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A B S T R A C T

Thanks to the progress and decreasing costs in genome sequencing technologies, more than 250,000 bacterial
genomes are currently available in public databases, covering most, if not all, of the major human-associated
phylogenetic groups of these microorganisms, pathogenic or not. In addition, for many of them, sequences from
several strains of a given species are available, thus enabling to evaluate their genetic diversity and study their
evolution. In addition, the significant cost reduction of bacterial whole genome sequencing as well as the rapid
increase in the number of available bacterial genomes have prompted the development of pangenomic software
tools. The study of bacterial pangenome has many applications in clinical microbiology. It can unveil the pa-
thogenic potential and ability of bacteria to resist antimicrobials as well identify specific sequences and predict
antigenic epitopes that allow molecular or serologic assays and vaccines to be designed. Bacterial pangenome
constitutes a powerful method for understanding the history of human bacteria and relating these findings to
diagnosis in clinical microbiology laboratories in order to optimize patient management.

1. Background

Bacteria are single-cell microorganisms that live in a wide array of
environments [1]. Their adaptation to these various ecosystems paral-
leled their genetic evolution [2], leading to an extraordinary chromo-
somic and phenotypic diversification, including at the species level [3].
The development of complete genome sequencing as early as 1995,
followed ten years later by the development of high-throughput whole
genome sequencing, unprecedented access to the genetic information
and bacterial evolution has been made possible [4–6]. In parallel, a
renewed interest in culture methods, notably the culturomics strategy,
has enabled a significant increase in the number of new human-asso-
ciated bacterial species [7–9]. These progresses resulted in the avail-
ability of an increasingly high number of bacterial genome sequences.
As 1st of April 2020, more than 250,000 bacterial genomes, encom-
passing most human pathogens and many commensals, are available in
public databases. However, it is clear that the sequence of a single
genome does not reflect the whole genetic variability within a bacterial
species. Among the progresses permitted by genomic analyses, pan-
genome studies have enabled investigating the genetic diversity of
bacteria at the species level [6,10,11]. Pangenomics was first developed

in 2005 by Tettelin et al. to study multiple pathogenic isolates of
Streptococcus agalactiae [12]. These authors were the first to describe a
core genome made of genes common to all strains within a species, and
a dispensable genome that was comprised of genes diversely present in
some strains. Later, the pangenome of a species was defined as the sum
of the core genome (all conserved genes including essential gene fa-
milies), the dispensable genome (accessory genes) and unique genes
specific of a given strain [11,13]. It has also been demonstrated that the
pangenome size may significantly vary according to the bacterial spe-
cies considered [14–16]. Sympatric bacteria that live collectively in
contact with other microorganisms in the same ecological niche typi-
cally exhibit open pangenomes, i. e., pangenomes in which the number
of genes constantly increases with the inclusion of genomes from new
isolates of the same species. In contrast, allopatric species, living in
isolated and restricted environments with limited access to external
genetic resources, exhibit a closed pangenome, in which a limited
number of strains is sufficient to complete the pangenomic analysis
[10,11,17,18]. As examples, Escherichia coli and Bacillus anthracis
exhibit open and closed pangenomes, respectively [11,13]. This genetic
variation represents the main key to study and understand the structure
and evolution of the bacterial pangenome. In recent years, the number
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of pangenomic studies has significantly increased (Fig. 1). Such a pro-
gress was permitted by two main factors, the reducing cost of genome
sequencing [19] and the development of improved pangenome analysis
tools [20]. In 1995, when Fleishman et al. sequenced the first complete
bacterial genome (Haemophilus influenzae), the sequencing cost was
estimated around 878,000 dollars (48 cents/base pair for 1,830,137 bp)
[4]. Currently, complete bacterial genomes can be sequenced for less
than 600 dollars (https://www.illumina.com/science/customer-
stories/icommunity-customer-interviews-case-studies/johnson-agrilife-
interview-ag-novaseq.html). In parallel, more than 40 pangenomic
tools are currently available in the form of local applications or online
platforms.

