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 55 

Microorganisms in wastewater treatment plants (WWTPs) are essential for water 56 

purification to protect public and environmental health. However, their diversity and the 57 

factors that control it are poorly understood.  Using a systematic global-sampling effort, we 58 

analyzed the 16S rRNA gene sequences from ~1,200 activated sludge samples taken from 59 

269 WWTPs in 23 countries on 6 continents.  Our analyses revealed that the global 60 

activated sludge bacterial communities contain ~1 billion bacterial phylotypes with a 61 

Poisson lognormal diversity distribution.  Despite this high diversity, activated sludge has a 62 

small global core bacterial community (n = 28 OTUs) that is strongly linked to activated 63 

sludge performance.  Meta-analyses with global datasets associate the activated sludge 64 

microbiomes most closely to freshwater populations.  In contrast to macroorganism 65 

diversity, activated sludge bacterial communities show no latitudinal gradient.  66 

Furthermore, their spatial turnover is scale-dependent and appears to be largely driven by 67 

stochastic processes (dispersal, drift), although deterministic factors (temperature, organic 68 

input) also are important.  Our findings enhance mechanistic understanding of the global 69 

diversity and biogeography of activated sludge bacterial communities within a theoretical 70 

ecology framework and have important implications for microbial ecology and wastewater 71 

treatment processes.  72 
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Introduction 73 
 74 

Microorganisms, the most diverse group of life on Earth1, play crucial roles in the 75 

biogeochemical cycling of carbon (C), nitrogen (N), sulfur (S), phosphorus (P), and various 76 

metals.  Unraveling the mechanisms generating and underlying microbial biodiversity is key to 77 

predicting ecosystem responses to environmental changes2 and improving bioprocesses, such as 78 

wastewater treatment and soil remediation3.  With recent advances in metagenomic technologies4, 79 

microbial biodiversity and distribution are being intensively studied in a wide variety of 80 

environments5-7, including the human gut, oceans, freshwater, air, and soil.  However, we are just 81 

beginning to understand the diversity and biogeography of microbial communities in wastewater 82 

treatment plants (WWTPs)3,8. 83 

 84 

More than 300 km3 of wastewater is produced globally each year9.  This volume equals one 85 

seventh of the global river volume10.  About 60% of this wastewater is treated prior to release, 86 

and biological processes such as activated sludge are widely used in WWTPs9.  Activated sludge 87 

employs microbial flocs or granules to remove C, N, P, micropollutants (e.g., toxins, pesticides, 88 

hormones, pharmaceuticals), and pathogens11.  Activated sludge relies on complex and 89 

incompletely defined microbial communities.  As the largest application of biotechnology in the 90 

world12, activated sludge is a vital infrastructure of modern urban societies13.  Despite recent 91 

advances in understanding the microbial ecology of activated sludge14-16, the global picture of 92 

microbial diversity and distribution remains elusive.  This information is essential to resolving 93 

controversies concerning the relative importance of stochastic versus deterministic community 94 

assembly in activated sludge3.  Such information is also important for identifying key players in 95 

the process and providing a basis for targeted manipulation of activated sludge microbiomes.   96 
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 97 

We created a Global Water Microbiome Consortium (GWMC) (http://gwmc.ou.edu/) and 98 

conducted a global campaign for systematically collecting and analyzing activated sludge 99 

microbiomes.  We collected activated sludge samples from 269 WWTPs in 86 cities, 23 100 

countries, and 6 continents (Fig. 1a, Supplementary Table 1).  Deep sequencing and analysis of 101 

16S rRNA genes were performed to address fundamental ecological questions, including: (i) 102 

What is the extent of global diversity of activated sludge microbial communities?  (ii) Does a 103 

core microbiome exist in activated sludge processes across different continents?  (iii) Do 104 

activated sludge microbiomes show a latitudinal diversity gradient (LDG)?  (iv) Is microbial 105 

biodiversity important to function in activated sludge processes? and (v) What is the relative 106 

importance of deterministic versus stochastic factors in regulating the composition, distribution, 107 

and functions of activated sludge microbial communities?   108 

 109 

Species abundance distributions 110 

 111 

Species abundance distribution (SAD), a universal tool in ecology17 and central to biodiversity 112 

theory, has not been rigorously tested in microbial ecology until recently18.  Here, we tested 113 

common SAD models, including Poisson lognormal, log-series, Broken-stick, and Zipf.  The 114 

Poisson lognormal model explained 99% of the variation of the activated sludge bacterial SADs, 115 

compared with 72% for log-series, 94% for Zipf model, and 14% for Broken-stick (Fig. 1b; 116 

Supplementary Table 2).  Consistent with previous studies18, the Poisson lognormal model gave 117 

the best fit to the observed SADs.  118 

 119 
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Extent of global microbial diversity  120 

 121 

One grand challenge in biodiversity research is determining the number of species in an 122 

ecological system19.  We estimated the global richness of activated sludge bacterial communities 123 

based on two parameters19,20.  One is the total number of individuals (NT), which was estimated 124 

as 4 - 6 × 1023 bacteria in the global activated sludge community, based on published data9.  The 125 

other is the quantity of the most abundant taxa (Nmax), which can be estimated based on either 126 

our sequence data or the dominance-scaling law19.  The lognormal model predicts 1.1 (± 0.07) × 127 

109 species in activated sludge systems globally, with Nmax at 1.2% of NT based on our sequence 128 

data.  The number of species increases only slightly, to 2.0 (± 0.2) × 109 species, using Nmax = 129 

0.4×NT
0.93 from the dominance-scaling law19 (Fig. 1c).  The estimates of global activated sludge 130 

bacterial richness are only about one order of magnitude lower than that of the global ocean 131 

microbiome19 (~ 1010), even though the world’s oceans represent an enormously larger 132 

ecosystem, which could be attributed to the higher volumetric productivity, thus higher 133 

concentration of bacterial cells, in activated sludge.   134 

 135 

Global core bacterial community 136 

 137 

Previous studies have reported the core community in WWTPs at regional scales. For example, 138 

core genera existed in Danish14 and Asian15 WWTPs, but less than 10% of the genera overlapped. 139 

Thus, a global core cannot be established from those regional studies. 140 

 141 
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At the global scale, occupancy-frequency and occupancy-abundance analyses revealed a hyper-142 

dominant pattern (Supplementary Fig. 1a) in which the 866 most abundant OTUs (1.39% of the 143 

total OTU number) accounted for 50.06% of the total abundance.  Similar hyper-dominance 144 

patterns were observed in other macro-21 and microbial communities22.  145 

 146 

A core bacterial community was determined based on abundance and occurrence frequency of 147 

OTUs (see Methods for details).  About 0.05% (28 OTUs) constituted a global core that 148 

accounted for 12.4% ± 0.2% (mean ± SE) of the sequences in activated sludge samples (Fig. 2a; 149 

Supplementary Table 3).  Most (82%) of the core community members belonged to 150 

Proteobacteria, with 15 OTUs classified as β-Proteobacteria (Fig. 2b).  The most abundant OTU, 151 

accounting for 1.14% ± 0.05% of the sequence abundance in activated sludge samples and 152 

occurring in 85% of all samples, was 99% similar to the γ-proteobacterium Dokdonella 153 

kunshanensis DC-3 23.  The second most abundant OTU (0.89% ± 0.06% in relative abundance 154 

and occurring in 96% of all samples) belonged to Zoogloea, a dominant genus in activated 155 

sludge communities15, with Z. ramigera known to enhance the flocculation of activated sludge24.  156 

A Nitrospira OTU (OTU_6) was also identified as a core taxon, reflecting its importance for 157 

nitrite oxidation or complete ammonia oxidation in activated sludge25,26.  OTU_7 is closely 158 

related to Arcobacter species, which are highly abundant in raw sewage27 and include potential 159 

pathogens, such as A. cryaerophilus, A. butzleri, and A. skirrowii28.  Furthermore, two putative 160 

polyphosphate- accumulating organisms (PAOs), a “Candidatus Accumulimonas” OTU 161 

(OTU_37) and a “Candidatus Accumulibacter” OTU (OTU_25), were identified as core taxa, 162 

although only 149 out of the 269 sampled WWTPs operate as enhanced biological P removal 163 
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(EBPR) systems. Apparently, “Candidatus Accumulimonas” and “Candidatus Accumulibacter” 164 

exhibit some metabolic versatility. 165 

 166 

The global core community has some overlap with previous studies.  For example, Zoogloea 167 

species were proposed as core denitrifiers, and certain Saprospiraceae species play an important 168 

role in hydrolysis in EBPR systems29. However, some discrepancies also occurred. Saunders et al. 169 

showed Nitrotoga rather than Nitrospira as primary nitrite-oxidizers in Danish WWTPs14. 170 

