]. The cytoplasmic
Ca2+/Zn2+-bound S100B assists the synthesis, folding, stability and/or subcellular addressing of
nuclear (p53) or mitochondrial (ATAD3A, CYP2E1) S100B binding partners involved in brown
adipocyte differentiation and mitochondrial biogenesis. Changes in cytoplasmic Ca2+ concentration
also induce AHNAK proteolysis and Ca2+-dependent exocytosis of S100B-containing vesicles by means
of enlargosomes. In the extracellular space, it is hypothesized that S100B binds to RPTPσ receptors on
sympathetic neurons and Treg cells to support the development of functional beige fat. S100B can also
bind to RAGE on macrophages. The S100B–RAGE axis contributes to the cross-talk between adipocytes
and immune cells and may play a role in inflammation associated with obesity. See also Section 5
for details).

3.2. ATAD3A

ATAD3A is a nuclear-encoded AAA+-ATPase mitochondrial membrane protein specifically
expressed in multicellular eukaryotes (reviewed in [57]). ATAD3A localizes at ER-mitochondria
contacts to modulate mitochondria-ER cross-talk [57]. ATAD3A is at the crossroad of processes
underlying mitochondrial biogenesis [58] with a direct incidence on the differentiation and fate
decisions of progenitors [59,60]. Adipocyte-specific Atad3a (Bor) gene deletion in Drosophila is
responsible of disorganization of the mitochondrial network and of the reduction of cell size, pointing
to a key function of ATAD3A in adipocyte cell growth [61]. It has been suggested that S100B operates
within multichaperone scaffolding complexes to assist with the de novo synthesis of ATAD3A and
its translocation into mitochondria [62]. We propose that, in mammalian BAT cells, S100B assists the
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de novo ATAD3A protein synthesis to support the need of increased mitochondria biogenesis and
thermogenic functions [63] (Figure 3).

By tethering the external and internal mitochondrial membranes and mitochondrial channel
components Tom40 and Tim23, ATAD3A is also able to facilitate the transport and degradation of
the pro-apoptotic Pink1 protein within the mitochondrial matrix, leading to the down-regulation
of parkin-dependent mitophagy, a key E3 ubiquitin–protein ligase [59,60]. Because mitophagy is
an important function to maintain appropriate mitochondrial homeostasis in BAT [64], studies on
the relationship among S100B levels, ATAD3A processing, and the regulation of Parkin-dependent
mitophagy is another molecular pathway that should be considered to provide a better understanding
of the contribution of S100B in BAT differentiation.

3.3. CYP2E1

CYP2E1 is a key determinant of the cellular redox state and a tightly regulated enzyme [65,66].
In adipose tissues, CYP2E1 is specifically and strongly induced by fasting [67]. Cyp2e1 gene expression
is under the transcriptional control of p53 [54], and as such, likely integrates mitochondrial ROS
production associated with p53-dependant adipocyte differentiation [49]. Newly synthesized CYP2E1
localizes at the ER (erCYP2E1) and then is transported to the mitochondria (mtCYP2E1) in a regulated
process [68]. Mitochondrial localization of CYP2E1 is responsible for higher levels of ROS and oxidative
stress [66].

CYP2E1 is characterized by a consensus S100B-binding motif akin to the one in ATAD3A (Figure 1).
Similar to the role of S100B in ATAD3A, further studies should investigate the contribution of S100B
in assisting the de novo synthesis of CYP2E1 and mitochondrial addressing of mtCYP2E1 (Figures 2
and 3). In such a scenario, mtCYP2E1 will function in a feedback loop to promote ROS-mediated S100B
synthesis [28], and nuclear accumulation will then inhibit p53 transcriptional activity and enhance
BAT cell survival (Figure 2).