Pangenomic studies have concrete applications in the clinical field,
by allowing not only the characterization of human-associated patho-
gens, but also by offering a better understanding of their dynamics,
transmission, virulence and resistance [16]. These roles were in-
vestigated in several types of infections, including skin and pulmonary
infections, brain abscess, tuberculosis and other human diseases
[21–24].

In this review, we examine the importance of pangenomics in
clinical microbiology.

2. Pangenomic analysis tools

From 1995 to 2019, the cost of whole genome sequencing for a
single bacterium has decreased around 1,464 times [4,25]. This sig-
nificant cost reduction as well as the rapid increase of available bac-
terial genomes in databases have prompted the development of pan-
genomic software tools [26] (See Table 1). Panseq [27] and
PanCGHweb [28] were among the first softwares that have been de-
veloped in 2010 [20]. Computational pangenome analysis tools can be
categorized into online platforms (websites) and applications that are
downloadable on personal computers. Online platforms are user-
friendly but may be limited to a certain number of genomes, whereas
downloadable softwares may require informatics skills for installation
and powerful computers to analyze large datasets [31]. In addition,
some softwares may be available in both forms, like Roary [29] and
PanX [30]. In 2019, the number of pangenomic tools has increased to
more than 40 free-access applications available online (https://
omictools.com/company and https://github.com/). Regarding online
tools, few clicks may be sufficient to generate a bacterial pangenome
within minutes, like with PanX [30]. However, other online softwares
require more time, notably due to the necessity to upload sequences in
specific formats, such as gene-finding format (GFF) as recommended by
the Roary pipeline [29] in the online Galaxy server [31]. Regarding
local applications, the upload of annotated genome files may also be
mandatory, as is the case for Fasta amino acid (FAA) files required by

the ProteinOrtho [32] and Get Homologues [33] softwares.
Following pangenome analysis by the previously cited softwares,

other online applications can be used to visualize the output data, like
Phandango [34] or Morpheus (https://software.broadinstitute.org/
morpheus/). Currently, thanks to the availability of dedicated online
softwares, generating a pangenome analysis is easy, provided that
certain specific steps are followed. These latter include downloading
sequences of interest in an annotated format from genome databases,
uploading all files, including the genomes generated in-house, in an
appropriate format in the online tool, submitting the job and then vi-
sualizing the results.

3. Role of horizontal gene transfer in pangenome

The bacterial pangenome may undergo many variations during
evolution [35]. The genetic content variability of prokaryotes [36,37]
can notably result from genetic exchanges with its environment [38].
The process of gene trafficking between organisms with no parental
relationship is defined as horizontal gene transfer (HGT) [16]. HGT was
demonstrated as the main way for bacteria to acquire new genes in
comparison to gene duplication [35,38]. HGT can occur via several

Fig. 1. Evolution of the annual number of publications with ‘Bacteria’, ‘pan-
genome’, ‘pan genome’ and ‘pan-genome’ as keywords in Pubmed (https://
www.ncbi.nlm.nih.gov/pubmed/).

Table 1
Online bioinformatics platforms or downloadable softwares for pangenomic
analysis.

Tool name Online platform (O) or
downloadable tool (D)

References

1. PanX O, D [30]
2. PanOCT D [124]
3. PanRGP D https://microscope.readthedocs.

io/en/stable/content/
compgenomics/panRGP.html

4. PGAweb O [125]
5. Roary O, D [29]
6. ProteinOrtho D [32]
7. Get Homologues D [33]
8. PGAP D [126]
9. Panseq D [27]
10. PanViz D [127]
11. MetaPGN D [128]
12. PanCGHweb O [28]
13. Pancake D [129]
14. PPanGGOLIN D [130]
15. PanGet D [131]
16. PanArray D https://omictools.com/

panarray-tool
17. BGDMdocker D [132]
18. MSPminer D [133]
19. PanPhlAn D https://omictools.com/