Lawson et al. found low abundances of both Nitrotoga and Nitrospira in a pilot-scale EBPR 171 

treatment plant, but Nitrotoga maintained high potential activities based on high SSU 172 

rRNA:rDNA ratios30.  Regarding PAOs, we identified “Candidatus Accumulimonas” and 173 

“Candidatus Accumulibacter” as global core taxa, while Tetrasphaera was the core PAO in 174 

Danish WWTPs14,31.  175 

 176 

We similarly determined core communities for a variety of ecosystems at the global scale based 177 

on the Earth Microbiome Project (EMP) datasets5.  Soil, human feces, air, and freshwater 178 

microbiomes had 9, 6, 2, and 1 bacterial OTUs identified as core taxa, respectively 179 

(Supplementary Table 4).  No core taxa were found for animal feces and the ocean, possibly due 180 

to highly variable community compositions.  Notably, the core community for activated sludge 181 

had no overlap with the other habitats, suggesting that activated sludge selects for a unique core 182 

community. 183 

 184 

Latitudinal diversity pattern  185 

 186 
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Latitudinal diversity gradients (LDG), whereby species richness tends to decrease as latitude 187 

increases32, are well documented in plant and animal ecology33.  Recently, several studies 188 

examined LDG patterns in natural microbial communities, but found no clear trends6,7,34.  In 189 

contrast, activated sludge operates under relatively stable and similar conditions everywhere.  190 

Thus, one might not expect activated sludge microbial communities to exhibit LDG.  191 

 192 

We examined the relationship between OTU richness and latitude.  OTU richness peaked at 193 

intermediate latitude, with a mean air temperature ~15oC (Fig. 1d).  As taxonomic and 194 

phylogenetic diversity were highly correlated (R2 = 0.92), the trend was similar for phylogenetic 195 

diversity (Supplementary Fig. 2a).  These results suggest that a LDG does not occur in activated 196 

sludge microbiomes; this parallels the global ocean microbiome7, but contrasts with some 197 

ocean34 and soil communities35.  In addition, the relationship between bacterial richness and 198 

temperature (Supplementary Fig. 2b, c) did not fit predictions from the metabolic theory of 199 

ecology36.  This theory cannot explain bacterial richness based on air temperature 200 

(Supplementary Fig. 2b, R2 < 0.001) and mixed liquid temperature (Supplementary Fig. 2c, R2 = 201 

0.03).  202 

 203 

Continental-level differences in bacterial community structure 204 

 205 

Variations in community composition (β-diversity) are key for understanding community 206 

assembly mechanisms2,37 and ecosystem functioning38.  To understand how the bacterial 207 

community composition of activated sludge varied across different spatial scales, we examined 208 

taxonomic and phylogenetic diversity.  First, diversity was highest in Asia and lowest in South 209 
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America (Supplementary Table 5).  Second, considerable variations between activated sludge 210 

samples were observed even at the phylum level (Supplementary Fig. 1b).  Although the 211 

taxonomic and phylogenetic community structures were not clearly separated at the OTU level in 212 

two-dimensional ordinations (Supplementary Fig. 1c, d), PERMANOVA indicated that 213 

taxonomic and phylogenetic composition were significantly different (P < 0.001) between any 214 

two continents (Supplementary Table 6).  Third, climate and activated sludge process type 215 

exerted significant effects (P = 0.001) on microbial community structure, but these were 216 

overwhelmed by continental geographical separation (Supplementary Table 7).  For example, 217 

bacterial communities of the same climate type in North America and Asia were distinguished by 218 

their continental origins rather than being clustered together (Supplementary Fig. 1e, f).  While 219 

the activated sludge bacterial communities had higher similarity to those of freshwater and soil 220 

than to other environments (Fig. 3a), they harbored a unique microbiome distinctly different 221 

from all other habitats (Supplementary Table 8).   222 

 223 

A Bayesian approach39 was employed to identify potential sources of activated sludge bacterial 224 

communities at the genus level.  The most dominant potential source was freshwater, attributing 225 

on average 46% of genera, followed by soil (17% on average) and ocean (12% on average) (Fig. 226 

3b).  Apparently, environmental characteristics are more similar between an activated sludge 227 

bioreactor and freshwater than the others.  Activated sludge and freshwater have potentially high 228 

immigration events through connected water systems, such as wastewater discharge to rivers 229 

after treatment.    230 

 231 
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Scale-dependent distance-decay patterns 232 

 233 

Another fundamental pattern in ecology is the distance-decay relationship (DDR)17,40, in which 234 

community similarity decreases as geographic distance increases.  Consistent with results in 235 

other domains37, we hypothesized that (i) the slope of the DDR curve would vary over local, 236 

regional, and global scales, and (ii) the spatial turnover rates of activated sludge microbial 237 

communities would be lower than those observed in natural habitats, especially for non-flowing 238 

ecosystems, such as soils41.  239 

 240 

Supporting our first hypothesis, significant negative DDRs (P < 0.001) were observed across all 241 

scales based on taxonomic diversity (slope = -0.06 for Sorensen, -0.08 for Bray-Curtis, and -0.08 242 

for Canberra distance) and phylogenetic diversity (slope = -0.04 for unweighted Unifrac, and -243 

0.02 for weighted Unifrac) (Fig. 4a, Supplementary Table 9).  The slopes of DDRs depended 244 

significantly on spatial scale.  The DDR slopes across cities within a continent (-0.13 ~ -0.16 for 245 

taxonomic similarity indices; -0.03 ~ -0.09 for phylogenetic similarity indices) were significantly 246 

(P = 0.001) steeper (> 2 times) than the overall slopes for all similarity metrics (Supplementary 247 

Table 9).  Countering our second hypothesis, the overall spatial turnover rates of the activated 248 

sludge communities were similar to those found in non-flowing natural habitats such as soils6 249 

and sediments37. 250 

 251 

Relationships between the community structure and activated sluge functions 252 

 253 



 

 

 

11

Understanding the relationships between biodiversity and ecosystem function is a critical topic in 254 

ecology42.  Despite decades of intensive studies, the biodiversity-function relationship is still 255 

hotly debated, particularly in microbial ecology43.  A recent meta-analysis of the microbial 256 

ecology literature found that less than one-half of all mechanistic claims were backed up by any 257 

statistical tests44.  Since activated sludge is an engineered system, we hypothesized that there 258 

would be a strong linkage between the activated sludge bacterial community structure and its 259 

functions.  260 

 261 

To assess functions, we calculated the removal rates of organic matter (biochemical oxygen 262 

demand (BOD), chemical oxygen demand (COD)), total phosphorus, total nitrogen, and 263 

ammonium nitrogen.  Partial Mantel tests revealed that the distance-corrected changes of 264 

activated sludge-community composition were significantly correlated with all measured 265 

removal rates (P < 0.032), except for the ammonium-nitrogen removal rate (P > 0.18) 266 

(Supplementary Table 10).  Of the 28 global core OTUs, 27 were significantly correlated 267 

(adjusted P < 0.05) with at least one of the five functions examined.  Most of the correlations 268 

(81%) were positive (Fig. 2c).  Also, about 80% of the non-core OTUs showed significant 269 

correlations (adjusted P < 0.05) with at least one function, and 40% of these correlations were 270 

positive (Supplementary Fig. 3a).  All of these results indicated that the structure of the activated 271 

sludge bacterial communities, particularly the dominant populations, is critical to maintaining 272 

activated sludge functions.   273 

 274 

The global dataset also allows us to assess the importance of specific functional groups to 275 

activated sludge functions. The nitrifying microbial community, including Nitrospira and 276 
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Nitrosomonas OTUs, showed a closer correlation with the ammonium- nitrogen removal rate 277 

than did the whole community (Supplementary Table 10; P of Bray-Curtis distance =0.04).  278 

Further analysis revealed significant positive correlations of Nitrospira (Spearman’s ρ = 0.40, 279 

adjusted P < 0.001) and Nitrosomonas (Spearman’s ρ = 0.21, adjusted P < 0.001) abundance to 280 

the percentages of ammonium-nitrogen removal (% of influent concentration), but not to the 281 

ammonium-nitrogen removal rate (Supplementary Fig. 3b).  Nitrospira was the top genus 282 

correlating with the percentage of ammonium-nitrogen removal, corroborating its role in nitrite 283 

oxidation in activated sludge.  Regarding ammonium-oxidizing bacteria (AOB), an activated 284 

sludge bioreactor harboured 15 Nitrosomonas OTUs on average, which made up 0.73% ± 0.06% 285 

of the sequence abundance (Supplementary Table 11).  286 

 287 

Consistent with our expectation, the activated sludge community composition was significantly 288 

correlated with the TP removal rate for the samples from EBPR plants, but not for non-EBPR 289 

plants (Supplementary Table 10), as P removal processes in non-EBPR plants are predominantly 290 

chemical.  The diversity of the three potential PAOs31 were significantly different (P <0.0001, 291 

two tailed paired-t test between any two organisms): 8.2 ± 0.2 “Candidatus Accumulimonas” 292 

