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Cecal metabolome fingerprint
in a rat model of decompression
sickness with neurological
disorders

Sébastien de Maistre?, Sandrine Gaillard?, Jean-Charles Martin3, Simone Richard?,
Alain Boussuges*, Sarah Rives*, Anne-Virginie Desruelle*, Jean-Eric Blatteau?,
Catherine Tardivel®, Jean-Jacques Risso* & Nicolas Vallée*™

Massive bubble formation after diving can lead to decompression sickness (DCS), which can result

in neurological disorders. We demonstrated that hydrogen production from intestinal fermentation
could exacerbate DCS in rats fed with a standard diet. The aim of this study is to identify a fecal
metabolomic signature that may result from the effects of a provocative hyperbaric exposure. The
fecal metabolome was studied in two groups of rats previously fed with maize or soy in order to
account for diet effects. 64 animals, weighing 379.0_20.2 g on the day of the dive, were exposed to
the hyperbaric protocol. The rats were separated into two groups: 32 fed with maize (Div MAIZE) and
32 fed with soy (Div SOY). Gut fermentation before the dive was estimated by measuring exhaled
hydrogen. Following hyperbaric exposure, we assessed for signs of DCS. Blood was analyzed to
assay inflammatory cytokines. Conventional and ChemRICH approaches helped the metabolomic
interpretation of the cecal content. The effect of the diet is very marked at the metabolomic level,
alittle less in the blood tests, without this appearing strictly in the clinic status. Nevertheless, 37 of
the 184 metabolites analyzed are linked to clinical status. 35 over-expressed compounds let suggest
less intestinal absorption, possibly accompanied by an alteration of the gut microbial community, in
DCS. The decrease in another metabolite suggests hepatic impairment. This spectral difference of the
ceca metabolomes deserves to be studied in order to check if it corresponds to functional microbial
particularities.

When diving, the gases breathed in through the regulator are dissolved in the body tissues progressively during
the descent to the seabed. During the decompression phase they may give rise to the production of bubbles,
even when there are no procedural faults. When bubbles form in excessive quantities in the blood and tissues,
symptoms of decompression sickness (DCS) may appear'. Conventionally it is acknowledged that the quantity of
venous bubbles has a positive correlation to the risk of DCS**. However, there is high intra- and inter-individual
variability in terms of bubble formation for the same dive profile.

Neurological lesions with spinal cord and brain injury are the origin of the most serious and most frequently
encountered symptoms in decompression sickness (DCS)®. Despite the reference treatment with hyperbaric
oxygen therapy, 20 to 30% of patients have sequelae after medical treatment for neurological DCS*. The identi-
fication and control of new factors favoring DCS is therefore a major challenge.

This study focuses more especially on the products linked to the activity of the digestive system and its micro-
biota. The microbiota is mostly composed of strict anaerobic micro-organisms which produce by fermentation,
from exogenous (undigested carbohydrates and proteins) and endogenous (mucopolysaccharides, cell debris
or even enzymes) substrates, proteins and amino-acids, intermediate metabolites (succinate, lactate) and also
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terminal metabolites such as short chain fatty acids (acetic, propionic and butyric acids), ammonia and gases
including hydrogen®®. In diving, it has been shown that the digestive tract could have an influence on the occur-
rence of decompression sickness through the activity of the intestinal microbiota’~'%. In fact, during dives using
hydrogen as the diluent gas for O,, the metabolism of hydrogen by the native intestinal microbiota of pigs could
protect against DCS, by the intermediary of a reduction in the body burden of H,”. Conversely, during a previ-
ous study we have shown that the bacterial fermentation of undigested sugars, during the dive, is accompanied
by a greater incidence of DCS, including during dives using a diluent gas other than hydrogen'"'%. A part of the
hydrogen formed by fermentation in the intestine diffuses through the intestinal barrier into the entire body.
This endogenous hydrogen could have a detrimental effect in DCS. It could contribute to a direct increase in the
inert gas burden during hyperbaric exposure, and be excreted in the form of bubbles during the decompression
phase. Less intuitively, increased fermentation over the long term with production of hydrogen before the dive
would limit the risk of DCS due to the possible antioxidant and neuroprotective properties of the hydrogen!®.
The metabolic pathways for the hydrogen by the intestinal microbiota, and more generally, the fecal metabolome
in the risk of DCS must, therefore, be specified.

In this context, we seek to understand the interactions between accident-provoking hyperbaric exposures and
the cecal metabolome, thus involving the intestinal microbiote and the host organism. Insofar as intestinal activity
varies as a function of diet, comparing the metabolome of rats fed identically would not have been sufficiently
restrictive to isolate the influence of diet in the event of an accident. We have decided to expose two series of rats,
previously fed with maize (cereal) or soy (legume), to accident-provoking protocols. These seeds are of different
composition, with in particular different patterns of fermentability'>!4, and they could therefore influence the
metabolites distribution in the intestine !*16(Coward 1972 #7327L17.18 The fecal metabolome of rats was analyzed in
order to detect the effect of diet initially, and therefore better spotlight by a statistical process a metabolomic
signature which could result from the specific effects of the accident-provoking hyperbaric exposure.