4. S100B secretion by Adipocyte

In addition to intracellular functions, S100B in adipocytes is secreted in response to β-adrenergic
receptor stimulation [29,30] and functions as a neurotrophic factor, contributing to sympathetic
innervation of thermogenic fat [15]. A recent study has identified calsyntenin 3β (CLSTN3β),
a mammal-specific protein of the endoplasmic reticulum, as a key regulator of S100B secretion in
brown adipocytes [15]. It has been proposed that CLSTN3β may function as a chaperone for targeting
S100B to the ER for subsequent secretion via the trans-Golgi network [15]. A stricto sensus chaperone
function for CLSTN3β is challenged by the high ratio of degraded CLSTN3β protein vs. native protein
in total cell extracts. More than 50%–80% of the CLSTN3β protein (MW. 39.5 kDa) migrates as a cleaved
product or is associated into a high molecular weight complex (see Supplemental Figures 1d, 2c, 3b,
and 4a in [15]). Although it is possible that the high molecular weight complexes of CLSTN3β are
also interacting partners for S100B, we would rather suggest a function for CLSTN3β in shuttling
vesicles containing S100B and/or vesicle exocytosis (Figure 3). We further believe that an understanding
of the mechanism of non-canonical S100B secretion must take into account ultrastructural studies
of the subcellular localization of S100B in adipocytes, suggesting that S100B secretion is linked to
cytoplasmic vesicles rather than the Golgi network [41]. In fact, S100B-positive vesicles fuse with each
other or with the plasma membranes to release S100B into the interstitium [41]. A Ca2+-dependent
exocytosis of S100B by way of secretory vesicles and independent of the ER-Golgi classical secretion
pathway has also been described in glioblastoma U87 cells [69]. All these observations suggest that
S100B belongs to the leaderless family of secreted proteins trapped within sequestering organelles for
interstitial secretion by means of exosomes (reviewed in [70]) (see Figure 3 and Section 4.1). Exosomes
can be diverted from their normal exocytotic function and be released as extracellular vesicles (EVs) in
pathological conditions [71,72].
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4.1. Non-Classical Interstitial S100B Secretion by Adipocytes, a Role for AHNAK

In Figure 3, we propose a model of interstitial S100B secretion involving Ca2+-dependent exocytosis
using the AHNAK1/S100A10/annexin2 complex as a secretory mechanism.

The giant protein AHNAK1 (M.W. 700 kDa) is a downstream effector inβ-adrenergic signaling [73,74]
and has central functions in adiposity regulations [53,75–77]. The AHNAK1 protein has three main
functional domains: a short NH2-terminal domain, followed by a large central domain made of
repeated amino acid sequences, and a COOH-terminal domain [78]. In AHNAK1, the central
repeats interact with S100B [51], whereas the N-terminal and C-terminal domains interact with
the S100A10/annexin2 complex [79–81]. The S100A10/annexin2/AHNAK1 complex translocates to
cholesterol-enriched plasma membranes (rafts) [79], which form a spatial cue for the recruitment
and assembly of the components of the exocytotic machinery [82]. When anchored to the plasma
membrane, AHNAK1 scaffolds L-type voltage-gated calcium channels (VGCCs), thereby regulating
downstream Ca2+-dependent pathways necessary for exocytosis [74], and recruits phospholipase C and
Ca2+-dependent PKC-α required for PI(4,5)P2 synthesis [83]. (PI(4,5)P2) is a crucial component of the
plasma membrane, forming microdomains required for efficient SNARE-mediated exocytosis [84,85].
At the plasma membrane, the AHNAK1/S100A10/Annexin2 complex evolves into vesicles called
enlargosomes that are rapidly exocytosed in a SNARE- and Ca2+-dependent manner [86–88]. During
enlargosome biogenesis, AHNAK1 is transported across the enlargosome membrane, apparently by an
ABC transporter, and binds to its luminal face [88]. Because S100B protein interacts with AHNAK1’s
internal repeats [51], we hypothesize that Ca2+-bound S100B could be co-internalized with AHNAK1
within enlargosome-like vesicles and subsequently released into the extracellular spaces (Figure 3).
In fact, both S100B and AHNAK1 are constituents of extracellular vesicles (EVs) purified from obese rat
adipocyte [89], which confirms co-internalization of S100B and AHNAK1 into exosomes. Interestingly,
AHNAK2, which interacts with bFGF, also participates in stress-induced non-classical secretion of
bFGF, supporting a role of the AHNAK family in non-classical secretion pathways [90]. Confirmation
of the hypothesis on the role of the AHNAK proteins (AHNAK1 and AHNAK2) in the secretion of
S100B should be further investigated using genetically modified mouse models.