OTUs, 6.6 ± 0.2 “Candidatus Accumulibacter” OTUs, and 3.2 ± 0.1 Tetrasphaera OTUs within 293 

a typical activated sludge bioreactor. While the relative abundance of “Candidatus 294 

Accumulimonas” (0.42% ± 0.06%) was not different from that of “Candidatus Accumulibacter” 295 

(0.42% ± 0.04%) (two tailed paired-t test, P = 0.92), both were more abundant than Tetrasphaera 296 

(mean relative abundance 0.17% ± 0.02%) (two tailed paired-t test, P < 0.0001) (Supplementary 297 

Table 12).  298 
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 299 

Stochastic community assembly 300 

 301 

Since WWTPs are well-controlled engineered ecosystems, we hypothesized that the activated 302 

sludge community assembly has a deterministic nature, and we calculated the null model-based 303 

stochastic ratios41 with taxonomic and phylogenetic metrics.  The average stochastic ratios based 304 

on these four metrics all were higher than 0.75 (Fig. 4b), suggesting that stochastic factors were 305 

more important than deterministic factors in influencing community composition, at least 306 

partially contradicting our hypothesis. 307 

 308 

To discern the relative importance of various factors contributing to spatial turnover of the 309 

activated sludge bacterial communities, we performed multiple ‘regression on matrices’ (MRM) 310 

analyses and a subsequent variance partition analysis (VPA) based on various taxonomic and 311 

phylogenetic diversity metrics (Fig. 4c, Supplementary Fig. 4).  Over all scales, the MRM model 312 

explained considerable and significant portions of the community variations based on Bray-313 

Curtis similarity (R2 = 0.46, P = 0.001) (Fig. 4c), with >50% variations unexplained.  Among 314 

these, 25%, 11%, and 10% of the variations were explained by geographical distance, 315 

environmental variables, and their interactions, respectively (Fig. 4c).  Similar trends were 316 

observed across different scales, with environmental variables explaining < 30% of community 317 

variations based on different similarity metrics (Supplementary Fig. 4).  These results support 318 

those inferred from the null-model-based stochastic ratio analysis.   319 

 320 
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Environmental drivers of community composition 321 

 322 

Because both stochastic and deterministic factors are important in forming the activated sludge 323 

community assembly, we attempted to discern the roles of individual deterministic factors in 324 

shaping community structure.  We correlated the geographic distance-corrected dissimilarities of 325 

community composition with those of environmental variables by the partial Mantel test 326 

(Supplementary Fig. 5a, Supplementary Table 13).  Overall, the microbial community 327 

composition had strong correlations with absolute latitude, mean annual temperature (MAT), 328 

solids retention time (SRT, the average time which activated sludge solids are in the system), and 329 

influent COD and BOD concentrations, representing organic matter (rm = 0.23-0.30, P = 0.001).   330 

 331 

More in-depth analysis by structural equation modeling (SEM) revealed direct and indirect 332 

effects of the environmental drivers (Fig. 5a).  Consistent with the Mantel test, temperature had 333 

the strongest direct effects on PC1 representing the community structure (standardized path 334 

coefficient, β = 0.50, P < 0.001).  It also had weak negative impacts on species richness (β = -335 

0.14, P < 0.001).  This is consistent with previous observations at local45,46 and regional47 scales 336 

that highlighted temperature as a key factor influencing activated sludge community structure 337 

and, in particular, abundance and diversity of slow-growing microorganisms such as AOB and 338 

nitrite oxidizing bacteria (NOB).   339 

 340 

Various biotic and abiotic factors (e.g., food-to-microorganisms ratio [F/M] (the ratio of organic 341 

matter to microorganisms), dissolved oxygen concentration, and SRT) directly affected BOD-342 

removal rates (Fig. 5a).  Influent BOD likely has an impact on bacterial composition through its 343 
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effect on the F/M ratio (β = 0.31, P < 0.001), which is inversely related to the SRT.  Influent 344 

BOD is the most influential environmental variable directly related to bacterial richness (β = -345 

0.28, P < 0.001), and the abundance-weighted mean rRNA gene copy number significantly 346 

increased with the influent BOD (R2 = 0.19, P < 0.0001; Fig. 5b).  All of these results are 347 

consistent with the resource-competition theory48, which predicts that high species diversity 348 

occurs with low to intermediate supply of resources, but fast-growing r-strategists outcompete 349 

efficient-scavenging K-strategists at high resource levels49. 350 

 351 

To independently test the strength of correlation for each of the three strongest parameters 352 

(temperature, SRT, and influent BOD) with bacterial community structure, we performed 353 

random-forest analysis, a machine learning-based method.  Using species abundance as the input 354 

data, the model predicted temperature, SRT, and influent BOD with an explained variance of 355 

69%, 25%, and 18%, respectively (Fig. 5c, Supplementary Fig. 5b).  When controlling for spatial 356 

auto-correlation, models of temperature continued to have higher accuracy (Supplementary Fig. 357 

5b).  For example, the America-fitted model of temperature, i.e., a model trained solely by North 358 

and South America samples, was able to capture variations in the temperatures of Asia samples 359 

(cross-validated R2 = 0.47) (Fig. 5c).  The random-forest model also revealed the most important 360 

OTUs for predicting temperature (Supplementary Fig. 5c).  These results corroborate that 361 

temperature is the major environmental variable shaping the activated sludge bacterial 362 

compositions at the global scale, although it only has a weak effect on species richness (Fig. 5a).  363 

 364 

Conclusions and future perspectives  365 

 366 
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Through well-coordinated international efforts, we systematically examined global diversity and 367 

biogeography of activated sludge bacterial communities within the context of theoretical ecology 368 

frameworks.  Our findings enhance understanding of microbial ecology in activated sludge, 369 

setting the stage for various future analyses of WWTP microbiomes, as well as other microbial 370 

communities that span the globe.  371 

 372 

Based on experimental and theoretical analyses, we estimate that activated sludge systems are 373 

globally inhabited by ~ 109 different bacterial species.  In contrast, only about 104 species have 374 

been cultivated and studied in detail19.  If we assume that all cultivated species are present in 375 

activated sludge, potentially 99.999% of activated sludge microbial taxa remain uncultured.  376 

Although more and more microorganisms have been genomically characterized, exploring 377 

physiological attributes, which requires cultivation, represents a formidable task for future 378 

microbiologists and process engineers50.  This finding also highlights how little we know of the 379 

world’s microbiome, even in one of the most common and well-controlled systems in the built 380 

environment.  Despite the very large diversity in activated sludge, a functionally important 381 

global core community consists of fewer than 30 taxa.  This core might serve as the “most 382 

wanted” list for future experimental efforts to understand their genetic, biochemical, 383 

physiological, and ecological traits.    384 

 385 

Even though activated sludge is a managed ecosystem, its bacterial composition appears to be 386 

driven most likely by stochastic processes, such as dispersal and drift, which apparently 387 

contradicts conventional wisdom.  However, deterministic factors (e.g., temperature, SRT, and 388 

organic C inputs) play important roles in regulating the structure of the activated sludge 389 
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community.  This could be important for developing operating strategies to maintain biodiversity 390 

that promotes stable system performance.  Perhaps one could overcome dispersal limitation by 391 

establishing WWTPs, or repopulating failed WWTPs using an inoculum of activated sludge from 392 

functioning WWTPs, which is a common practice in environmental engineering.  Alternately, 393 

one could alternate organic C loadings and/or operational conditions to manipulate the activated 394 

sludge community’s structure to select for the microorganisms having the desired functions.   395 

 396 

Finally, apart from the practical implications of this study, it appears that the global bacterial 397 

communities in activated sludge follow various macroecological patterns, such as SADs, DDRs, 398 

resource theory, and community assembly mechanisms.  Given that activated sludge can be 399 

controlled and monitored, it could be an excellent system for testing how well different 400 

macroecological theories apply to microbial ecology: e.g., the relationships among biodiversity, 401 

food-web interactions, succession, stability, and ecosystem functioning.  402 
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Methods 645 

 646 

Global sampling and meta-data collection 647 

 648 

The Global Water Microbiome Consortium (GWMC) was initiated in May 2014 as a platform to 649 

facilitate international collaboration and communication on research and education for global 650 

water microbiome studies (http://gwmc.ou.edu/).  The GWMC is a collaboration across more 651 

than 70 research groups from 23 countries.  As the first initiative of GWMC, we launched this 652 

study with a global sampling campaign targeting municipal wastewater treatment plants 653 

(WWTPs) by focusing on the activated sludge process.  Unlike the Earth Microbiome Project 654 

