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Introduction

Metabarcoding has become a powerful approach to study biodiversity from environmental samples (including gut content or faecal samples ). Metabarcoding, however, is prone to some pitfalls, and consequently, every metabarcoding study should be designed in a from-benchtop -to-desktop way ( from sampling to data analysis) to minimi ze the bias of each step on the outcome [START_REF] Alberdi | Scrutinizing key steps for reliabl e metabarcoding of envi ronmental samples[END_REF]Cristescu & Hebert, 2018;[START_REF] Zinger | DNA metab arcoding-Need for robust experimental designs to draw sound ecological conclusions[END_REF] . Several papers have called for good practice in study design, data producti on and analyses to ensure repeatability and comparability bet ween studies. Notably, the importance of mock communit y samples, negative controls, and replicates is fr equently highlighted [START_REF] Alberdi | Scrutinizing key steps for reliabl e metabarcoding of envi ronmental samples[END_REF][START_REF] Bakker | A fungal mock community control for amplicon sequencing experiments[END_REF]Cristescu & Heber t, 2018;[START_REF] O'rourke | A total crapshoot? Evaluating bioinf ormatic decisions in animal diet metabarcoding analyses[END_REF] . However , their use in bioinformatics pipelines is often limited to the verification of expectations.

In this study, we present the bioinformatics pipeline, VTAM (Vali dation and Taxonomic Assignation of Metabarcoding data) that effectively integrates negative controls, mock communities and technical replicates to control experimental fluctuations (e.g. sequencing depth, PCR stochastic ity) and validate metabarcoding data.

A recent study on the effect of different steps of data curation on spatial partitioning of biodiversity listed the following potential problems: Sequencing and PCR errors, presence of highly spurious sequences, chimeras, internal or external contamination and dysfunctional PCRs (Calderón-Sanou, Münkemüller, Boyer, Zinger, & Thuiller, 2020) . They showed that exhaustive curation and ensuring repeatability by technical replicates are necessary , especially for biodiversity measurements. Ideally, a metabarcoding wor kflow should address all of these technical errors. Exist ing tools , however, ar e either highly flexible but too complex or they do not include the curation of all pot ential biases (Mahé, Rognes, Quince, de Vargas, & Dunthor n, 2014;[START_REF] Boyer | obitools: a unix -inspired software package f or DNA metabarcoding[END_REF]Callahan et al., 2016;[START_REF] Edgar | UNOISE2: improved error -correction for Illumina 16S and ITS amplicon sequenci ng[END_REF][START_REF] Rognes | VSEARCH: a versatile open source t ool for metagenomics[END_REF][START_REF] Bolyen | Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[END_REF] . The filtering st eps of VTAM aim to address these point s and include several additional features that are unique or rarely found in existing pipelines: (i) the use of internal controls and (ii) replicates to optimize filtering parameter values ; (iii) the integration of multiple overlapping markers and (iv) filtration to address crosssample contamination , including tag-jumps. Finally, VTAM is a variant -based filtering pipeline (such as other denoising methods: Callah an et al., 2016;[START_REF] Edgar | UNOISE2: improved error -correction for Illumina 16S and ITS amplicon sequenci ng[END_REF] that deals with amplicon sequence variants (ASVs) .

Features 2.1 Implementation

VTAM is based on the method described in [START_REF] Corse | A from -benchtop -to-desktop workflow for validating HTS data and for taxonomic identification in diet metabarcoding studies[END_REF]. It is a command-line application that runs on Linux, MacOS or Wi ndows Subsystem for Linux (WSL).

VTAM is implemented in Python 3, using a Conda environment to ensure repeatability and easy installation of VTAM and these third -party applications: WopMars (https://wopmars.readthedocs.io ), NCBI BLAST, Vsearch [START_REF] Rognes | VSEARCH: a versatile open source t ool for metagenomics[END_REF], Cutadapt [START_REF] Martin | Cutadapt removes adapter sequences from high -throughput sequencing reads[END_REF] . Data is stor ed in an SQLite database that ensures traceability. 4

Workflow

Table 1 summarizes the different commands and steps of VTAM, their purpose and the related error type s.

