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Abstract.Trade in high value-added toxins for therapeutic and biological use is expanding. 

These toxins are generally derived from microalgae belonging to the dinoflagellate family. 

Due to the difficulties to grow these sensitive planktonic species  and to the complexity of 

methods used to synthesize these molecules, which are generally complex chemical 

structures, biotoxin manufacturers called on artificial intelligence technologies. Through the 

development of specific learning neural networks applied to each phases of biotoxin 

production: photo-bioreactors operating at optimal yield;  - new chemical synthesis research 

processes;  - toxin biosynthetic research pathways offering short-cut possibilities, 

manufacturing processes have been greatly improved.  
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Introduction  

Hundreds of thousands of microalgae species are distributed on the surface of the globe in 

marine, freshwater or brackish.The long-lasting interest in bioactive molecules (toxins) 

produced by microalga has risen in recent years (Sun 2016, Khan  2018 ). Microalgae Market 

is valued at USD 54.64 Million in 2018 and expected to reach USD 76.37 million by 2025 with 

a compound annual growth rate of 4.9% over the forecast period. (Brandessence Market 

Research 2019). Microalgae could be seen as ‘’Cell mills producing recombinant commercial 

molecules’’, which have encouraged the creation of numerous start-ups, specialized in the 

production of microalgae species (Green algae, Dinoflagellates, Red algae, Euglenoids) 

mainly in the western countries (Cadoret 2008). The reason for the growing interest of 

microalgae species is their ability to synthesize a wide variety of complex molecules 



recognized for their biological features with great potential for use as pharmaceuticals 

therapies and/or biological probes. Among myriads of microalgae species, the family of 

dinoflagellates is of particular interest since they exhibit wide varieties of natural 

compounds. The main known toxins extracted from dinoflagellate microalgae species with 

strong biological credit profiles are given in table 1 :  

       

Table1-Biotoxins of potential therapeutic use produced by dinoflagellates 
species (for a complete list of dinoflagellates biotoxins see references Cadoret 2018 and Assunçao 

2017)  

 

Biotoxin  Dinoflagellate species biotoxin producers                    Therapeutic use  

 

 
Saxitoxin         Alexandrium ( minutum, tamarense, catenella)                Treatment of pain 

                       Gymnodinium (catenatum)  

                        Pyrodinium (bahamense) 

        

Karlotoxin            Amphidinium genus.                                                   Haemolytic activity  

 

 

Palytoxin         Ostreopsis (siamensis,  mascarenensis,                  Wide spectrum of biological 

                                      lenticularis, ovata,  fattorussoi)               effects  

 

 

Tetrodotoxin       Alexandrium  ( tamarense)                             Nerves and muscles action 

                                potential blocker 

 

Okadaic acid       Prorocentrum genus (lima, concavum,                  Potent tumor promoter 

                                  belizeanum, maculosum )  

                           Dinophysis genus (acuta, acuminate,  fortii) 

 

 

Brevetoxin             Karenia brevis (formerly known as          Powerful Neurotoxic 

                               Gymnodinium breve or Ptychodiscus brevis)  

 

 

Yessotoxin             Protoceratium reticulatum,                                          Biological and  
                               Lingulodinium polyedra          pharmacological probes 
                                 Gonyaulax spinifera   
 
 
Gambierol                 Gambierdiscus toxicus                                        Modulatory action upon 
                                                                                                            voltage gated K+ channels 
 
 



Amphidinolide           Amphidinium genus                                       Cytotoxic macrolide 
 

Most of these dinoflagellate drugs have complex chemical structures, which development 

requires efficient chemical synthesis processes through the use of new designed 

retrosynthetic schemes. The case of palytoxin is a significant example of high market value 

since its price is around 700 US $ 100g. This molecule has 64 stereogenic centers, its 

synthesis requires more than 140 steps (Hoffmann 2012, Newhouse 2009). Start-ups, which 

economic business model is based on the production and sales of dinoflagellate bioactive 

toxins with high added value have to face three major concerns:  

-Dinoflagellate in general grow slowly and are shear-sensitive species.  It is the reason why 

dinoflagellate are difficult to culture in photo-bioreactors compared to other classes of 

microalgae. Consequently chemical-physical conditions (temperature, pH, media 

composition, light, stirring conditions) to find economical and viable options regarding 

bioreactor design and culture strategies have to be optimized. Moreover, taking into 

account those drastic dinoflagellate culture conditions, scale-up biotoxin production 

requests the development of high capacity bioreactors with a view to 

overcoming dinoflagellate biomass weight limitations (Assunçao  2017)   