(EMP), which employed a bottom-up strategy to solicit microbial samples5, we used a top-down 655 

approach to select WWTPs for sampling by considering their latitudes, climate zones, spatial 656 

scales, activated sludge process type, and accessibility for sampling.   657 

 658 

The main goal of this study was to provide system-level mechanistic understanding of global 659 

diversity and distribution of municipal WWTP microbiomes.  WWTPs were selected based on 660 

the following criteria:  (i) Continental-level geographic locations.  Samples were obtained from 661 

all continents except for Antarctica, but with special focus on North America, Asia, and Europe 662 

(Fig. 1a).  Because of the low accessibility, WWTPs in Africa and South America were under-663 

represented.  (ii) Latitude.  To address questions related to latitudinal diversity gradient (LDG), 664 

WWTPs were intensively sampled in North America along the East and West Coasts, and 665 

Highway 35, as well as Highway 40 (from East to West) (Fig. 1a), in Asia, Europe, and Australia.  666 

The WWTPs sampled spanned latitudes from 43.6ºS to 64.8 ºN.  (iii) Climate zones.  Since 667 

climate could have significant impacts on microbial communities, the samples covered 17 668 
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different climate types (Supplementary Fig. 6).  To distinguish independent effects of continents 669 

versus climate zones, we increased sampling efforts for climate zones that were present in 670 

multiple continents, such as Humid Subtropical Climate.  (iv) Scales.  The samples were 671 

collected from very broad spatial scales: global (across 6 continents), regional (e.g., individual 672 

continents or climate zones), and local (e.g., individual cities).  Within some cities, multiple 673 

WWTPs and multiple samples per WWTP were collected; (v) Wastewater treatment process 674 

types.  To address the relationship of structure to function for activated sludge, we sampled the 675 

aerobic zone of conventional plug flow, oxidation ditch, sequential batch reactors, 676 

anaerobic/anoxic/oxic (A2O), and other activated sludge process types. 677 

 678 

A unified protocol was used for sampling, sample preservation, metadata collection, DNA 679 

extraction, sequencing, and sequence analysis, to minimize potential experimental variations4,51-680 

53.  Detailed sampling and metadata collection methods and protocols are available at the 681 

GWMC web site (http://gwmc.ou.edu/protocols/view/11).  682 

 683 

Sampling was carried out in June to November 2014 in the Northern Hemisphere and December 684 

2014 to April 2015 in the Southern Hemisphere.  The sampling time was generally between 685 

10:00 am to 2:00 pm, when the WWTPs were relatively stable under normal conditions. 686 

Although we tried to collect the global samples in the same season, seasonal temporal turnover in 687 

activated sludge communities could have had some effect on the community variations we 688 

observed to some degree. Based on limited published work54,55, such temporal variations should 689 

be much smaller than the spatial variations at the global/continental scales.  For example, a 690 

previous study on 5-year temporal dynamics of activated sludge community showed no 691 
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significant seasonal succession54.  It’s also revealed that the activated sludge communities were 692 

relatively stable across three months, with average Bray-Curtis distance 0.45 ± 0.10 (mean ± SD) 693 

between samples55; this variation was smaller than our observed mean variations even at local 694 

city level (0.54 ± 0.19) (Fig. 4a). 695 

 696 

At local scale, we defined a city based on it having a large enough geographic scale, not on an 697 

administrative division (see Supplementary Table 1 for defined cities).  For each city, we usually 698 

collected at least 12 samples, and had ≥12 samples/city in 77% cities, with <3 samples/city in 699 

only 1% of cities.  We also sampled at least 2 WWTPs in 72% of the cities.  In each plant, we 700 

collected at least 3 mixed liquor samples, generally from 3 different positions (the front, middle, 701 

and end part) of the aerobic zone in each aeration tank.  In a few cases (3.3% plants), where only 702 

one sampling position was applicable, 3 samples were taken in sequence with at least 30-min 703 

interval.  Altogether, we collected 1,186 activated sludge samples from 269 WWTPs across 23 704 

countries from global scale (e.g., across 6 continents), regional scale (e.g., individual continents), 705 

to local scale (e.g., geographic sites or individual cities) (Fig. 1a).  706 

 707 

At each sampling position, approximately 1 liter mixed liquor was sampled and well mixed, and 708 

40 mL was transferred into a sterile tube.  The mixed liquor samples were kept on ice (≤4ºC), 709 

transported to laboratory within 24 hours, divided into aliquots, and then centrifuged at 4ºC, 710 

15,000 g for 10 min to collect pellets.  Sludge pellets were transported (if necessary) with dry ice 711 

to the designated laboratories within 48 hours and preserved at -80ºC before DNA extraction.   712 

 713 
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Along with the sludge samples, associated metadata, conforming to the Genomic Standards 714 

Consortium’s MIxS and Environmental Ontology (ENVO) Standards56,57, were provided by 715 

plant managers and/or investigators (Supplementary Table 1; Supplementary Fig. 7). We 716 

collected metadata (e.g., chemical properties, operation conditions, process type) from each plant 717 

using a standard sampling data sheet, which ensured that the data from all plants was in the same 718 

format.  Raw metadata were processed as one metadata table (Supplementary Table 1) and 719 

classified into three categories:  geological variables, plant operation and monitoring variables, 720 

and sample properties.  The geological variables included latitude and longitude; ambient climate 721 

variables such as climate type, mean annual temperature (MAT), and precipitation; and 722 

population size and gross domestic product (GDP) for the city where the WWTP was located.  723 

 724 

Climate type was determined by the Köppen-Geiger climate classification58.  GDP and 725 

population data were derived from the Brookings analysis of Global Metro Monitor59.  Variables 726 

related to plant design and operation include plant age, design capacity, actual flow rate, volume 727 

of aeration tanks, hydraulic retention time (HRT) and solids retention time (SRT).  The activated 728 

sludge process type, aerator type, and coupling with N removal processes (nitrification and 729 

denitrification) in the WWTP were also provided by the plant managers as possible.  Plant 730 

monitoring variables include influent and effluent biochemical oxygen demand (BOD) and 731 

chemical oxygen demand (COD) representing organic carbon (C) level, total nitrogen and total 732 

phosphorus representing nutrient level, ammonium N, as well as the food to microorganism (F/M) 733 

ratio, indicating the average organic C loading to microorganisms.  For sample properties, most 734 

plant managers provided the yearly average value of mixed liquor suspended solids (MLSS), 735 
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indicating the concentration of biomass in the activated sludge, dissolved oxygen, pH, and mixed 736 

liquid temperature; some provided the measured values when sampling.  737 

 738 

Activated sludge performance was calculated as the specific removal rates (g per g biomass per 739 

day) of organic C (BOD and COD), nutrients (total nitrogen and total phosphorus) and 740 

ammonium nitrogen (NH4-N): 741 

 742 

removal	rate = (ܺ)	ݐ݊݁ݑ݈݂݊ܫ) − ((ܺ)ݐ݊݁ݑ݈݂݂ܧ × 	ܵܵܮܯ݁ݐܽݎ	ݓ݈݂ × ݁݉ݑ݈ݒ	݇݊ܽݐ	ܾܿ݅ݎ݁ܽ  

 743 

The WWTPs represent diverse geographies and a large range of climatic conditions, operation 744 

parameters, and chemical conditions across and within continents (Supplementary Fig. 7).  For 745 

instance, the average influent BOD ranged from 30 to 1,000 mg/L.  Such a broad range of 746 

diverse parameters is critical to disentangling mechanisms of activated sludge microbial 747 

community assembly.  748 

 749 

DNA Extraction  750 

 751 

To minimize the variations associated with sample processing, identical protocols were used in 752 

DNA extraction and 16S rRNA gene sequencing.  All samples from China and Japan were 753 

shipped to Dr. Xianghua Wen’s Laboratory at Tsinghua University for DNA extraction.  All 754 

other samples, including samples from Europe collected by Dr. Thomas Curtis at Newcastle 755 

University, were shipped to Dr. Jizhong Zhou’s Laboratory at University of Oklahoma (OU) for 756 



 

 

 

29

DNA extraction.  Due to the tight restriction of sample shipment in South Africa, Mexico, Chile, 757 

Uruguay, and Brazil, the DNA was extracted by GWMC members in these countries.  DNA was 758 

extracted from sludge samples using MoBio PowerSoil DNA isolation kit.  For each sample, a 759 

pellet from 3 mL mixed liquor was used.  In addition to the manufacture protocol, we always 760 

placed exactly 12 bead tubes on the vortex evenly and vortex at maximum speed for 10 min to 761 

minimize the lysis efficiency difference between samples.  All DNA samples were processed at 762 

OU for sequencing.   763 

 764 

DNA quality for all samples was evaluated with a NanoDrop spectrophotometer (NanoDrop 765 