Finally, it is of prime importance to understand how AHNAK contributes to the exocytotic vesicle
(enlargosome) formation. Increasing evidence suggests that the proteolysis of the membrane bound
AHNAK protein is key (Figure 3). AHNAK1 is highly sensitive to metal-dependent proteases [91] and
calcium-dependent proteolysis leads to the cleavage of AHNAK1 at specific sites on N- and C- terminal
domains [92]. AHNAK1 contained in purified EVs migrates as a set of shorter peptides compared to
the full length AHNAK1, supporting the hypothesis that AHNAK1 proteolysis accompanies vesicle
formation (this evidence is supported by comparing Figure 10 panel c and panel f in [93] and in Figure
7a of [94]). Such a scenario is further supported by the finding that targeting the C-terminal domain
of AHNAK1 (residues 5645–5673) to the membrane bound annexin2/S100A10 complex, in place of
the full length AHNAK1, was sufficient to cause membrane blebbing that evolves into vesicular
structures (Figure 4). In this study, we have overexpressed the minimal S100A10/annexin2 binding
domain 1 of AHNAK1 (A2tBP1-residues 5645-5673) in MDCK cells using a plasmid expressing
four A2tBP1 sequences in tandem repeats (A2tBP14-EGFP) [80,81]. The intracellular distribution of
the A2tBP14-EGFP peptide and annexin2 subcellular localization were studied during Ca2+ switch
experiments by live fluorescence imaging. As observed with the endogenous full length AHNAK [79],
Ca2+ addition to the culture medium induces a translocation of A2tBP14-EGFP from the cytoplasm to
the plasma membrane within 2 min (Figure 4A). At the plasma membrane, the A2tBP14-EGFP peptide
competes with the full length AHNAK for binding to the S100A10/annexin2 complex [80] and induces
formation of membrane vesicles (Figure 4B).
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Figure 4. The AHNAK1 C-terminus binding motif specific for the Annexin2/S100A10 (residues
5645-5673) induces formation of membrane vesicles. (A) Confluent MDCK cells transfected with
plasmid expressing four repeats of the 20-amino acid peptide A2tBP1 (residues 5645-5673) fused to
EGFP were incubated in medium containing 5 mM EGTA and supplemented with 1mM MgCl2 for
10 min at 37 ◦C (t = 0), then shifted to calcium containing medium for 2.5 min (t = 2.5 min) and
5 min (t = 5 min). The subcellular distribution of A2tBP14-EGFP during Ca2+ switch experiments was
recorded by live fluorescence imaging. (B) The translocation of A2tBP14-EGFP to the plasma membrane
and vesicles follows that of the annexin2. Confluent MDCK cells transfected with A2tBP14-EGFP
(green) were subjected to Ca2+ switch experiment, fixed after 10 min and immunostained with annexin2
antibody (red).

We propose that Ca2+-dependent AHNAK1 proteolysis disorganizes the AHNAK1/S100A10/Anxa2
scaffolding complex and sub-membrane cytoarchitecture, reducing membrane tension and allowing
membrane vesicle formation, with the central domain of AHNAK1 working as a spacer between two
lipid rafts [92,95]. Further studies are needed to unravel the apparent complexity of the molecular
mechanisms involving CLSTN3β and AHNAK1 in S100B translocation and secretion and more generally
to clarify theβ-adrenoceptor signaling networks for Ca2+-dependent exocytosis of adipokine-containing
vesicles [96].