Pre-processing ( optional)

An example of the dat a structure is illustrated in Fig. 1.

Paired-end FASTQ files are merged, reads are trimmed and d emultiplexed according to forward and reverse tag combination s.

Filtering

Demultiplexed reads are dereplicated and ASVs are stored in a n SQLite database.

All occurrences are characteri zed by their read count.

FilterLFN: eliminates occurrences likely due to Low Frequency Noise . Occurrences are filtered out if they have low read counts (i) in absolute terms (N i j k is small, where Nijk is the read count of variant i in sample j and replicate k), (ii) compared to the total number of reads of the sample -replicate (Nijk/Njk) or (iii) compared to the total number of reads of the variant ( N i j k /Ni).

FilterMinReplicateNumber : Occurrences are retained only if the ASV is pre sent in at least a user -defined number of replicates.

FilterPCRerror: ASVs with one difference from another ASV of the same sample are filtered out if the proportion of their read counts is below a user-defined threshold value .

FilterChimera runs the uchime3_denovo chi mera filtering implemented in vsearch.

FilterRenkonen removes whole replicates that are too different compared to other replicates in the same sample.

FilterIndel and FilterCodonStop are intended to detect pseudogenes and should only be used for coding markers. FilterIndel eliminates all variants, with aberrant length, where the modulo three of the length is different from the majority .

FilterCodonStop eliminates all variants that have codon STOP in all reading frames of the direct strand.

The output of the filters is an AS V table wit h validated variants in lines, sample s in columns and the sum of read counts over replicates in the cells.

Taxonomic assignation

Taxonomic assignation is based on the Lowest Taxonomic Group method described in detail in Supporting Information 1. The taxonomic reference dat abase has a BLAST format with taxonomic identifiers so that custom database s or the complete NCBI nucleotide database can be used by VTAM. A custom taxonomic reference database of COI sequences mined from NCBI nucleotide and BOLD (https://www.boldsystems.org/ ) databases i s available with the pr ogram.

Parameter optimization

Users should first identify expected and unexpected occurrences based on the first filtration with default parameters . The optimization step will guide users to choose parameter values that maximize the number of expected occurrences in the dataset and minimize the number of unexpected occurrences (false positives) . Parameters are optimized for the three LFN filter s and t he FilterPCRerror. Optimized parameters can then be used to repeat the filtering steps.

Pool runs/markers

A run is FASTQ data f rom a sequencing run and a marker is a regi on of a locus amplified by a primer pair. The pool command produces an ASV table with any number of run -marker combinations. When m ore than one overlappi ng marker is used, ASVs identical to their overlapping parts are pooled to the same li ne.

Benchmarking

VTAM was tested wit h two published metabarcoding datasets: a fi sh dataset obtained from fish faecal samples [START_REF] Corse | A from -benchtop -to-desktop workflow for validating HTS data and for taxonomic identification in diet metabarcoding studies[END_REF] , and a bat dataset obtained from bat guano samples [START_REF] Galan | Metabarcoding for the parallel identification of several hundred predators and their prey: Application to bat species diet analysis[END_REF] . Both datasets included negative controls, mock samples and three PCR replicates. A fragment of the COI gene was amplified using two overlapping markers in the fish dataset, and one in the bat dataset (See details in the original studies).

Both datasets were analysed by VTAM . The fish dataset was analysed separately for the two markers and the results of both markers were pooled together.

Both datasets were also analysed with the DADA2 denoising algor ithm (Callahan et al., 2016), one of the most widely used methods for metabarcoding data curation.

The output of DADA2 was filtered by LULU [START_REF] Frøslev | Algorithm for post -clustering curation of DNA amplicon data yields reliable biodiversity estimates[END_REF] t o further eliminate probable false positive occurrences. Then the three repli cates of each sample were pooled (as in VTAM), only accepting the occurrence if it was present in at least two replicat es (Supporting inform ation 2).

We compared the α-di versity and β -diversity obtained for the environmental samples to address the effect of the curation pipelines on diversity estimations. αdiversity was estimated using both ASV richness and cluster richness ( clusters aggregate ASVs with <3% divergence) , and β-diversity was summarized using the Bray-Curtis pairwise dissimilarit y index. (Supporting information 3).