Technologies Inc., Wilmington, DE, USA) at OU.  Final DNA concentrations were quantified 766 

using PicoGreen with a FLUO star Optima instrument (BMG Labtech, Jena, Germany).  Purified 767 

DNA was stored at -80 °C.  768 

 769 

16S rRNA gene sequencing and sequence processing 770 

 771 

The V4 region of the 16S rRNA gene was amplified and sequenced using standardized protocols 772 

with the phasing amplicon sequencing (PAS) approach as described previously60 and the primers 773 

515F (GTGCCAGCMGCCGCGGTAA) and 806R (GGACTACHVGGGTWTCTAAT) of the 774 

Earth Microbiome Project61.  In silico primer coverage analysis using SILVA TestPrime 1.062 775 

and SILVA dataset r123 showed that these primers cover 86.8% and 52.9% of all bacterial and 776 

archaeal sequences with 0 mismatches, respectively.  777 

 778 
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To mitigate quantitative problems associated with amplicon sequencing52, the 16S rRNA gene 779 

fragments were amplified from community DNAs (10 ng) with two-step PCR using lower 780 

numbers of amplification cycles (10 and 20 cycles for the 1st and 2nd step, respectively).  The 781 

two-step PAS approach offers several advantages:  lower amplification biases, better sequence-782 

read quality, higher effective sequence read numbers and length, and lower sequencing errors60.  783 

All samples were sequenced using the same MiSeq instrument at the Institute for Environmental 784 

Genomics, OU.  Generally, about 400 samples were combined for each round of MiSeq 785 

sequencing.  Since the numbers of sequence reads varied substantially from sample to sample, 786 

most samples were sequenced more than once (e.g., 19% twice; 33%, three times; 43%, > 3 787 

times) to meet the target number of about 30K sequencing reads per sample, as determined in our 788 

previous analysis63.   789 

 790 

The numbers of sequences (reads) per sample ranged from 25,631 to 351,844 (Supplementary 791 

Table 5), and a total of 96,148 OTUs were obtained.  About 1.3% of these OTUs were from 792 

archaea, which accounted for 0.13% of the total abundance.  The choice of the PCR primer pair 793 

506F/806R (that was also used in the EMP project) is very likely to have strongly influenced this 794 

low archaeal abundance due to the much lower coverage of the primers of archaeal 16S rRNA 795 

genes compared to the bacterial counterparts.  Because of the low archaeal abundance, the term 796 

“bacteria” is used for simplicity.  Also, the terms microbiome and microbial (or bacterial) 797 

community are used interchangeably.   798 

 799 

Raw sequence data were processed as previously described35, except for OTU generation by 800 

UPARSE64 at the 97% similarity threshold, resulting in 96,148 OTUs.  We define operational 801 



 

 

 

31

taxonomic units (OTUs) (based on 97% sequence similarity) for bacterial and archaeal 802 

phylotypes.  Although there is potential misconnection between OTUs and microbial species65, 803 

we use this popular definition for simplicity, and it also allows us to compare with previous 804 

studies of other systems.  The representative sequences were aligned using Clustal Omega 805 

v1.2.266 for constructing the phylogenetic tree by FastTree2 v2.1.1067.  OTUs were 806 

taxonomically annotated by RDP Classifier68 with a confidence cutoff of 80%, using the MiDAS 807 

database (version 2.1) which specifically provides a curated taxonomy for abundant and 808 

functionally important microorganisms in activated sludge69.  After removal of the global 809 

singletons64, the sequence number in each sample was rarefied to the same depth (25,600 810 

sequences per sample), resulting in 61,448 OTUs overall, which were used in subsequent 811 

comparative analyses. 812 

 813 

Although our sequencing depths were considerably higher than those in many similar studies70, 814 

rarefaction curves (Supplementary Fig. 2d, e) of activated sludge microbial communities 815 

indicated that additional rare taxa were likely present in individual samples.  Nevertheless, 816 

pooling all sequences gave a sufficient number for estimating global- and continent-level 817 

diversity of activated sludge microbial communities (Supplementary Fig. 2f, g).  The global 818 

OTU richness per sample was 2,309±559 (Supplementary Table 5).  Besides richness, we also 819 

calculated other alpha diversity indices on a global and regional scale (Supplementary Table 5). 820 

 821 

The rRNA operon copy number for each OTU was estimated through the rrnDB database based 822 

on its closest relatives with known rRNA operon copy number71.  The abundance-weighted mean 823 

rRNA operon copy number was then calculated for each sample as described previously49. 824 
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 825 

Sequence comparison against reference databases  826 

 827 

To compare the sequence diversity in this study to that in existing databases, the 96,148 828 

representative sequences from the activated sludge samples were compared against the 829 

representative set (97% similarity level) of full-length sequences from Greengenes 13.872 830 

(released on August 2013) and the non-eukaryotic fraction of Silva 132 databases73 (released on 831 

December 2017).  We used the open-source sequence search tool USEARCH1074 in global 832 

alignment search mode, and we required 97% similarity across the query sequence.  Our 833 

activated sludge sequences match to 38.6% of Greengenes and 37.2% of SILVA 16S rRNA gene 834 

OTUs at 97% similarity.  These matches accounted for 18.2% and 22.5% of the representative 835 

sequences in our datasets, respectively, indicating that the majority of activated sludge microbial 836 

species diversity is not yet captured in full-length sequence databases; this is similar to the 837 

observations in the EMP5.  838 

 839 

Species abundance distribution (SAD) fitting 840 

 841 

We compared the SAD of each sample, based on the rank-abundance distribution, with 842 

predictions from Poisson lognormal, log-series, Broken-stick, and Zipf models.  Although 843 

numerous SAD models are available, lognormal and log-series have been the most successful in 844 

predicting SADs, and they are the standards for testing other models18.  While the logseries 845 

model is well supported by macroecological studies, the Poisson lognormal model is more 846 

commonly observed with microorganisms18. By comparing (rank-for-rank) the observed and 847 
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predicted SADs using regression analysis, we could directly infer the percentages of variations in 848 

abundance among species explained by each model using the same code, developed by 849 

Shoemaker et al18.  850 

 851 

Estimation of global bacterial diversity of WWTPs 852 

 853 

We used the methods described in Curtis et al.20 and Locey and Lennon19 to predict global 854 

bacterial richness (ST) using the lognormal model.  The lognormal prediction of ST is based on 855 

the total abundance (NT), the abundance of the most abundant species (Nmax), and the assumption 856 

that the rarest species is a singleton, Nmin = 1.  In communities with NT individuals, the richness 857 

can be estimated by: 858 

்ܵ = √గ ݔ݁ ൝ቆ݈ܽ݃ଶ ൬ටேೌೣே൰ቇଶൡ                                                                                       (i) 859 

 860 

where ܽ is an inverse measure of the width of the distribution, which can be numerically solved 861 

from: 862 

்ܰ = ඥగேேೌೣଶ ݔ݁ ൝ቆ݈ܽ݃ଶ ൬ටேೌೣே൰ቇଶൡ ݔ݁ ൜ቀ(ଶ)ଶ ቁଶൠ ቈ݂݁ݎ ቆ݈ܽ݃ଶ ൬ටேೌೣே − (ଶ)ଶ ൰ቇ +863 

݂ݎ݁ ቆ݈ܽ݃ଶ ൬ටேೌೣே + (ଶ)ଶ ൰ቇ                                                                                                (ii) 864 

 865 

We used published data to estimate the total microbial abundance in WWTPs as follows.  866 

Empirical records compiled from a variety of sources, for example, AQUASTAT75 and Sato et al 867 

201376, suggest that about 330 km3 year-1 of municipal wastewater are produced globally, of 868 
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which 60% is treated9.  Assuming that they are all treated in WWTPs, then about 0.54 km3 869 

municipal wastewater are treated by WWTPs globally per day.  The total effective volume of 870 

aerobic tanks of WWTPs can be estimated by: 871 ܸ = ܳ ×  872 (iii)                                                                                                                      ܴܶܪ

where Q is the influent flow rate (m3 day-1) and HRT is the hydraulic retention time (day) of the 873 

aerobic tank.  Our dataset indicates that the average HRT of aerobic tanks is 9.8 (± 0.3 s.e.) hours.  874 

Thus, the total effective volume is estimated as 0.22 (± 0.007) km3.  The total cells in activated 875 

sludge are about 2.3 (± 0.4)× 109 (ml-1)77; thus, NT (global activated sludge bacterial abundance) 876 

is about 4.0- 6.1 × 1023. 877 

 878 

We then estimated Nmax based on the ratio of Nmax to NT of our sequencing data, i.e., the relative 879 

abundance of the most abundant OTU, or using scaling law19.  The knowledge of NT, Nmax, and 880 