panphlan-tool
20. PIRATE D [134]
21. Piggy D [135]
22. BPGA-Pan D [136]
23. Pan4Draft D [137]
24. PanACEA D [138]
25. PanWeb O [139]
26. PanFP D [140]
27. Pan-tetris D [141]
28. NGSpanPipe D [142]
29. PanFunPro D [143]
30. PGAT D [144]
31. EDGAR D [145]
32. ITEP D [146]
33. PanGP D [147]
34. LS-BSR D [148]
35. microPan D [149]
36. PanCoreGen D [150]
37. Pan Delos D [151]
38. SaturnV D https://github.com/ejfresch/

saturnV
39. PANINI D [152]
40. Parsnp D [153]
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mechanisms [17,39], including bacterial transformation (DNA uptake)
[40], transduction (DNA transfer via bacteriophages) [41] and con-
jugation (DNA transfer via type IV secretion system) [42]. Moreover,
genes can be relocated by selfish genetic elements [43]. The rate of HGT
varies greatly between allopatric and sympatric bacteria, and may also
vary for a given bacterium when its ecological niche is modified
[17,44–46]. As example, Freschi et al. studied the contribution of HGT
in antimicrobial resistance and virulence mechanisms from the human
pathogen Pseudomonas aeruginosa. These authors performed a pange-
nomic analysis based on 1,311 high-quality genomes of P. aeruginosa
and characterized accessory genes, estimated of the prevalence of
phages and identified plasmidic genes. Furthermore, they identified the
genera Sinorhizobium, Ralstonia, Escherichia and Klebsiella as having
the greatest rate of HGT events with P. aeruginosa. 5% of detected HGT-
acquired genes were antimicrobial-resistance genes and 12% included
sequences matching known virulence genes [47]. Using pangenomics,
Dumas et al. also demonstrated the role of HGT in the adaptation of
mycobacteria to new environments and hosts during evolution [48]. In
particular, this study of 41 genomes demonstrated that plasmids car-
rying ESAT-6 secretory (ESX) genes were a major driving force for the
acquisition and the diversification of type VII systems in these micro-
organisms [48]. These examples highlight the interest of pangenomics
to decipher HGT events between bacteria (Fig. 2).

4. Role of mobilome, virulome and resistome in the pangenome

4.1. Mobilome

The bacterial mobilome has been defined as the repertoire of all
mobile genetic elements (MGEs), notably plasmids, bacteriophages and
transposons (Fig. 2) [49–51]. These MGEs can circulate intra-genomi-
cally (transposons) or inter-genomically (plasmids, bacteriophages,
transposons) and play a significant role in bacterial evolution. In par-
ticular, they can allow adaptation to specific environments and in-
creased genetic variability through the acquisition or loss of DNA se-
quences [18,51]. The genetic material carried by MGEs can contribute
to the emergence of new pathogens (Bacillus anthracis, Vibrio cholerae)

and drug resistance markers (Escherichia coli) [49,52–54]. In Pseudo-
monas aeruginosa, Freschi et al. deciphered the HGT mechanisms that
underlie its genetic diversity. MGEs were detected using a pangenome
matrix based on 1,311 high-quality P. aeruginosa genomes [47]. A total
of 15, 2,017 and 2,177 phage genes were identified in the core genome,
dispensable genome and unique genes, respectively (2.3%, 7.6% and
8%, respectively). In parallel, 102, 4,410 and 5,411 plasmid genes were
detected among core, accessory and unique genes, respectively (15%,
17% and 20%, respectively). A pangenome of 17 sequenced genomes of
brain abscess-associated Streptococcus intermedius was generated, in
order to decipher the genetic mechanisms involved in the onset of this
disease [24]. From the pangenome matrix, 14 bacteriophages (Bacillus
phage G, Streptococcus phage phiARI0131-1, Lactobacillus phage PLE2,
Campylobacter phage PC14, Streptococcus phage phiARI0468-1 …)
were detected in addition to genomic islands containing a type seven
secretion system (T7SS) and transposons carrying hyaluronidase and
virulence-inducing antigens [24,55,56]. In total, these studies showed
that pangenomic analyses facilitated the detection of MGEs between
different bacterial repertoires at the species level.