We hypothesize that a fecal metabolome fingerprint linked to DCS could be identified.

Equipment and methods

Animals and ethical statement. All procedures involving experimental animals complied with Euro-
pean Union rules (Directive 2010/63/EU) and French law (Decree 2013/118). The Ethics Committee of the
Institut de Recherche Biomédicale des Armées approved this study in 2016. Sprague-Dawley male rats (Harlan
laboratory, France) were housed in an accredited animal care facility, at 22 + 1 °C. They were kept in cages both
during rest and during the experiments and maintained on a regular day (6:00 am-6:00 pm)/night (12 h) cycle.
Before the beginning of the study, food (kibble from Harlan Laboratories, 18% protein) and water were provided
ad libitum.

In agreement with our Ethics Committee, we took inspiration from the Swiss veterinary guide to establish a
form for monitoring the welfare of the animals'. A dedicated observer was responsible for scoring (from 0 to
3) the stress and pain felt by each animal. 0 corresponds to a zero degree of stress and three is the maximum. A
degree of stress of 3 in one case or a total score of 12 represents a criterion for stopping the procedure. The items
refer to vocalization, licking, the presence of tears, aggression or withdrawn behavior, labored breathing, motor
or locomotor disorders with paralysis for example. In this study, no score reached 12, and it was not necessary
to resort to anticipated euthanasia.

At the end of the experimentation, the animals were anaesthetized by induction with isoflurane (Bellamont,
firstly at 5% then 2%), in order to save time and minimize stress, then by intraperitoneal injection (1 ml syringe,
Omnican, B. Braun, Melsungen, Germany) of a mixture of ketamine (Imalgene 1000, 100 mg/kg, AstraZeneca,
London, UK), acepromazine (Calmivet, 1,65 mg/kg, Vétoquinol S.A., Lure, France) and xylazine (Rompun 2%,
16 mg/kg, Bayer HealthCare, KVP, Kiel, Germany).

Batches and food. 30 days before the hyperbaric exposure, the rats (300-325 g; 9-10 weeks old) were
separated into two equal groups and fed with maize or soy, at a rate of 30 g per day. 64 animals, 32 fed with maize
(MAIZE) and 32 fed with soy (SOY), weighing 379.0_20.2 g (median_interquartile) the day of the dive, were
exposed to the hyperbaric protocol.

The animals were fed by our technician and the rats were identified by a code unknown to the staff in charge
of the physical examination, then sorted according to their weight in order to balance the dive groups. The clinic
was established by another staff and the coding was only revealed afterwards for processing the results.

Exhaled hydrogen. Exhaled hydrogen was measured before the dive in order to evaluate gut fermentation.
For all rats, the amount of H, measured in exhaled air provides a measurement of the rate of H, production
resulting from the bacterial fermentation of carbohydrates in the gut (and hence diffusing throughout the body
via the bloodstream). To measure H, in exhaled air, we considered that the breathing rate in rats is constant over
time, with a mean rate of 225 ml min™. The literature provides a resting value of 27.27+2.39 ml min™' 100 g!
(mean +standard deviation) for Sprague-Dawley rats®®. The weight of the rats we studied was 379.0_20.2 g
(median_interquartile). However, taking into account the stress induced by the measurement process, we used a
breathing rate double that of the value in the literature for unstressed, resting rats. For each measurement, each
rat was placed in a clean, dry polyvinyl chloride (PVC) cylinder (internal diameter 75 mm, length 200 mm, i.e.,
an internal volume of 883 ml). Both ends were hermetically sealed using plastic discs with holes in the middle,
allowing air in at one end and the collection of gases at the other end. Air was circulated by a special aerator
(Rena Air 200, France) set to a constant flow rate of 225 ml ml min™! which was controlled by the rise of a soap
bubble in an inverted 100 ml test tube that was pierced at the bottom. After 5 min (to allow time for the gases
to mix inside the cylinder, allowing for the dead space, i.e., that not occupied by the animal), successive meas-
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urements of H, (ppm) in the air coming out of the cylinder were performed by means of a three-way tap. H,
was measured using a mobile exhaled H, analyzer (Gastrolyser, Respur International, France). The results were
recorded one hour before pressurization.

Hyperbaric exposure. To remain comparable, we have graciously used the protocol of our previous
experiences”!®!>13, Batches of 8 freely-moving rats (4 per cage and 4 per group) were subjected to the hyperbaric
protocol, which generates decompressions sickness, in a 200 L caisson with three observation portholes.