Nmin allows equation (ii) to be solved numerically for the parameter ܽ and, subsequently, for ST 881 

using equation (i). 882 

 883 

Using the same method, we estimated the total bacterial richness of individual WWTPs, along 884 

with WWTPs in the United States and China.  The volume of aerobic tanks of a WWTP in 885 

Beijing, China is 10,000 m3, making the total cells about 2.3 (± 0.4) × 1019.  NT of WWTPs in 886 

US and China were estimated based on their published data of treating amount78,79, with  887 

activated sludge harboring similar numbers of species for the US (4.6 × 108 to 1.1 × 109) and 888 

China (3.9 × 108 to 1.0 × 109).  Nmax was further estimated based on our 16S rRNA gene 889 

sequencing data or using a scaling law19.  The total bacterial richness estimates of individual 890 

human gut, individual cow rumen, global ocean and Earth were taken from Locey and Lennon19.  891 
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 892 

Core community determination 893 

A global-scale core microbial community was determined based on multiple reported measures.  894 

First, “overall abundant OTUs” were filtered out according to mean relative abundance across all 895 

samples (MRA)80.  Previous studies used different criteria (e.g., MRA > 1%30,81 or 0.1%82,83) 896 

without any objective or standard rule.  Thus, we selected all top 0.1% OTUs (62) as overall 897 

abundant OTUs.  Their MRA was higher than 0.2%, within the range of reported criteria.  898 

Second, “ubiquitous OTUs” were defined as OTUs with occurrence frequency in more than 80% 899 

of all samples84.  Finally, “frequently abundant OTUs” were selected based on their relative 900 

abundances with a sample.  In each sample, the OTUs were defined as abundant when they had a 901 

higher relative abundance than other OTUs and made up the top 80% of the reads in the sample14.  902 

A frequently abundant OTU was defined as abundant in at least half samples, which is stricter 903 

than the reported criterion (10 in 26 samples14).  Since the above three measures are 904 

complementary to one another when defining core community, only OTUs fulfilling all three 905 

criteria were defined as the global scale core bacterial community. 906 

 907 

Following the same criteria as described above, the core community was identified for each 908 

continent.  That is, a core OTU for a specific continent should be one that was from the top 0.1% 909 

OTUs of that continent; a core OTU also had to be detected in more than 80% of the samples and 910 

dominant for more 50% of the samples of that continent.   911 

 912 

Comparison of bacterial community composition of WWTPs to natural habitats and source 913 

tracking 914 
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 915 

We downloaded the OTU table of 16S rRNA gene amplicon studies from the EMP 916 

(ftp://ftp.microbio.me/emp/release1/otu_tables/closed_ref_greengenes/emp_cr_gg_13_8.subset_917 

5k.biom)5.  This table was generated using closed reference against Greengenes 13.8 and 918 

contained 5,000 global samples from multiple habitats.  To compare community compositions at 919 

the OTU level, our activated sludge OTUs were repicked using closed reference against 920 

Greengenes 13.8, which picked 68.1% of the sequences.  This OTU table was then merged with 921 

the EMP OTU table.  To give relatively equal representation of samples across environments, we 922 

further collapsed our activated sludge samples at the plant level by summing the abundance of 923 

each OTU across samples of the same plant, resulting in 269 activated sludge samples.  Our 924 

activated sludge samples and the EMP samples from freshwater (including that from freshwater 925 

and freshwater biofilm), ocean (including that from sea water and biofilm), animal feces, human 926 

feces, soil and air were selected from the merged OTU table.  We then subsampled to 10,000 927 

sequences per sample.  To compare microbial community compositions across habitats, the 928 

Nonmetric Multidimensional Scaling (NMS) analysis was performed using the Bray-Curtis 929 

dissimilarity matrix.  930 

 931 

The proportion of each activated sludge microbiota attributable to freshwater, soil, ocean, animal 932 

and human feces, and air at the genus level were estimated using SourceTracker39, which was 933 

run through QIIME with default settings using activated sludge microbiota as the sink and those 934 

in other habitats as sources.  Genera detected in less than 1% of the samples were filtered out 935 

before source-tracking modeling. 936 

 937 
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Diversity analyses:  α- and β-diversity and correlation with environment 938 

 939 

Richness and Faith’s index were used to measure taxonomic and phylogenetic α-diversity, 940 

respectively, and they were computed using the Picante R package85.  Other taxonomic α-941 

diversity indices, including Shannon index, Simpson index and Pielou’s evenness, were 942 

calculated using the vegan R package86. 943 

 944 

Bray-Curtis (abundance-based) and Sorensen (incidence-based) distances were calculated to 945 

represent the taxonomic β-diversity using the vegan R package86.  Canberra’s distance was also 946 

calculated to give more weight to rare taxa, using the vegan R package86.  The weighted 947 

(abundance-based) and unweighted UniFrac (incidence-based) distance87 were calculated to 948 

represent the phylogenetic β-diversity usig the GUniFrac R package88.  For each environmental 949 

variable, we performed a partial Mantel test to examine the correlation between environmental 950 

variable and microbial community composition independent of geographical location (999 951 

permutations) using the vegan R package86. 952 

 953 

PERMANOVA was applied to assess the difference of community composition among 954 

continents, climate types, and activated sludge process types using the vegan R package86.  In 955 

PERMANOVA, climate types were defined at main climate group level, which includes 5 956 

groups:  A (tropical), B (arid), C (temperate), D (cold), and E (polar)58.  The activated sludge 957 

process types were classified into 9 general groups: complete mix, conventional plug flow, 958 

sequential batch reactors (SBR), anaerobic/anoxic/oxic (A2O), anoxic/oxic (AO), oxidation ditch, 959 

contact stabilization, pure oxygen and extended aeration. 960 
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 961 

Distance Decay relationships 962 

 963 

The rate of the distance-decay relationship (DDR) was calculated as the slope of a linear least 964 

squares regression on the relationship between ln-transformed geographic distance versus ln-965 

transformed bacterial community composition similarity.  We used matrix permutation tests to 966 

examine the statistical significance of the distance-decay slope37.  The samples were permuted 967 

999 times, and the observed slope was compared with the distribution of values in the permuted 968 

datasets.  We also tested whether the slopes of the distance-decay curve at the three spatial scales 969 

(0 to 100 km; 100 to 5,000 km; and 5,000 to 25,000 km) were significantly different from the 970 

slope of the overall distance-decay curve, using matrix permutations to compare the observed 971 

difference between slopes within the three spatial scales with the overall distance-decay slope to 972 

that over 999 permutations. 973 

 974 

Estimating stochasticity of community assembly 975 

 976 

We assessed community-assembly stochasticity with a null-model-based index.  The 977 

Stochasticity ratio was described previously41,89.  Since null-model algorithms usually require a 978 

high number of replicates, we selected 71 cities, each of which had more than 9 samples; we 979 

randomly drew 9 samples from each city to make sampling even.  We calculated stochasticity 980 

ratio using taxonomic and phylogenetic metrics.  Whether using the Bray-Curtis (abundance-981 

weighted) or Sorensen (unweighted) model, the stochasticity ratio was calculated based on 982 

typical null-model algorithms for taxonomic metrics90,91.  When using weighted and unweighted 983 
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Unifrac, the stochasticity ratio was calculated based on typical null-model algorithms for 984 

phylogenetic metrics91,92.  Samples within each city were considered sharing the same regional 985 

species pool in null model algorithms. 986 

 987 

Partitioning the environment and distance effect 988 

 989 

To give a quantification of relative contribution of the environment effect versus the distance 990 

effect on β-diversity, we performed a variation partition analysis (VPA) based on multiple 991 

regression on matrices (MRM).  We used a modified MRM approach as described previously37.  992 

Briefly, we first selected a non-redundant environmental variable set.  The final set included 993 

temperature, precipitation, design capacity, SRT, dissolved oxygen, pH, and influent BOD.  The 994 

highest correlation was between design capacity and SRT (Pearson’ r = -0.25), and it indicated a 995 

low level of collinearity among these variables.  MRM was performed in different spatial scales.  996 

Geographic distance and microbial community distance were ln-transformed.  A Euclidean 997 

distance matrix was calculated for each environmental variable.  To reduce the effect of spurious 998 

relationships between variables, we first ran the MRM test with all the variables in the non-999 

redundant environmental variable set, removed the non-significant variables from this initial 1000 

MRM test, and then reran the test37.  The significance of the partial regression was tested by 1001 

matrix permutation for 999 times93.  In VPA, the R2 of the selected environmental variables as 1002 

independent matrices (Rଶா), geographical distance as independent matrix (Rଶீ), and all matrices 1003 

(Rଶ்) were used to compute the four components of variations as described elsewehere94: (i) 1004 

pure environmental variation = Rଶ் − Rଶீ; (ii) pure geographical distance = Rଶ் − Rଶா; (iii) 1005 
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spatially structured environmental variation = Rଶீ + Rଶா − Rଶ்; and (iv) unexplained variation 1006 