4.2. Resistome

The emergence of antibiotic resistance in microorganisms is a global
health threat. Resistance of microorganisms to antimicrobial agents can
be caused by various mechanisms, mostly gene acquisition or mutation
[57]. Wright et al. defined the resistome of a bacterial genome as all
antibiotic resistance-related genes. These include those that encode
resistance mechanisms, that may already be present in the genome and
that are expressed or not, and those that are imported by HGT or mu-
tated [58] (Fig. 2). Pangenomic analysis may also help in identifying
resistance markers that play an important role in antimicrobial re-
sistance by distinguishing between those present in all strains and those
that are distributed differently [59–62]. Pangenomic results can also
help designing antimicrobial combinations that are not classically used
and subsequently improve the patient management. In a pangenomic
analysis of 59 strains from the Achromobacter genus, Jeukens et al. were
able, in comparison with the Comprehensive Antibiotic Resistance
Database (CARD), to show that strains obtained from clinical specimens
had more resistance genes than the others and that extra-genes were
acquired by HGT [63]. In a large pangenomic study of E. coli comparing
4,022 genomes, Goldstone and Smith identified 2,172 antimicrobial-
resistance genes that they classified into a core (50 genes) and accessory
resistomes (2,122 genes) [64]. It was observed that the core resistome
of E. coli consists essentially of multi-drug efflux pumps that can confer
non-specific resistance [64]. Moreover time-dependent resistance
transmission was noticed, when evaluating the isolation dates of im-
plicated strains [64].

Recently, the detection of antimicrobial resistance in pangenomic
analyses was improved by the use of machine learning. The machine
learning strategy enables computers to improve automated biological
predictions (prediction of biological activity, structure of interest,
target sequence …) using data from previous experiences [65,66]. In
2018, an E. coli model was used by Moradigaravand et al. and Her et al.
[67,68]. For the first example, a large pangenomic analysis of 1,936 E.
coli strains was carried out to assess the ability of four predictive ma-
chine learning models (Random forest classifier, Gradient boosted de-
cision trees, Deep neural networks and Rule-based baseline) to predict
resistance to 11 antibiotics relying on different variables (population
structure, isolation year and single nucleotide polymorphism data)
[68]. The gradient boosted decision tree machine learning model was
the best in comparison with other models tested with an average ac-
curacy of 0.91 (average accuracy for predicting resistance and em-
ploying a number of possible combinations of gene presence, popula-
tion structure and year of isolation). In a second example, Her et al.
used a machine learning approach based on genetic algorithms from 59
E. coli strains [67]. They used four different predictive machine learningFig. 2. Schematic representation of the bacterial pangenome applications.
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models (Support Vector Machine, Naïve Bayes, Random Forest and
Adaboost) to analyze genetic and phenotypic data related to 38 anti-
microbial resistance genes. The authors demonstrated that only 68 of
the total 13,076 accessory genes were annotated as having anantimi-
crobial activity with a high predictive accuracy [67]. This study re-
ferred for the first time to the pangenome as an antimicrobial resistance
gene activity benchmark [67]. Another pangenome-based machine
learning was generated from the genome sequences of 1,595 Myco-
bacterium tuberculosis strains [23]. One of the authors’ objectives was to
analyze and decipher the gene content of all sequences aiming to study
the diverse signatures of antimicrobial resistance gene evolution to 13
antibiotics [23]. A high conservation of antimicrobial resistance genes
to isoniazid, rifampicin, streptomycin and ethambutol was detected in
the pangenome among 1,282 strains. In contrast, 946 strains were re-
sistant to isoniazid and rifampicin only [23].

These studies, among many others [69–72], underscore the im-
portance of pangenomic analyses to reach a better understanding of
how antibiotic resistance is evolving among microbial populations.
These data can also be used to optimize treatment regimens and anti-
biotic combinations.