The protocol has two compression speeds. The animals were subjected to an air compression procedure at
a speed of 10 kPa min™ up to an absolute pressure of 200 kPa (corresponding to a depth of 10 m of seawater);
and then a speed of 100 kPa min™ up to a pressure of 1000 kPa (corresponding to a depth of 90 msw) where
they remained for 45 min. The rats were then decompressed at a speed of 100 kPa min™! up to 200 kPa, and
then a speed of 10 kPa min™" until return to normal pressure, adhering to 5-min stages at 200 kPa (10 msw) and
160 kPa (6 msw) with a final stage of 10 min at 130 kPa (3 msw). The decompression speed was automatically
controlled by a computer connected to an Analogue/Digital converter (NIUSB-6211, National Instrument,
USA), itself connected to a solenoid valve (Belimo LR24A-SR, Switzerland) and a pressure transmitter (Pressure
Transmitter 8314, Biirkert Fluid Control Systems, Germany). The program used to control the compression and
decompression speeds was devised by a laboratory engineer at DASYLab (DASYLab National Instruments, USA).
The compressed air was supplied by a diving compressor (Mini-Verticus III, Bauer Comp Holding, Germany)
coupled to a 100-L unit at 30 MPa, and connected to a pressure relief valve (LTHS 400 0086, ALPHAGAZ,
Rousset, France). The oxygen analysis was performed using a micro-fuel electrochemical cell (G18007, Teledyne
Electronic Technologies, Analytical Instruments, USA). The CO, produced by the animals was captured with
soda lime (<300 ppm, GE Healthcare, Helsinki, Finland). The gases were mixed by a fan, and the temperature
inside the caisson was measured with a heat probe (Pt 100, Eurotherm, France).

Diagnoses and behavioral tests. The physical examination for the rats was conducted by the main
experimenter. It was established over a 30-min observation period with the collection of clinical signs, where the
respiratory difficulties, motor disorders, convulsions, and death were referenced with a time index. Then, these
observations were completed by a Motor Performance Score (MPS), from 10 to 0, comprising specific tests for
(loco)motor disorders *': the beam-walk test from 1 to 7 (agility test on a 1.5 m long and wide plank calibrated
from 7.7 cm to 1.7 cm, and placed 1.1 m above the void) was practiced two weeks before the dive and after the
dive. It involved allowing the rat to move on an ever-narrower board above the void. The rollover test consisted
of a simulated fall situation causing a reflex rollover in the animal so that it fell on its paws. It was assessed on a
score of 0 to 2. The toe-spreading reflex test** assessed motricity and, more especially, the functional impairment
of the sciatic nerve (SFI Index). It was based visually on the spreading of the toes where 2 is a normal state, 1 a
weak spread and 0 complete inability to spread the toes. This test was seconded by the diagnosis of motor impair-
ment of the hind paws (MIHP), where a score of 5 indicates normal motricity, 4 a rat which limps, 3 a paw which
is stretched and does not go back into place spontaneously, 2 a paw spontaneously to the rear, 1 a paw that no
longer moves but is still capable of muscle contraction and 0 an inert paw.

Clinical status. To remain comparable, we have graciously used the same protocol of our previous
experiences®'®!213, The DCS status was attributed when the rat presented serious neurological signs in the form
of paresis or paralysis of at least one limb, convulsions and/or reduced performance in SFI, MIHP locomotor
tests, with a beam walk test score reduced by at least 2 points. The other rats were considered to be No DCS.

Anesthesia and sacrifice. 30 min after coming out of the hyperbaric chamber, all the animals were anes-
thetized by induction with isoflurane (Bellamont, firstly at 5% then 2%), then by intraperitoneal injection (1 ml
syringe, Omnican, B. Braun, Melsungen, Germany) of a mixture of ketamine (Imalgene 1000, 100 mg/kg, Astra-
Zeneca, London, UK), acepromazine (Calmivet, 1,65 mg/kg, Vétoquinol S.A., Lure, France) and xylazine (Rom-
pun 2%, 16 mg/kg, Bayer HealthCare, KVP, Kiel, Germany).

At the end of the experiment, rats were sacrificed by an injection of sodium pentobarbital (200 mg/kg IP;
Sanofi, Paris, France).

Blood analyses. We have used our previously described protocol *'*!213, Briefly, the blood counts were
performed from 15 pl blood taken from the tip of the tail and diluted in the same volume of 2 mM EDTA (Sigma,
France). The analysis was performed using an automaton (Scil Vet abc, SCIL Animal Care Company, France)
on samples taken 60 min before or 30 min after exposure to the hyperbaric protocol. The values for the second
blood sample were corrected depending on the variation in the hematocrit.

Cytokine detection. We have graciously reproduced our analysis protocol”'*%13. Under anesthesia, blood
samples were collected by an intra-aortic puncture to determine the values of plasmatic cytokine levels. Blood
was collected in sterile 4 ml tubes containing lithium heparin (BD Vacutainer, BD-Plymouth, UK) and, within
30 min, plasma was separated out by simple centrifugation at 1200 g and 4 °C for 15 min. The supernatant was
kept at — 80 °C until testing.