= 1 − Rଶ். 1007 

 1008 

Structural equation model (SEM)  1009 

 1010 

SEM was used to explore the direct and indirect relationships among environmental variables, 1011 

bacterial communities, and activated sludge function.  The community composition was 1012 

represented by the first principal component (PC1) of Principal coordinate analysis (PCoA) 1013 

based on Bray-Curtis distance.  We first considered a full model that included all reasonable 1014 

pathways, and then we sequentially eliminated non-significant pathways until we attained the 1015 

final model whose pathways all were significant.  To capture the quadratic correlation of SRT to 1016 

diversity and BOD removal, we constructed a composite variable94 of ‘SRT effect’ as a linear 1017 

combination of SRT and the square of SRT (SRT.SQ).  We used a χ2 test and the root mean 1018 

square error of approximation to evaluate the fit of model.  The SEM-related analysis was 1019 

performed using the lavaan R package95. 1020 

 1021 

Random Forest models 1022 

 1023 

We applied a machine-learning model, random forest, to examine the strengths of the 1024 

associations between environmental variable and compositional data, using the randomForest R 1025 

package96.  We used OTUs as predictors and environmental variable as response data.  To 1026 

correct the potential spatial autocorrelation, we used OTU data at the plant level, by averaging 1027 

the relative abundance of each OTU across samples of the same plant.  OTUs which were 1028 
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detected in at least 20% of all the plants and in all continents were used for modelling.  We 1029 

allowed a baseline model to learn using the full data-set for training, and subsequently, we 1030 

trained new random forests for each plant with customized training sets that excluded plants 1031 

within a defined radius of the target plant.  The size of this radius ranged from 0 to 5000 km.  To 1032 

delineate the model prediction strength, the cross-validated R2 was calculated as 1 − ∑(௬ି௬ො)మ∑(௬ି௬ത)మ, 1033 

where ݕ is the value of the parameter for sample ݅, ݕො is the prediction for that same sample 1034 

(obtained by held-out cross-validation), and ݕത is the overall mean (the summation runs over all 1035 

the samples). 1036 

 1037 

Data availability  1038 

 1039 

The sample metadata are available in Supplementary Table 1.  Sequences are available from the 1040 

NCBI Sequence Read Archive with accession number PRJNA509305.  OTU tables and 1041 

representative sequences of the OTUs are available on the GWMC web site 1042 

(http://gwmc.ou.edu/data-disclose.html).   1043 

 1044 

Code availability 1045 

 1046 

R codes on the statistical analyses are available at https://github.com/Linwei-Wu/Global-1047 
bacterial-diversity-in-WWTPs. 1048 
 1049 

References of Methods 1050 
 1051 
51 Zhou, J. et al. Random Sampling Process Leads to Overestimation of β-Diversity of 1052 

Microbial Communities. mBio 4 (2013). 1053 
52 Zhou, J. et al. Reproducibility and quantitation of amplicon sequencing-based detection. 1054 

ISME J 5, 1303-1313 (2011). 1055 



 

 

 

42

53 Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by 1056 
the Microbiome Quality Control (MBQC) project consortium. Nat Biotechnol 35, 1077 1057 
(2017). 1058 

54 Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a 1059 
full-scale municipal wastewater treatment plant. ISME J 9, 683-695 (2015). 1060 

55 Xia, Yu. Diversity and temporal assembly patterns of microbial communities in 1061 
municipal wastewater treatment systems. PhD thesis, Univ. Tsinghua, Beijing, China 1062 
(2016). 1063 

56 Buttigieg, P. L., Morrison, N., Smith, B., Mungall, C. J. & Lewis, S. E. The environment 1064 
ontology: contextualising biological and biomedical entities. J Biomed Semantics 4, 43 1065 
(2013). 1066 

57 Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and 1067 
minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol 29, 1068 
415-420 (2011). 1069 

58 Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-1070 
Geiger climate classification. Hydrol Earth Syst Sci Discuss 4, 439-473 (2007). 1071 

59 Alan Berube, J. L. T., Tao Ran,Joseph Parilla. Global Metro Monitor, 1072 
<https://www.brookings.edu/research/global-metro-monitor/> (2015). 1073 

60 Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental 1074 
microbial community analysis. BMC Microbiol 15, 125 (2015). 1075 

61 Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of 1076 
sequences per sample. Proc Natl Acad Sci USA 108, 4516-4522 (2011). 1077 

62 Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for 1078 
classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41, 1079 
e1-e1 (2013). 1080 

63 Wen, C. et al. Evaluation of the reproducibility of amplicon sequencing with Illumina 1081 
MiSeq platform. PLoS One 12, e0176716 (2017). 1082 

64 Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. 1083 
Nat Methods 10, 996-998 (2013). 1084 

65 McLaren, M. R. & Callahan, B. J. In Nature, There Is Only Diversity. mBio 9, e02149-1085 
02117 (2018). 1086 

66 Sievers, F. et al. Fast, scalable generation of high�quality protein multiple sequence 1087 
alignments using Clustal Omega. Mol Syst Biol 7, doi:10.1038/msb.2011.75 (2011). 1088 

67 Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately maximum-1089 
likelihood trees for large alignments. PLoS One 5, e9490, 1090 
doi:10.1371/journal.pone.0009490 (2010). 1091 

68 Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid 1092 
assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 1093 
73, 5261-5267 (2007). 1094 

69 McIlroy, S. J. et al. MiDAS 2.0: an ecosystem-specific taxonomy and online database for 1095 
the organisms of wastewater treatment systems expanded for anaerobic digester groups. 1096 
Database 2017 (2017). 1097 

70 Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. 1098 
Science 359, 320-325 (2018). 1099 



 

 

 

43

71 Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. & Schmidt, T. M. rrnDB: improved 1100 
tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation 1101 
for future development. Nucleic Acids Res, gku1201 (2014). 1102 

72 McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for 1103 
ecological and evolutionary analyses of bacteria and archaea. ISME J 6, 610 (2012). 1104 

73 Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data 1105 
processing and web-based tools. Nucleic Acids Res 41, D590-D596 (2012). 1106 

74 Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. 1107 
Bioinformatics 26, 2460-2461 (2010). 1108 

75 AQUASTAT. FAO global information system on water and agriculture. Wastewater 1109 
section., <http://www.fao.org/nr/water/aquastat/wastewater/index.stm> (2014). 1110 

76 Sato, T., Qadir, M., Yamamoto, S., Endo, T. & Zahoor, A. Global, regional, and country 1111 
level need for data on wastewater generation, treatment, and use. Agri Water Manag 130, 1112 
1-13 (2013). 1113 

77 Foladori, P., Bruni, L., Tamburini, S. & Ziglio, G. Direct quantification of bacterial 1114 
biomass in influent, effluent and activated sludge of wastewater treatment plants by using 1115 
flow cytometry. Water Res 44, 3807-3818 (2010). 1116 

78 Agency, U. S. E. P. The Sources and Solutions: Wastewater, 1117 
<https://www.epa.gov/nutrientpollution/sources-and-solutions-wastewater> (2018). 1118 

79 Chan, W. Wastewater: Good To The Last Drop, 1119 
<http://chinawaterrisk.org/resources/analysis-reviews/wastewater-good-to-the-last-drop/> 1120 
(2017). 1121 

80 Hanski, I. Dynamics of regional distribution: the core and satellite species hypothesis. 1122 
Oikos, 210-221 (1982). 1123 

81 Galand, P. E., Casamayor, E. O., Kirchman, D. L. & Lovejoy, C. Ecology of the rare 1124 
microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA 106, 22427-22432, 1125 
doi:10.1073/pnas.0908284106 (2009). 1126 

82 Székely, A. J. & Langenheder, S. The importance of species sorting differs between 1127 
habitat generalists and specialists in bacterial communities. FEMS Microbiol Ecol 87, 1128 
102-112 (2014). 1129 

83 Cheng, J. et al. Discordant temporal development of bacterial phyla and the emergence of 1130 
core in the fecal microbiota of young children. ISME J 10, 1002 (2016). 1131 

84 Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a 1132 
full-scale municipal wastewater treatment plant. ISME J, doi:10.1038/ismej.2014.162 1133 
(2014). 1134 

85 Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. 1135 
Bioinformatics 26, 1463-1464 (2010). 1136 

86 Oksanen, J. et al. Package ‘vegan’. Community ecology package, version 2 (2013). 1137 
87 Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial 1138 

communities. Appl Environ Microbiol 71, 8228-8235 (2005). 1139 
88 Chen, J. GUniFrac: generalized UniFrac distances. R package version 1, 2012 (2012). 1140 
89 Guo, X. et al. Climate warming leads to divergent succession of grassland microbial 1141 

communities. Nat Clim Change 8, 813 (2018). 1142 
90 Chase, J. M., Kraft, N. J., Smith, K. G., Vellend, M. & Inouye, B. D. Using null models 1143 

to disentangle variation in community dissimilarity from variation in α-diversity. 1144 
Ecosphere 2, art24 (2011). 1145 