4.3. Virulome

Virulence markers are specific genes conferring pathogenic bacteria
the capacity to infect, adapt, replicat and persist in humans [73,74].
The set of genes contributing to the pathogenicity of a bacterium has
been defined as its virulome [75]. Identifying the virulome of a bac-
terium is an important issue to improve the understanding of clinicians
and researchers on pathogenic mechanisms and, subsequently enable
the development of specific preventive and therapeutic approaches
[76,77]. In recent years, bacterial pathogenicity studies have greatly
benefited from the availability of complete bacterial genome sequences
and virulence factor databases [78,79]. However, the study of a single
bacterial genome can neither reveal all the virulence mechanisms
possessed by this species nor explain how the virulome was acquired
and evolved. Therefore, the comparative genomic analysis of multiple
independent isolates is an indispensable issue to improve the knowl-
edge of virulence within a bacterial species [11,48,80]. As described by
Beye et al., the pangenome analysis of multiple Raoultella ornytholica
isolates (13 genomes) has highlighted a specific genomic island com-
posed of various genes encoding a type IVa secretion system (SS) pos-
sibly associated to a strain causing a chronic prosthetic joint infection in
an immunocompetent patient [81]. More recently, the pangenomic
analysis of 36 Mycobacterium tuberculosis (Mtb) isolates revealed 67
“super core genes” (SCG) present in all studied genomes [82]. Of these,
28 SCG genes were mostly related to pathogenesis, including PPE19
(encoding proline-proline-glutamate) and plcC (encoding phospholipase
C) genes that are involved in the survival of Mtb in macrophages and
the bypass of phagosomal vacuoles, respectively [74,83]. In another
study, the investigation of dispensable genes in the Mtb species re-
vealed more genes associated with virulence in Mtb lineage 2, which
could explain why this lineage is one of the most virulent [84]. Fur-
thermore, pangenomic analyses of multiple pathovars were demon-
strated to provide a better understanding of pathogenic mechanisms
causing diverse clinical pathologies [85]. For instance, Rasko et al.
demonstrated that only few specific E. coli virulence genes were con-
served among distinct pathovar isolates [86], and that E. coli strains
harboring prophages and phage elements exhibited a rapid evolution in
comparison with other pathovar isolates [87,88]. A pangenomic study
was used to compare the genomes from 13 Clostridium botulinum strains
and characterize the virulent potential of the toxin/antitoxin modules
in order to develop novel therapies against antibiotic resistance [89].
Bhardwaj et al. succeeded to unveil the presence of 120 genes encoding
seven toxin/antitoxin families (VapI, HipB, MazF, PemK, SpotVB_AbrB,
phd/doc and ParE/D) through the analysis of the 13 Clostridium botu-
linum strain pangenome [89]. Finally, in order to determine whether

genetic variations between carriage and invasive strains could influence
their virulence, Obolski et al. analyzed the whole genome sequences of
378 invasive Streptococcus pneumoniae isolates causing bacteremia [90].
The total pangenome yielded 9,032 genes including 43 (hpp1 to hpp37,
ydcP_1, lytB, lox, 2 copies of cpsA and bgaA) that were associated to
virulence and especially to invasive pneumococcal disease. Of these,
some genes were located into or around the capsule polysaccharide
synthesis locus [90]. Therefore, pangenomic analyses are considered as
efficient strategies to compare multiple bacterial isolates in order to
screen the presence of novel virulence factors and better understand the
pathogenesis at the species level. However, to validate the effect of
virulence genes is necessary to complement the study by in vitro and in
vivo experimentations [91].