The pro-inflammatory cytokine IL-1p and oxidative stress markers TBARS and GPX were assayed using a
rat ELISA kit (ELISA Kit, Antibodies-Online GmbH, Germany) and QuantiChrom TBARS Assay Kit and Enzy-
Chrom Glutathione Peroxidase Assay Kit (BioAssay Systems, CA, USA). Samples, standards, and quality controls
were all run in duplicate. All standards and quality controls were made up as recommended by the supplier.
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Figure 1. Percent of symptomatic rats 30 min after an at-risk decompression as a function of diet. Grey blocks
were attributed to DCS status, i.e. when the rats presented neurological signs. White blocks represent the
proportion of rats that shown no clinical sign (NoDCS).

Fecal metabolome. Immediately before sacrifice, the cecum was separated from the rest of the digestive
tract after ligation. The cecum was weighed and then opened using a scalpel. Part of its contents was placed in a
1.5-ml Eppendorf tube and kept at — 80 °C until metabolomic analysis.

100-150 mg of cecal content were homogenized in cooled methanol (3uL/mg feces) at — 20 °C. Samples were
vortexed for 1 min and incubated at — 20 °C for 30 min. Samples were then centrifuged for 15 min (11,000 x g,
4 °C). The supernatant recovered from each sample was filtered through 10 KDa filter tubes by centrifuging
for 45 min (11,000 x g, 4 °C). The extracts obtained were then dried using a stream of nitrogen and then frozen
at — 80 °C.

LCMS metabolomic analyses were performed essentially as described earlier®. All the dried polar extracts
were first reconstituted with 150 ul acetonitrile/water (50:50; v:v). The samples were separated using high per-
formance liquid chromatography (UPLC) ultimate 3000 (Thermo Scientific), coupled to a high-resolution mass
spectrometer (HRMS), Q-Exactive Plus quadrupole-orbitrap hybrid equipped with electrospray ionization source
(H-ESI II). The chromatographic separation was performed on a binary solvent system using a HILIC column
(Merk,SeQuant ZIC-HILIC, 150 mm X 2.1 mm, 5 pm, 200 A) at 25 °C with a flow rate of 0.25 ml min™". The
injection volume for both columns was 5 pl. The mobile phase for the HILIC column separation consisted of
a combination of solvent A (100% water, 16 mM ammonium formate) and solvent B (100% acetonitrile 0.1%
formic acid). The following gradient conditions were used: 0 to 2 min, isocratic 97% B;, 2 to 10 min, linear from
97 to 70% B; 10 to 15 min, linear 70 to 10% B; 15 to 17 min, isocratic 10% B; 17 to 18 min linear from 10 to
97% B; from 18 to 22 min isocratic 97% B. The separated molecules were analyzed in both positive and negative
ionization modes in the same run. The repeatability of the analysis was checked by analyzing interspaced (1 out
of every 5 samples) quality control samples (QC).

Data processing and molecule identification: All the raw data generated by the LCMS were converted to
mzXML by ProteoWizard (Version 2.0), and then processed by MZmine 2.26. The identification of the metabo-
lites was performed by using an in-house database referencing more than 800 metabolites with their chroma-
tographic retention time acquired with a HILIC column, together with their exact mass and MSMS spectra
obtained in positive and negative ionization modes, including their adducts and neutral losses. These led to Level
1 (MSMS, retention time, MS) or 2 identification (retention time, MS).

The MS metabolomics data from feces were merged into a single dataset together with the other correspond-
ing biological data and microbiota measurements, giving rise to 185 variables per rat.

Statistical analyses. The blood count analyses are calculated according to an individual variation percent-
age. For the groups the data is expressed in median and interquartile. Most series of values fell between 0 and
1 and the distribution was positively skewed. Prior analysis, scale-contracting transformation was applied with
log(X +1). The difference is analyzed using 2-way ANOVA (type III SS) on clinical status and diet, comprising
interactions, followed by post-hoc Tukey’s (HSD) and Benjamini-Hochberg’s (False Rate Discovery) tests. Prin-
cipal component analysis (Pearson correlation coefficient), agglomerative hierarchical clustering (AHC) (dis-
similarity; Euclidean distance; Ward’s method) helped by k-means clustering were used to design the heat map
and volcano plot, from normalized data of the 185 features of the 65 diving rats. The software was Xltat Biomed
from Addinsoft. Maximum acceptable alpha level was 5%.