It is important to keep in mind that we cannot exclude the existence of differences in the secretion
processes between the WAT and the BAT. Unless the secretion mechanisms are fully characterized,
caution should be exercised before generalizing a secretion model for all adipocytes.

4.2. Alternative Mechanism for S100B Release from Circulating Extracellular Vesicles

Adipocytes, as well as brain cells, release S100B in circulating fluids by an unknown mechanism [97].
Dynamic S100B release into the blood and into the cerebrospinal fluid during acute brain injury may
serve as a repair mechanism [98] but also contribute to neural disorders [37]. EVs are relevant carriers
of both S100 proteins [99] and AHNAK [90,93,94,100–102]. Hence, an alternative pathway for S100B
release into circulating fluids using EVs is plausible. An alternative S100B secretion pathway that
mobilizes the Receptor for Advanced Glycation End products (RAGE) has been described [103].
RAGE-mediated S100B-secretion can either occur at the plasma membrane or in the extracellular
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space [103]. The ectodomain of RAGE harbors a putative S100B-binding NEAL motif [20] onto which
extracellular S100B binds [21]. Whether or not S100B plays a role in an autocrine loop to regulate its
own secretion needs further investigation.

It is noteworthy that several observations point to a possible interplay between RAGE and
AHNAK in adaptive thermogenesis. In fact, both RAGE- and AHNAK-null mice display significant
protection from high-fat diet-induced obesity and exhibit a superior ability to thermoregulate during a
cold challenge, compared to wild-type mice [53,76,104]. In addition, RAGE stimulation may interfere
with β-adrenergic signaling in WAT and BAT cells (106), and β-adrenergic signaling is modulated
by AHNAK (74,75). We believe that these data should be taken into account to further investigate
the mechanisms controlling S100B secretion and the respective functions of AHNAK and RAGE in
adaptive thermogenesis.

5. The S100B Interaction with Extracellular Targets

S100B KO mice develop BAT normally, although with impairment of sympathetic innervation
(X. Zeng, Harvard Medical School; personal communication). The identity of receptors for the
extracellular S100B protein is a key issue in understanding the neurotrophic activity of S100B and the
sympathetic innervation of adipose tissue. A strict consensus sequence of S100B-binding motif is present
within the fourth fibronectin extracellular domain (FNIII-4, residues 673–694) of the neurotrophic type
IIa receptor protein tyrosine phosphatases (PTPRS or RPTPσ) (see Figure 1, and [20]). This domain
interacts with proteoglycans and it is anticipated that extracellular soluble factors may regulate the
binding of this domain with proteoglycans [105]. In the brain, RPTPσ plays an important role in the
regulation of axonal outgrowth and neural regeneration [106,107]. Interestingly, RPTPσ is also highly
expressed in adipose tissue [108,109] and represents a strong candidate to mediate the neurotrophic
functions of S100B in both the brain and adipose tissues (Figure 3). There is also appreciable in vitro
and in vivo evidence that S100B may participate in neuroprotection/neurodegeneration and in brain
synaptogenesis via RAGE signaling, although there are uncertainties about the exact mechanisms
underlying the contribution of S100B (reviewed in [110] and [37]). The contribution of RAGE to the
growth of sympathetic nerve fibers in fat tissue in response to S100B stimulation deserves investigations.