5. Clinical applications of bacterial pangenomics

5.1. Impact of pangenome analysis on clonal relationship

The use of pangenomics offers the opportunity to highlight the
adaptation of bacterial clones to various ecological niches in different
geographical sites and their relationships. Hence, studying the pan-
genome of a species may provide information about its lifestyle and its
ability to enclose clonal clusters or not, notably for human pathogenic
microorganisms [92]. In addition, pangenome may serve to understand
and study the clonal diversity of bacterial species [93] (Fig. 2). As an
example, multi-locus sequence typing (MLST) based on the core
genome of S. aureus demonstrated that various clones were able to
spread in different geographic locations worldwide. In particular, this
enabled to study the evolution of the methicilin-resistant clonal com-
plex 5 of S. aureus, which includes many prevalent clones causing
hospital-associated infections in the western hemisphere [94]. In 2014,
Choo et al. investigated the clinical isolates of the emerging human
pathogen Mycobacterium abscessus [22]. Using core genome single
nucleotide polymorphism (SNP), they reported the high similarity be-
tween isolates of this virulent human bacterium that causes skin and
soft tissue infections, in different geographical sites. In addition, the
authors were able to detect the migration of Mycobacterium massi-
liense isolates from the Indian subcontinent to Southeast Asia then to
Europe and the USA [22]. Pangenomic analysis was also applied to
Propionibacterium acnes, another major human skin bacterium which
has been implicated in acne [21]. A clonal expansion was demonstrated
for the P. acnes species, even in individual or different microbiomes,
which explains the ability of this species to exhibit a sustained patho-
genic potential [21]. Pangenomic analyses may also be used for geno-
typing human bacterial pathogens in order to better understand their
genetic diversity [93]. In a recent pangenomic study of 76 C. burnetii
isolates, Hemsley et al. used multispacer sequence typing (MST) and
single nucleotide polymorphism (SNP) to discriminate genotypes [95].
The authors could identify only one MST genotype, MST 20, in C.
burnetii strains isolated from placental tissue (originating from abor-
tions of ruminants in the United Kingdom), and were able to identify
two new genotypes (MST32 and MST 33) for the first time in the UK
among C. burnetii strains from goats. Using core genome SNP analysis,
they were also able to demonstrate that C. burnetii strains were dis-
tributed into seven phylogenetic clades, and that cattle and sheep
strains from the UK were clustered in the group of European and US C.
burnetii strains [95]. In contrast, strains isolated from goats in the UK
were grouped in a cluster containing human Q fever outbreak-causing
strains [95]. Consequently, core/pangenome analyses help researchers
understand and predict the ability of bacterial species to adapt to, and
be pathogenic to various ecosystems.

5.2. New vaccine candidates

Faced with a pathogen, the human body reacts by activating its
immune system. This immune reaction is not random, it is specific
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against certain antigens covering the pathogen, and vaccines act by
exposing the body to similar antigens. Conventional vaccines consist of
injections of either attenuated or inactivated organisms that can induce
an immune response without causing the disease [96]. Vaccines can
also be an injection of only the antigenic components (subunit vaccine)
of an organism and finally can be as toxoid vaccines [97]. However, the
development of these vaccines is time-consuming, difficult to produce
in large scale, the studied organism must be grown under laboratory
conditions and the antigenic variability of some species may limit their
efficiency [98]. In 2000, Rappuoli et al. proposed the concept of reverse
vaccinology as an alternative to the usual vaccine design for serogoup B
Neisseria meningitidis [98]. Reverse vaccinology is based on the com-
putational analysis of a pathogen's genome in order to predict antigenic
epitopes among which potential vaccine candidates may be selected.
This screening step is followed by testing of the immunogenic proper-
ties of these antigens [98].

In 2005, Maione et al. were the first to use the pangenomic ap-
proach to identify putative antigens for the development of a vaccine
against Group B Streptococcus (GBS) [99]. Given the high level of di-
versity between GBS strains, these authors first determined the core
genome of eight strains representing the most important disease-
causing genotypes. Then, they identified 589 genes coding surface-ex-
posed proteins (396 core genes and 193 dipensable genes). Subse-
quently, they successfully expressed in mice 312 of these proteins
which, following purification, were tested in a mouse model. Only four
of the 312 proteins (three from the dispensable genome and one from
the core genome) significantly increased the survival rate among
challenged mice. As these four antigens were all variable between
strains, the authors were unable to use a single antigen in the final
vaccine formulation, but combined all four to produce a GBS vaccine
that was protective against a wide range of strains [99]. Therefore, the
pangenomic approach may solve the problem of antigenic variability of
strains.