Results

Clinical observation. The hyperbaric protocol did indeed generate decompression sickness. The incidence
of clinical signs of neurological DCS (Fig. 1) is not significantly different between the groups of rats fed on maize
and those fed on soy (n=32/32, Levene median p =0.806), with 44% and 47% of rats symptomatic respectively
(Fig. 1). 8 and 7 rats succumbed to the sequelae of their DCS (MAIZE n=28; SOY n=7). Finally, there are no
significant differences in any of the clinical examinations that are directly related to diet.
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Figure 2. Blood cells count before and after the hyperbaric exposure. * notes significant difference (p <0.05)
for a whole diet group and # denotes difference between infra-groups. Yellow blocks represent the rats fed

with maize. Green blocks represent the rats fed with Soy Blocks with dots indicate rats displaying symptoms of

decompression sickness (DCS).
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Figure 3. Concentrations of IL-1B TBars and GPX in blood and amount of hydrogen in exhaled air of rats
submitted to a provocative decompression protocol. Yellow blocks represent the rats fed with maize. Green
blocks represent the rats fed with Soy Blocks with dots indicate rats displaying symptoms of decompression
sickness (DCS).

Blood and exhaled hydrogen analysis. The diet modified a certain number of blood parameters in rats
exposed to the hyperbaric protocol (Figs. 2 and 3).

The SOY rats had more platelets before the dive (median_interquartile. PLA ;1,5 =450_80 x 10%/
pul; PLAgoy =478_106 x 10°/ul; p=0.022). This difference was more marked between the NoDCS MAIZE and
SOY rats (p=0.024). However, there does not appear to be any significant difference concerning their mobiliza-
tion (p=0.654). The red corpuscles were smaller in the SOY rats (MCV 175 =48.0_3.0 um?* MCV4y =44.0_5.3
um?®; p=0.006) and this difference continued after the dive (MCV 51,5 =47.0_5.0 um* MCVoy =43.0_7.2 um?
p=0.003). No other count difference (post-correction) linked to diet or clinical status was observed after the
dive (Fig. 2).

The level of IL-1p is higher in SOY rats after diving (median + interquartile IL-1B 2 =0.24_0.12 pg/
ml; IL-1B5oy =0.68_0.16 pg/ml; p <0.0001). No significance was noted for TBars and GPX (Fig. 3).

The level of exhaled hydrogen is higher in the SOY rats (median * interquartile
H2p(a1z6=0.044_0.069 ppm/g; H24oy =0.122_0.087 ppm/g; p=0.001) and more specifically in the DCS rats
(Fig. 3).

Metabolomic analysis of feces. The principal component analysis (PCA; Pearson test) (Fig. 4) of the
fecal metabolome of 64 rats highlights two distinct groups linked to diet, where the axes F1 and F2 explain 28%
of the variability. A similar PCA conducted on the clinical status did not show any particular group.

An Ascending Hierarchical Classification (AHC) was conducted in the context of the Heat Map established
according to the intensity of the 184 compounds analyzed (Fig. 5). Following the evolution of the variances
according to the number of classes, there is an inflection point in the 3rd class. This division explains 67% of the
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Figure 4. Principal component analysis (PCA) plot of fecal metabolome as a function of (A) diet (Soy and
Maize) or (B) clinical status (DCS or NoDCS).

intragroup variability. Even though this distribution highlights 3 groups, 2 actually appear. Effectively the test
spotlights 3 groups of rats (sorted according to the values of the compounds) but one group contained just a
single rat, and was itself was situated between the 2 other groups. This means there were only 2 groups remain-
ing, composed solely of either MAIZE or SOY rats. The effect of the diet is actually very marked. Finally, the
distribution into 2 groups explains 86% of the intra-class variance. Therefore, the ACH of the Heat Map makes
it possible to see distinctly on the abscissa a separation of the diets with rats fed on maize on the left (yellow)
and those fed with soy on the right (green). An over-expression of the compounds in the feces of rats fed on soy
is therefore visible in blue on the section at mid-height to the right of the map. The maize diet seems to favor an
over-expression of the compounds situated in the bottom left of the map.

In addition, a more discreet dichotomy appears between the DCS and NoDCS rats, with a concentration at
the center of the DCS rats (shown by black squares on the abscissa) whether they are MAIZE or SOY. It can be
noted by vertical projection that for two thirds of the map there is a panel of molecules for which expression
seems to be linked to clinical status.

The ANOVA (Type III SS with post-hoc Tukey (HSD) and Benjamini-Hochberg (FRD)) with two factors
(Clinical status x Diet) has been performed for the 185 compounds in the 65 diving rats. The Venn diagram
(Fig. 6 + Supplementary data 1 for the list of metabolites) from this analysis enables the effects linked to clinical
status or diet to be seen, as well as their interactions. Out of the 185 compounds analyzed, 103 were significantly
influenced by diet and 37 differed with clinical status.

It can be observed on Graph 7 (Volcano Plot, Fig. 7) that the expression in the rat feces of a large part of
the metabolites is favored by the soy diet (71 versus 32) compared with the maize-based regime. It is therefore
noted that the soy diet has a tendency to increase the quantity of amino-acids and saturated lysophospholipids,
and to reduce that of cholic acids in the feces. As the study focuses on DCS, the details of the effects of the diet
are not discussed here.