-Due to the complex chemical   structure of biotoxins of interest, their direct chemical 

synthesis through multi-steps synthesis requires design of efficient retrosynthetic schemes 

with focus on the most performing.  Besides the possibility of their direct chemical synthesis, 

hemisynthetic routes can be also envisaged. Numerous examples of hemisynthesis of natural 

complex compounds are described in literature (Shabir 2015, Ten Lohuis 1995). To process 

biotoxin production through hemisynthetic technology, the most suitable metabolite 

involved in the metabolic pathway should be first selected, before to be included in the 

retrosynthetic scheme envisaged for the targeted biotoxin synthesis. Such pathway selection 

implies the total knowledge of the metabolic pathways involved in the metabolism of this 

biotoxin, before finalized a possible retrosynthetic scheme. 

-To circumvent quantities limitations of the targeted toxin, and in order to enhance the 

yields, genetic and metabolic engineering (Segler 2018) could be ways to overcome those 

constraints. For this purpose, the knowledge of the different metabolism pathways specific 

to each dinoflagellate species, is required. Assuming that such pathways are not currently 

available, data mining have to be first undertaken before handling genomic experiments. 



 

After having analyzed difficulties relative to the production of these high-added value 

biotoxin production from dinoflagellate microalgae, one can ask the question:  

‘’ How Artificial Intelligence (AI) helps biotoxins manufacturers to overcome the whole 

problems raised in the previous paragraphs?’’  

AI is a valuable tool that can contribute to the achievement of each important phases 

(chemical synthetic processes, photo bio -reactor engineering, biological pathway 

identification) involved in the biotoxin cycle production.  

 

1-AI in dinoflagellate culture production  

A deep-learning neural network that considered the whole physical parameters 

(temperature, pH, irradiance, turbulence airflow, bioreactor capacity, light energy sources), 

as well as biological parameters (composition media, nutritional requirements) involved in 

the production of dinoflagellates, helps to define the optimized conditions which allow to 

get the best dinoflagellate biomass yield for a given dinoflagellate specie;  

 

                    Figure 1: Learning Neural Network applied to biotoxin Dinoflagellate  
                                     production 
 

The learning neural network presents in Figure 1 is an important step towards the goal of 

developing an algorithm which can help the tuning of a photo-bioreactor regarding 
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optimized conditions for the preparation of a targeted biotoxin. This algorithm which 

predicts the best conditions to produce a given dinoflagellate specie, is part of a learning 

machine, adapted to a photo-bioreactors devoted to the automatic dinoflagellate 

production. 

Optimization of production can be achieved by using a wide range of AI techniques from 

classical "one-factor-at-a-time" to modern statistical and mathematical techniques, viz. 

artificial neural network (ANN), genetic algorithm (GA) etc. Every technique comes with its 

own advantages and disadvantages, and despite drawbacks some techniques are applied to 

obtain best results. (Singh 2016)  

Moreover knowledge-based or Artificial Intelligence techniques are used increasingly as 

alternatives to more classical techniques to model environmental systems, but we  believe 

that AI techniques could be also applied to  biological systems  production. These techniques 

can be artificial neural networks, fuzzy models, genetic algorithms, cellular automata, multi-

agent systems, swarm intelligence, reinforcement learning and hybrid systems. (S.Hamilton, 

2008 ) 

2- AI and biotoxins chemical synthesis and hemisynthesis.  

Synthesis of molecules remains one of the most important challenges in organic chemistry. 

Standard approaches based on the development of specific retrosynthetic schemes are 

repetitive and time consuming task. Through the use of machine learning, substantial 

progresses in organic chemical synthesis have been made over the past decades (Coley 2016 

,Ahneman 2018, Klucznik 2018). For some some dinoflgellates biotoxin molecules, de novo 

synthesis could be considered as feasible (saxitoxin, tetrodotoxin, akadaic acid) but for other 

biotoxins such as palytoxin, yessotoxin, brevetoxin, gamberiol, de novo synthesis is 

considered exceedingly complex and economically unfeasible. 