However, the first success of reverse vaccinology application was
the development of a vaccine against group B Neisseria meningitidis
(GBNM), a major human pathogen that had eluded vaccine develop-
ment using traditional methods for decades [100,101]. The main reason
for this delayed vaccine development is the antigenic variability among
group B N. meningitidis strains [102]. Nearly 600 putative antigens were
predicted from genomic analyses, among which 350 could be expressed
in mice. Of these, 4 antigens were combined to produce the first GBNM
vaccine that was commercialized in 2012.

Currently, other attempts to develop vaccines using reverse vacci-
nology are ongoing for several human pathogens including multidrug-
resistant Acinetobacter baumannii, group A Streptococcus, Streptococcus
pneumoniae and pathogenic Escherichia coli [103,104].

5.3. New therapeutic targets

Historically, the development of new drugs relied on two main
strategies: whole-cell screening and target-based screening [105].
Whole-cell screening consists of testing, in vitro, the direct inhibitory
effect of chemical or natural compounds on the growth of intact bac-
terial cells [106]. The target-based screening relies on the identification
of potential molecular targets that have essential roles in the disease,
and the design of a drug that interacts with these targets [107]. A va-
luable drug target should exhibit a low resistance rate and be testable in
vitro, but most importantly, it should have an essential biological role or
function (for example, a gene that maintains the viability of the or-
ganism is considered more essential than a gene necessary for growth
because targeting the former will cause cell death, but for the latter it
will only cause stasis). Besides, it should be conserved among strains
from the species and not present in the human host in order to cause an
inhibitory effect on the pathogen(s) with minimal side effects for hu-
mans [108]. Analyzing the pangenome is a good approach to determine
the genes coding essential functions. The core genome of an organism

contains genes that are conserved among strains and the majority of
these genes are related to essential housekeeping functions, cell en-
velope, regulatory roles, transport and binding proteins [109]. There-
fore, the core genome is a pool of potential drug targets, and comparing
it to the human genome avoids potential targets that are present in the
human host. Although there are no antimicrobial drugs on the market
from a pangenomic analysis to date, there are various published works
that have shown the potential of the pangenome to identify theoretical
potential drug targets in pathogens such as Clostridium botulinum [89],
Helicobacter pylori [110] and leptospirosis [111]. A recent study used
the pangenome approach to identify putative new targets for devel-
oping future drugs against Corynebacterium diphtheriae [112]. The
genomes from 13 C. diphtheriae strains were first aligned and the core
genome was defined as containing 463 protein-coding sequences that
share 95–100% sequence similarity between all strains. After a com-
parison with the Database of Essential Genes [113] and the elimination
of genes encoding proteins homologous to human proteins, the authors
identified 8 essential non-host proteins that could be used as potential
drug targets. In silico screening and molecular docking was further
performed on these eight proteins in order to determine the compounds
that are active on them [112]. The results of all these studies may allow
the development of therapeutic agents, but further in vitro and in vivo
experimental studies are needed.