In the case of diagnosis of decompression sickness, 35 metabolites are over-expressed and 2 under-expressed
compared with those present in the feces of healthy rats (Volcano Plot, Fig. 8).

Amongst the metabolites linked to clinical status (Fig. 6), 11 are common to diet without there being any
interaction (18-0_LysoPC, 18-0_LysoPE, 18-1_LysoPE, C18, carnosine, deoxyadenosine monophosphate, gly-
cine, histidine, lithocholate, phosphorylcholine, tricosanoate). On the other hand, 4 other common compounds
experience the effects of the interaction of 2 significant factors (dipalmitoylglycerol, hippurate, 2,6-quinolinediol,
Gly-Gly). These 4 metabolites are all increased in the case of DCS, even though soy increases the expression of
dipalmitoylglycerol and Gly-Gly, and decreases the expression of hippurate and of 2,6-quinolinediol. 2 other
compounds would be modified (p=0.025 and p=0.040) by the joint action of diet and clinical status, without
there being any pure effect due to diet alone or clinical status (glycerol-myristate p=0.156, N-acetylasparagine
p=0.192), which indicates an antagonist effect of the 2 factors. 1 compound (kynurenine) is increased in the
case of DCS (p=0.027), and this effect is potentialized by the maize diet whereas it is not with soy (p =0.043).
Finally, 3 other compounds modified by diet (5b-cholanic acid-3a-OL-12-ONE p=0.001, 5'-deoxyadenosine
p=0.0001, pyridoxal p <0.0001) see their expression changed in the case of DCS (p=0.037, p=0.042, p=0.034)
but they do not seem to exercise determinism on the genesis of DCS.

Discussion

Impact of the hyperbaric protocol. The protocol has caused decompression sickness with neurological
clinical signs. As expected, diet per se is not enough to induce DCS but we have been able to establish a link
between the expression of fecal metabolites and the illness.

Effects of diet. The purpose of this study is not to analyze and discuss exhaustively the influence of a diet
on the different variables studied, but to identify the points influenced by these two diets in order to focus better
on those which vary in the case of DCS. So we made the choice to describe only briefly the effects linked to food.
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Figure 5. Heat Map, i.e. hierarchical clustering of fecal metabolomes from rats (n=64) fed with maize (yellow)
or soy (green). Black squares denote DCS status. Fold change for each metabolite is represented by a color.
Intensity values are normalized, from red (Min: — 2) to blue (Max: +2).
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Figure 6. Venn diagram with metabolites influenced by diet or clinical status, with interactions. This graph is
composed using 2-way ANOVA results.
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Figure 7. Volcano plot showing metabolomic data. Differential expression of fecal metabolites (n=185) in rats

exposed to the hyperbaric protocol (n=64) favored by maize (right) or soy (left). The dashed line shows where
p=0.05 with points above the line having p <0.05 and points below the line having p>0.05.
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Figure 8. Volcano plot showing metabolomic data. Differential expression of fecal metabolites (n=185) in rats
exposed to the hyperbaric protocol (n=64) favored by DCS (left) compared to NoDCS (right). The dashed line
shows where p=0.05 with points above the line having p <0.05 and points below the line having p>0.05.
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Figure 9. Clustering by chemical and biological similarities of the 37 metabolites significantly altered as a
function of clinical status (ref. Venn diagram). The surface of the rectangles takes into account the number of
metabolites. A chemical compound is 1 unit and the total area is 37 units. The striped areas correspond to an
under-expression and the solid areas to over-expression.

We have been able to determine that diet has influenced initial blood parameters Thus, the SOY rats have
more platelets but their mobilization does not seem to be more affected. It is also noted that the volume of their
erythrocytes is lower?*. Amongst other things, this would tend to indicate that they are older or that their pool is
renewed less frequently. However, the volume is not changed after the dive. Amongst the causes of microcytosis
are inflammation (see below) and iron deficiencies*, but soy is reputed to be richer in iron, compared to maize's.
In addition, these two parameters do not seem to determine the occurrence of DCS.

At the same time, the levels of exhaled hydrogen are higher in SOY rats, particularly in the DCS SOY rats,
which could be a sign of more significant intestinal fermentation in these subjects. This result could be expected
given the fermentable nature of soy. During a previous study we have already mentioned that the endogenous
production of hydrogen by bacterial fermentation could have a beneficial effect over the long term, arguing for
its neuroprotective effects', or conversely harmful in the short term due to its participation in the expansion
of bubbles'!. The absence of clinical difference in this study does not favor any of these scenarios in particular,
so this suggests an equilibrium related to their antagonism. An alternative explanation would be to consider
hydrogen as an indicator of a susceptibility to DCS, without necessarily being a cause.