In the fish dataset , all expected variants in the mock samples were validated by both pipelines. However, in the bat dataset, t wo expected variants had very low read abundance (2-18 reads/replicate ), which were in the range of the number of reads in the negative controls (ten out of the 19 negative controls had at least one read count greater than 18 ). Therefore, we i gnore d these two expected variants in the Bulk France mock sample, and we optimized the VTAM parameters to retain all other expected occurrences.

After filtering with VTAM, the number of f alse positives in the mock samples was markedly lower than with DADA2 (Table 2). Similarly, ASV and cl uster richness were on average two times lower with VTAM than with DADA2 in environmental samples (Fig. 2A andB). In contrast, dissimilarities between samples were higher with VTAM (Fig. 2D) . In both pipelines , most clusters contained a single ASV (Supporting information 3; Fig. 2C).

Discussion

Metabarcoding is known to be prone to two types of error s: false negatives and false positives . Based on controls (negative and mock samples), VTAM aims to find a compromise between these two error types by minimizing false positive occurrences while retaining expected variant s in mock samples to avoid false negatives. Therefore, the mock samples should contain both well and weakly amplified taxa, where the abundance , i.e. the number of reads , of weakly amplified taxa is marginally higher than those found i n negative samples. This should ensure finding filtering parameter values that simultaneously minimize false positives and false negatives. Additionally, in large-scale studies with more than one sequencing run, the use of identical mock samples in all runs can ensure comparability among runs if they consistent ly yield the same resul ts .

The use of technical replicates is another important tool to limit false positive s and false negatives (Alber di et al. 2018[START_REF] Corse | A from -benchtop -to-desktop workflow for validating HTS data and for taxonomic identification in diet metabarcoding studies[END_REF]. False posit ives can be strongly reduced by only accepting variants in a sample if they are present in at least a certain number of replicates. This strategy is strongly advised to reduce experimental stochasticity and vali date ASV occurrences. Furtherm ore, removing replicates with radically different compositions (Renkonen filter) further reduces the effect of experimental stochasticity [START_REF] De Barba | DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet[END_REF] . Additionally, false negatives can be further reduced by amplifyi ng several markers [START_REF] Corse | One -l ocus-several -primers: A strategy to improve the taxonomic and haplotypic cover age in diet metabarcoding studies[END_REF]. If the different markers overlap , VTAM can pool sequences that are identical in their overlapping regions . This i ntegrates the results of different markers unambiguously.

While false positive occurrences du e to sequencing and PCR error s are generally well detected by denoi sing pipelines such as DADA2, tag -jump and cross-sample contamination are rarely taken into account (but see [START_REF] Boyer | obitools: a unix -inspired software package f or DNA metabarcoding[END_REF]Edgar, 2016a). However, failing to filter out these artefacts is likely to inflate false positive occurrences and artificially increase inter-sample similarities. In fact, t he DADA2 based pipeline produced ASV and cluster richness per sample that was on average twice as high as with VTAM and even higher for some samples (Fig. 2 A,B). On the other hand, dissimilarities between samples were lower after DADA2 filtration. Additionally, the near 1:1 correlation between ASV and cluster richness in both pipelines indicated that most clusters contained just one ASV per sample.

This supports the notion that diversity inflation in DADA2 resulted from unfiltered tag-jump contamination s rather than PCR or sequencing errors as t his would have produced more ASVs that belong to the same cluster. Our VTAM pi peline , therefore, appears mor e appropriat e for comparing the diversity bet ween samples and for investigating t he biological response s to environmental change .

Conclusions

The VTAM metabarcoding pipeline aim s to address known technical errors during data analysis (Table 1) to validate metabarcoding data . It is a complete pipeline from raw FASTQ data to curated ASV table s with taxonomic assign ments.

The implementation of VTAM provides several advantages such as using a Conda environment to facilitate the installation, data storage in SQLite database for traceability and the possibility to run one or several sequencing run -marker combinations using the same command. VTAM includes features rarely considered in most metabarcoding pipelines, and w e beli eve it provides a useful tool for the analysis and validation of metabarcoding data for conducting robust analyses of biodiversity.
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