5.4. New diagnostic tools

Pangenomics can be used with the purpose of designing new diag-
nostic methods that can facilitate the screening and targeting of human
pathogenic bacteria [114]. For instance, conserved sequences can be
extracted from the core genome in order to design molecular systems
(PCR or qPCR) enabling the identification of the target pathogen in
clinical specimens. These molecular systems based on housekeeping
genes as the 16S rRNA and RNA polymerase beta subunit (rpoB) genes
were expansively used to study the bacterial communities and explore
their diversity and structure [115]. These molecular markers have been
successfully used to identify bacterial isolates and admitted by tax-
onomists to classify all bacterial taxa [116]. However, recent studies
have demonstrated that these genes cannot be highly accurate in term
of distinction and differentiation between certain bacterial species
[117]. For example, Ho et al. generated an automated pangenome
analysis of Salmonella enterica serovar Typhi to identify and select
specific PCR targets for directly detecting and identifying the pathogen
without requiring gene sequencing [118]. By comparing the genomes
from 11 S. enterica serovar Typhi strains, the authors identified 9 con-
served intergenic region sequences specific of this serovar [118]. In
2017, Laing et al. performed a large pangenomic study based on 4,939
Salmonella enterica strains in order to identify species-specific and pre-
dictive markers for Salmonella enterica serovars [119]. The authors
detected 207, 192, 135, 134, 93 and 9 subspecies-specific markers in S.
enterica subsp arizonae, indica, salamae, houtenae, diarizonae and en-
terica, respectively. Furthermore, among 4870 S. enterica subsp. enterica
genomes, many core-regions representing universal markers were
identified in ten different serovars (Typhi, Typhimurium, Enteritidis,
Heidelberg, Paratyphi, Kentucky, Agona, Weltevreden, Bareilly and
Newport). The specificity of these markers was confirmed by compar-
ison with 3,984 genomes in the EnteroBase database (https://
enterobase.warwick.ac.uk/species/index/senterica) [119]. In addition,
the pangenome matrix may be used to predict antigenic proteins that
may serve to develop new serological assays. As an example, D'amato
et al. identified putative antigenic epitopes in the core genome from
Coxiella burnetii [93]. Then, a combination of functional annotation of
these proteins and proteomic experiments has enabled the search for
antigenic candidates suitable for serodiagnosis of Q fever [93]. Com-
parison of these proteins to the Clusters of Orthologous Groups (Cogs)
database classified them within the DNA replication recombination and
repair, translation and post-translational modification membrane
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proteins, DNA denaturation in stress conditions and heat shock protein
categories. These proteins were chosen to act as different potential Q
fever markers [93].

6. Impact on taxonomy

Recent studies have shown that pangenome can be used successfully
as a powerful bacterial taxonomy tool [120–122]. This argument was
supported by the fact that pangenome analyses encompass the whole
bacterial genetic information. Usually, the authors mainly used the core
genome or the core/pangenome ratio [122] to identify and classify the
species studied. In 2015, a pangenome analysis of 33 Bifidobacterium
longum strains was generated in order to investigate the genomic di-
versity and phylogeny within this species [123]. In a core genome-
based phylogenetic tree, two major clusters (clades 1 and 2) were
identified. Clade 1 included 25 strains that were able to metabolize
plant carbohydrates [123]. Clade 2 included eight strains and was di-
vided into 3 phylogenetic groups (B, C and D), the latter only made of
animal strains. In group C, the authors were able to identify a new B.
longum subspecies originating from China [123]. In 2018, Inglin et al.
used a pangenome analysis to study Lactobacillus species [121]. The

study was based on 98 complete and 202 draft genomes from Lacto-
bacillus species. The authors concluded that the L. delbrueckii sub-
species could be re-classified according to their genomic content in
environmental functions and their ecological niche, constituting a
parapatric-like speciation model [121]. In a recent study, Caputo et al.
investigated the pangenome from Klebsiella species in order to describe
the taxonomic profile of K. pneumoniae. Using 12 genomes (8 genomes
from K. pneumoniae, 2 from K. oxytoca, 1 from K. variicola and 1 from
K. mobilis), the authors demonstrated that K. pneumoniae subsp.
ozaenae and K. pneumoniae subsp. rhinoscleromatis exhibited a high
genomic distance between them and with the remaining K. pneumoniae
strains, suggesting that this discontinuous variation may classify these
two subspecies into different species within Klebsiella genus [122].
These examples emphasize the importance of pangenome in bacterial
taxonomy (Fig. 2).

7. Conclusion

In this review, we have demonstrated that studying the bacterial
pangenome has a large spectrum of applications in clinical micro-
biology (Table 2). The pangenome is increasingly being investigated to
explore the bacterial genetic content of pathogens and unveil their di-
versity in several clinical settings. Pangenome analyses can simulta-
neously provide a wealth of information about a human-associated
bacterial species, including its ability to interfere with its environment
and evolve by acquiring foreign genetic material, its pathogenic po-
tential and its degree of resistance to antimicrobials. In addition, and
although functional predictions should be confirmed using in vitro/in
vivo inquiries, pangenomic analyses may allow designing vaccines and
diagnostic tools. With the exponential increase in available genome
sequences, pangenome analyses, which offer unprecedented access to
the genetic diversity of human-associated bacteria, have the potential to
be widely used in the coming years in clinical microbiology.
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