Although not significant as far as clinical status is concerned, the measurement of IL-1p is higher in the SOY
rats after diving, which indicates the existence of inflammation.

As far as the fecal metabolome is concerned, as expected its composition depends on diet. So 103 out of the
185 metabolites identified vary as a function of diet (Suppl data 1). As the purpose of our study was principally
to understand better the mechanisms of decompression sickness, using two different diets has enabled us to
spotlight the metabolites which seem to be an indication for DCS. However, it goes without saying that these
metabolites could not exist without food, and that by nature they are therefore influenced by diet and also by
microbial activity. Finally, this method has enabled us to restrict our analysis to 37 metabolites.

Metabolome in DCS. Out of the 37 metabolites linked to clinical status, about fifteen are common to the
diet, including 4 which are modulated synergistically.

Expression of metabolites indicating an alteration of the host. The identification of the metabo-
lites incriminated in DCS accentuates several large chemical families (Fig. 9) where, in animals suffering from
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DCS, an over-representation of amino-acids (9/37) and dipeptides (5/37), lysophosphatidylcholines (6/37) and
other phospholipidic derivatives (2/37) is found. This excess basically suggests less degradation and also less
absorption by the intestine. Furthermore, noted in these animals is decreased expression (checkers in Fig. 9) of
a fatty acid (2-hydroxycaproic acid) and particularly cholic acid, lithocholate, which is one of the biliary acids,
the function of which is to help absorb dietary fats by the formation of micellae. Their second role is to inhibit
(by an antiseptic or even antibiotic effect) the proliferation of the bacteria in the upper part of the digestive tract.
However, a larger role is now attributed to biliary salts throughout the body®*. Coumarins are also found, which
are not very soluble and also require a vector to be absorbed. This coumarin, C18 or 7-[(3-chlorobenzyl)oxy]-4-
[(methylamino)methyl]-2 h-chromen-2-one, is an inhibitor of monoamine oxidase-B, which is abundant in the
muscular layers of the rats’ colon. Its administration increases dopamine which inhibits colon motility*, which
suggest mobility of the colon in DCS. This deserves to be confirmed.

This observation poses the problem of the integrity of digestive function in the context of DCS. As it happens,
liver disorders have already been mentioned in DCS in humans®”?® and animals'**%.

Expression of metabolites indicating an alteration in the intestinal microbiota. An increase in
hippurate is observed in the DCS rat group, and more especially in the MAIZE DCS. In rats and also humans an
increased quantity of this metabolite is regularly associated with a greater bacterial diversity in the microbiota®-*?
even though it is also described as the marker for the abundance of bacteroides, the most important group of
anaerobic Gram-negative bacilli in the intestine®. At the same time there is an excess of phosphorylcholine (cho-
line), a molecule which in vaccination strategies®>*® activates the immune system. Phosphorylcholine is con-
tained in all Gram-positive and Gram-negative bacteria, and its detection by the M cells (microfold cells) of the
cecum, during bacterial over-representation or when there is a digestive tract lesion allowing infiltration, could
participate in the inflammatory syndrome that is regularly described in DCS. More globally, the over-expression
of this choline suggests that the bacterial populations have been affected. Another interesting marker of the
microbiota that could corroborate this alteration of these populations is creatine which is normally excreted
from the host by the action of the intestinal microbiota®. In this study the fecal levels of creatine were raised
in the DCS rats compared with the NoDCS rats. Studies show an increase of these molecules in the biofluids of
mice treated with antibiotics*>* and in Germ Free mice®. As for the reduction in 2-hydroxycaproic acid, it could
also signify a decrease in the activity of the anaerobic microbiota: its increase has been shown in buccal micro-
bial community rich in anaerobic germs®. It is therefore worth investigating whether the accident-provoking
protocol alters the expression of this metabolite by the microbiota as antibiotics do. A similar action could be
expected by the high levels of oxygen (max inhaled PiO2: 2000 mbars) caused by the hyperbaric protocol on the
essentially anaerobic bacteria.

Furthermore, xanthine, the pyroglutamate, derivatives of nucleotides and nucleosides, myoinositol, and the
diglyceride (dipalmitoylglycerol) are over-represented.

Expression of metabolites suggesting inflammation. Although it is speculative, it seems that in
all the animals suffering DCS a reorganization of the activity of the intestinal microbiota emerges following
a change in diet, which has moved from a standard diet to one based on soy or maize. This generally involves
the overgrowth of bacterial populations (increased phosphorylcholine) which are trying to adapt to the new
diet. This regularly involves an inflammatory reaction on the part of the host*'. In the MAIZE DCS rats, this
inflammatory response can be the consequence of a reorganization of the microbiota as is also suggested for
the increase in hippurate’=*. As it happens, inflammation in the MAIZE DCS rats is suggested by the joint
increase in kynurenine from the tryptophan metabolism*>* and in 2,6 quinolinediol with antibiotic properties,
which is thought to control an explosive development of the microbial community. It seems to be limited to the
intestine®. Conversely in the SOY DCS rats, it would seem that the inflammatory mechanism differs where there
is only an increase in the IL-1p in the blood.