In Figure 3, a paracrine function of S100B on regulatory CD4+ T lymphocytes (T-reg) cells is
also suggested. RPTPσ is among 11 unique differentially expressed genes in a sub-population of
T-reg cells, which are required for proper BAT activation upon cold exposure [111]. Further studies
should investigate the RPTPσ–S100B axis in BAT innervation and in the cross-talk between the immune
system and adipose tissue during the development of functional beige fat [112]. A contribution of
S100B to paracrine communication between adipocytes and macrophages has also to be considered
(Figure 3). In the central nervous system (CNS), S100B is documented to act as an inflammatory
cytokine via its interaction with RAGE (For a recent comprehensive review about S100B-activated
RAGE signaling in nervous tissue see [37]). Due to the known proinflammatory role of S100B in the
CNS it has been proposed that adipose-derived S100B may also play a role in activation of innate
immune cells in adipose tissue [97]. In fact, an increase in adipose S100b gene expression in WAT
is observed during obesity, which, in common with markers of adipose tissue inflammation, can be
reversed following weight loss [32]. A specific contribution of the S100B–RAGE axis to paracrine
communication in adipose tissue and inflammation has gained further support from in vitro data
showing that adipocyte-derived S100B can act as an inflammatory cytokine via RAGE, stimulating
M1 polarization of macrophages in an in vitro co-culture system [31]. Further studies are required to
understand the complexity of the extracellular function of S100B, AHNAK, RPTPσ, and RAGE in both
WAT and BAT and their respective contributions to the cross-talk between adipocytes and immune
cells [112].
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6. Conclusions

Convergent studies suggest a role of S100B in adaptive cellular responses requiring increased
cellular metabolism. Beside its role as a chaperone-associated function in adaptive cellular stress
responses [20], S100B expression is strongly induced during adaptive thermogenesis following cold
stress and may be part of an integrated response to raise energy metabolism (Figure 2). Ca2+-dependent
interactions of S100B with its binding partners determines its function, and it is interesting to note that
three of those partners (ATAD3A, CYP2E1, and p53) are present in adipocytes and play essential roles
in mitochondrial metabolism and homeostasis. This suggests that intracellular S100B is a central player
that integrates mitochondrial energetics and metabolism together with protein biogenesis in order to
promote adipocyte differentiation and thermogenic adaptation. In addition, functional interactions
exist between target proteins that can diversify the outcomes of S100B expression. The most striking
example of this is the cross-talk between S100B, AHNAK, and p53 (Figures 2 and 3). AHNAK and
p53 form a complex in the cytoplasm that can be dissociated in the presence of S100B and calcium
(Figure 2). The resulting S100B–p53 or S100B–AHNAK complexes support novel regulatory functions
in different cellular compartments (nucleus and secretory vesicles) (Figures 2 and 3). The diversity in
the p53–AHNAK–S100B axis functions needs to be studied in more detail and could provide clues to
explain the dual activities of p53 and AHNAK on the homeostasis of WAT and BAT cells. In addition
to intracellular regulatory functions, S100B has also extracellular neurotrophic activity on sympathetic
neurons that contributes to brown adipocyte innervation and adaptive thermogenesis regulation
(Figure 3). One candidate to mediate the neurotrophic activity of S100B is the RPTPσ receptor (Figure 3).
The contribution of RPTPσ on S100B-dependent sympathetic neurons innervation in adipose tissues
and the brain should be further investigated.

In conclusion, the absence of developmental defects in S100B knockout or in double S100B/S100A1
knockout mice have raised questions about the implication of S100B in signaling events related to tissue
development. Studies have shown that S100B is not essential for cell viability in physiological situations,
but S100B deficiency is harmful under stressful conditions involving high metabolic requirements in
the context of cell growth and differentiation during tissue repair [20]. In adipose tissues, S100B is not
necessary for cell life and differentiation but is integrated in cellular responses to fine-tune the dynamics
of cellular homeostasis by the means of its intracellular and extracellular partners. This supportive
function is of particular importance under cold stress-associated adaptive thermogenesis [15].

It is hoped that a better understanding of the functions of S100B in the adipocyte response to cold
should also provide information on the molecular basis of the effect of cold shock on the memory
disorders observed in transgenic mice overexpressing S100B [113].
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