 -AI and de novo dinoflagellate biotoxin chemical synthesis  

Using finger prints derived from a neural algorithm, Wei et al. (Wei 2016), have identified 

chemical reaction types involved in compounds chemical synthesis   with more than 80% 

accuracy. Since the development of this algorithm, new deep learning neural networks, 

which involved around 12 millions of known single-step reactions, and allowed the 

prediction of reactions which can be used in any single step of multi-step synthesis,  has 

been developed (Coley 2016). More recently was developed by Klucznik et al.(Klucznik 

2018), an highly effective Chematica Computer Program capable of designing novel efficient 



synthesis of medicinally  relevant drugs, making Chematica algorithm able to propose 

optimized synthetic pathways for the design of any molecules of interest. For example, a 

standard de novo synthesis of saxitoxin, a toxin used in the treatment of chronic pain, has 

been achieved in 10 steps with a final yield < 5% , (Fleming 2006) in 2006. As represented on 

Figure 2, using deep learning neural networks, medicinal organic chemists can use valuable 

retrosynthetic schemes  allowing total drug  synthesis in better yields, reducing the number 

of steps, and predicting  compound stereochemistry, structure identification (NMR, UV, IR), 

some physical-chemistry properties .   

. 

 

  Figure 2: Learning Neural Network predicting probability of reaction types 
                                             applied to biotoxin synthesis  
 

 

-AI and saxitoxin hemisynthesis.  

Knowing the metabolic pathways involved in the production of natural compounds, which 

chemical structure is quite complex, it is sometimes possible to isolate a particular 

intermediate metabolite, which is part of the metabolic pathway of the targeted natural 

drug.  Starting from this metabolite, are carried specific chemical reactions in order to get 

the desired final drug in less steps and better yields (Shabir 2015). In this perspective, AI 

technologies have been used at different levels  
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-saxitoxin biosynthesis pathway determination (Tsuchiya 2016 , Hunter 1993 ).  

-hemi-biosynthesis of saxitoxin analogues starting from a specific intermediate named 

‘’shunt product ( C’)’’ derived from biosynthetic precursors  involved in saxotoxin pathway 

(Cho 2017)  

-detection and relative toxicity of saxitoxin analogues nonsulfated, monosulfated  and 

disulfated (Lukovski 2019 ) 

 

3- AI and saxitoxin genomic  studies. 

Artificial Intelligence has made faster, cheaper and more accurate DNA sequencing, and has 

allowed gain perspective on the particular genetic blueprint that orchestrates the whole 

activities of a given organism. In this feature, it has been reported (Kellmann 2008) that 

saxitoxin biosynthetic pathway is encoded by more than 35 kb and comparative sequence 

analysis assigns 30 catalytic functions to 6 proteins. Using in silico functional inferences 

based on saxitoxin open reading frames combined with liquid chromatography–tandem 

mass spectrometry analysis, the description of the saxitoxin biosynthetic pathway has been 

revised, and a saxitoxine biosynthetic gene cluster (stx) has been identified and shown to be 

involved in saxitoxin production. Knowing the right saxitoxin metabolic pathway, it could be 

possible to construct an algorithm which satisfies not only each constraint but also allows 

several alternative pathways that by -pass key enzymes. Recently, new methods in artificial 

intelligence  which offer the possibility to integrate chemistry and biology into complex 

reaction schemes to provide access to complex molecules not achievable with either alone, 

have been reported (Lin 2019). These authors concluded that in the next future to build a 

xenobiotic molecule of a scale of a natural product, will require integrated computer-aided 

design packages that combine retrosynthesis, metabolic flux analysis, protein engineering 

and genetic circuit design automation. Such AI technologies have been already applied for 

systems biology with a high research impact (Cevora 2019). 

Conclusion  

Dinoflagellates is one of the rich biotechnological source of biotoxins, with interesting 

biological activities not only in pharmacological and medical fields, but also as promising 

tools for chemical biology. Despite such recognized value, scarcity of such biotoxins remains 

a major issue, that new marine natural products start-ups have to face economically and in 

terms of viability. The problem becomes even more complex since these high value biotoxins 



are mainly found in dinoflagellates species which are extremely fragile microalgae and which 

culture required high tech bioreactors. To circumvent those problems, available AI 

technologies based on learning neural networks, could be applied at each phase of biotoxin 

production: chemical synthesis and hemisynthesis, biotoxin structural identification, 

bioreactor engineering systems, biological pathways identification through marker-passing 

algorithm. AI clearly appears as a promising tool to help new start-uppers to jump in the 

restricted biotoxin market, in proposing not only biotoxins at reasonable prices but also 

allowing the discovery of new drugs, considering that dinoflagellates marine organisms, are 

the sources of several thousand drugs of interest, which remain to be discovered. 

(Kobayashi 2016). Of course to generalize AI technique to other dinoflagellate  species to 

produce other high value toxins , we will need to generate enough data to train  a deep 

neural network. 

Nevertheless, our perspectives are to use the knowledge we acquired with the use of 

artificial intelligence  networks for the optimization of the production of new high added 

value toxins from new species of dinoflagellates, known to be difficult to grow. 
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