Finally, it seems that the inflammatory phenomenon, wherever it comes from, is detrimental if there is expo-
sure to an at-risk decompression protocol.

Metabolomic analysis by ChemRICH. We also decided to submit our results to the ChemRICH
database® in order to access enrichment statistics and also to take into account differential expression rates
(https://www.chemrich.fiehnlab.ucdavis.edu), and in this way compare our interpretations from the bibliog-
raphy. It was possible to propose 185 compounds accompanied by the p-values and their variation factor. 183
compounds were accepted. This approach was conducted to analyze the effects of the diets (Supplementary data
2 with Fig. 11) and those linked to clinical status.

The graph from the ChemRICH database (Fig. 10), which uses their chemical similarity to group together the
metabolites that are significantly altered depending on clinical status, makes it possible to note a general increase
in the quantity of amino-acids, dipeptides, and also saturated and unsaturated lysophosphatidylcholines in the
feces of rats affected by DCS.

As regards the excess of dipeptide in the feces, these results seem to show less protein breakdown in the
intestine with, at the same time, less absorption of amino-acids. On this graph a larger amount of lysophosphati-
dylcholine, and constituents of the bacterial membranes is seen.

This result agrees with the previous result even though the ChemRICH analysis only shows 22 compounds,
including only 12 of the 37 metabolites deemed to be significantly altered by ANOVA-2.
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Figure 10. ChemRICH set enrichment statistics diagram. Each disc reflects a significantly altered family

of metabolites. Enrichment p-values are given by the Kolmogorov-Smirnov test. Disc sizes represent the

total number of metabolites in each group set. Red discs present Increased metabolites while blue ones show
decreased compounds in NoDCS rats compared to DCS rats. Intermediates color have both increased and
decreased metabolites. For example, there are fewer amino-acids in the feces of NoDCS rats, which is to say
that there are more in DCS rats. Insert: volcano plot showing the metabolic dys-regulation in rats exposed to
a provocative dive, detailing which of the most significantly altered metabolites were not mapped to metabolic
pathways.

Moderation and openness. It must be remembered that this work has not studied cecal composition
exhaustively and that it is possible that metabolites which were not analyzed in this study may play a determinant
role.

We have shown that a certain number of cecal metabolites are linked to DCS without making a direct link
between diet and diagnosis. However, as this study was linked to maize and soy;, it is not possible to exclude the
fact that another diet could have an influence on a large number of compounds linked to clinical status and thus
actually induce DCS. Conversely, it would seem interesting to determine a diet, or even modulate the intestinal
microbiota, with the purpose of targeting this range of metabolites and thus seek to reduce the impact of the
hyperbaric protocol.

We have mentioned less absorption and possible liver failure on the basis of the identification of specific
metabolites, but it seems necessary to specify that the metabolites measured here are the fruit of digestion of
exogenous (nutrition) and endogenous (intestinal cell debris, etc.) substrates, which are themselves subject to
microbial activity (fermentation), and that as such it remains difficult to identify their exact source correctly. The
identification of the bacterial sources present would probably make it possible to clarify this point. Neverthe-
less, a complete study would be necessary to discern the effects of diving and hyperoxia on the various bacte-
rial strains (strictly anaerobic or not) and their RNA integrity, while knowing which falls under the diet. This
proposal involves considerably increasing the number of animals required to know the situation before diving.

Finally, from a clinical point of view, it would be interesting to consider how much the alteration of the bacte-
rial community affects the prognosis in the short and medium term, and consequently whether it too should be
the subject of investigation. As a result, it should be taken into account in DCS therapeutic in order to improve
its condition or avoid further degrading it, by limiting the side effects of hyperbaric oxygen therapy on anerobic
species for example.

Conclusion

This study shows for the first time the spectral fingerprint of the ceca metabolome in animals exposed to a pro-
vocative decompression, while evaluating the diet effects. On the one hand, statistical analysis shows a general
over-expression (35/37 metabolites) of amino-acids, dipeptides, and lysophosphatidylcholines, and on the other
a reduction in lithocholate, a biliary salt in animals suffering of decompression sickness. These results suggest
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an intestinal disorder with alteration in the microbial community with the liver being affected, probably linked
to inflammation, but additional studies must verify this more specifically.

More generally, we have demonstrated that the choice of a diet, insofar as it modifies the fecal metabolome,

may favor the over-expression of some metabolites linked to the pathology. Even though the diet alone may not
be enough to induce decompression sickness, it would seem prudent to verify, in future studies, whether other
diets can limit this expression and thus reduce the impact of hyperbaric exposures.
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