 

 

 

44

91 Stegen, J. C. et al. Quantifying community assembly processes and identifying features 1146 
that impose them. ISME J 7, 2069-2079 (2013). 1147 

92 Kembel, S. W. Disentangling niche and neutral influences on community assembly: 1148 
assessing the performance of community phylogenetic structure tests. Ecol Lett 12, 949-1149 
960 (2009). 1150 

93 Legendre, P., Lapointe, F. J. & Casgrain, P. Modeling brain evolution from behavior: a 1151 
permutational regression approach. Evolution 48, 1487-1499 (1994). 1152 

94 Grace, J. B. & Bollen, K. A. Representing general theoretical concepts in structural 1153 
equation models: the role of composite variables. Environ Ecol Stat 15, 191-213 (2008). 1154 

95 Rosseel, Y. Lavaan: An R package for structural equation modeling and more. Version 1155 
0.5–12 (BETA). Journal of statistical software 48, 1-36 (2012). 1156 

96 Liaw, A. & Wiener, M. Classification and regression by randomForest. R news 2, 18-22 1157 
(2002). 1158 

97 Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol Cons 61, 1-10 1159 
(1992). 1160 

  1161 



 

 

 

45

Figures legends 1162 
 1163 
Fig. 1.  The Global Water Microbiome Consortium captures microbial diversity of globally 1164 
distributed wastewater treatment plants (WWTPs).  (a) Geographical distribution of 269 1165 
WWTPs where activated sludge samples and environmental data were collected.  (b) Predicting 1166 
species abundance distribution (SAD) of activated sludge bacterial communities.  The grey line 1167 
represents a SAD that was randomly chosen from our data.  Each model was fit to the observed 1168 
SAD (see Methods).  Supplementary Fig.1a shows the variations of the SADs explained by each 1169 
model across all 1186 activated sludge communities, indicating the best performance of the 1170 
Poisson lognormal model. (c) Estimation of activated sludge microbial richness of WWTPs.  1171 
Microbial species are defined as OTUs at 97% sequence similarity threshold.  The microbial 1172 
richness (S)-abundance (N) scaling relationship (dashed grey line with pink hull as 95% 1173 
prediction interval), and the grey dots representing richness estimates from other systems were 1174 
derived from Locey and Lennon19.  Richness was predicted from the lognormal model using NT 1175 
estimated from published data, and Nmax inferred from our sequencing data (filled circle) or Nmax 1176 
predicted from the dominance-scaling law19 (hollow circles).  ‘WWTP’ indicates one WWTP, as 1177 
do ‘Human gut’ and ‘Cow rumen’.  (d) Latitudinal distribution of activated sludge bacterial 1178 
diversity, plotting OTU richness against the absolute latitude of sampling locations shows the 1179 
peak of richness at intermediate latitude (n = 1,186 biologically independent samples). The line 1180 
shows the second order polynomial fit based on ordinary least squares regression.  P < 2×10-16 1181 
(two-sided) for both regression coefficients.  The color gradient denotes the annual mean air 1182 
temperature.  Shapes of symbols denotes whether a sample originated from Northern (circle) or 1183 
Southern Hemisphere (square).  1184 
 1185 
Fig. 2.  Abundance, composition and functional importance of the global core operational 1186 
taxonomic units (OTUs) in activated sludge.  (a) Percentage and relative abundance of the 1187 
global core OTUs versus the remaining microbial OTUs.  In total, 0.05% (28 out of 61,448 1188 
OTUs) were identified as abundant and ubiquitous across wastewater treatment plants at global 1189 
scale, which accounted for 12.4% of the 16S rRNA gene sequences in an activated sludge 1190 
sample on average.  (b) The taxonomic composition of the global core OTUs on phylum and 1191 
class level.  (c) Activated sludge functions were calculated as the removal rate of organic carbon 1192 
(biochemical oxygen demand (BOD) removal, chemical oxygen demand (COD) removal), 1193 
nutrients (total nitrogen (TN) and total phosphorus (TP) removal) and ammonia nitrogen (NH4-N 1194 
removal) (g chemical per g MLSS per day, where MLSS is mixed liquor suspended solids 1195 
relating to microbial biomass).  The color gradient on the right indicates Spearman’s rank 1196 
correlation coefficients, with more positive values (dark blue) indicating stronger positive 1197 
correlations, and more negative values (dark red) indicating stronger negative correlations. The 1198 
asterisks denote the significance levels (two-sided) of the Spearman’s rank correlation 1199 
coefficients (n = 1,186 biologically independent samples): *** P < 0.001, ** P < 0.01, * P < 1200 
0.05.  In the correlation analysis, all OTUs detected in at least 20% of samples were included, 1201 
and P values were adjusted for multiple testing using the Benjamini and Hochberg false 1202 
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discovery rate (FDR) controlling procedure (n = 14,235 pairwise cases).  Only global core OTUs 1203 
were shown, with their mean relative abundance indicated on the left of the heatmap. 1204 
 1205 
Fig. 3.  Comparing bacterial community compositions across continents and with other 1206 
habitats.  (a) Nonmetric Multidimensional Scaling analysis (NMDS) showing that activated 1207 
sludge of WWTPs harbored a unique microbiome as compared with other habitats.  For 1208 
comparison, we merged our OTU table (n = 269 WWTPs) with that released by EMP5, which 1209 
contained thousands of bacterial communities from various habitats such as soil (n = 338 1210 
samples), ocean (n = 969 samples), freshwater (n = 447 samples), air (n = 81 samples), human 1211 
feces (n = 99 samples) and animal feces (n = 622 samples), but not activated sludge from 1212 
WWTPs (see Methods for details).  Bray-Curtis distance was calculated to represent the 1213 
dissimilarity in bacterial community compositions.  (b) Percentage of activated sludge bacterial 1214 
genera attributable to air, animal and human feces, freshwater, ocean and soil, as determined by 1215 
SourceTracker. In the boxplots, hinges show the 25, 50 and 75 percentiles. The upper whisker 1216 
extends to the largest value no further than 1.5 * IQR from the upper hinge, where IQR is the 1217 
inter-quartile range between the 25% and 75% quartiles; The lower whisker extends to the 1218 
smallest value at most 1.5 * IQR from the lower hinge. Sample size: n = 6, 73, 18, 34, 127 and 1219 
11 WWTPs for Africa, Asia, Australasia, Europe, North America and South America, 1220 
respectively. 1221 
 1222 
 1223 
Fig. 4.  Spatial turnover of the activated sludge bacterial communities.  (a) Distance-decay 1224 
relationships (DDRs) based on Bray-Curtis similarity.  Black line denotes the least-squares linear 1225 
regression across all spatial scales (n= 702,705 pairwise distances).  Colored lines denote 1226 
separate regressions: within cities (n= 9,753 pairwise distances), within continents (n= 220,136 1227 
pairwise distances ), and intercontinental (n= 472,816 pairwise distances ).  P values (one-sided) 1228 
for regression slopes were determined by matrix permutation tests. (b) Ecological stochasticity in 1229 
bacterial community assembly estimated by stochasticity ratio, which is calculated for each pair 1230 
of samples (n= 71 cities) based on taxonomic diversity (Taxo., Bray-Curtis/Sorensen) and 1231 
phylogenetic diversity (Phyl., Unifrac) weighted with abundance (Wt) or not (Uw).  Boxes and 1232 
whiskers indicate quartiles and triangles indicate mean values.  (c) Variance partition analysis 1233 
showing relative contributions of geographic distance (Geo) and environmental variables (ENV) 1234 
to the community variations based on Bray-Curtis distance.  1235 
 1236 
Fig. 5.  Environmental drivers of the activated sludge community composition. (a) A 1237 
structural equation model (SEM) shows relationships among environmental variables, 1238 
community composition, and WWTP functioning.  The composite variable of ‘SRT effect’ was 1239 
constructed as a linear combination of solids retention time (SRT) and the square of SRT 1240 
(SRT.SQ).  F/M is the food to microorganisms ratio.  The community composition is represented 1241 
by the first principal component score (PC1) from the Bray-Curtis distance-based principal 1242 
coordinate analysis.  Blue and red arrows represent significant (P < 0.05) positive and negative 1243 
pathways, respectively.  Numbers near the pathway arrow indicate the standard path coefficients 1244 
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(β).  Arrow width is proportional to the strength of the relationship.  R2 represents the proportion 1245 
of variance explained for every dependent variable.  Model χ2 = 13.92, df = 12, P = 0.31, n = 1246 
1,186 biologically independent samples; root mean square error of approximation (RMSEA) = 1247 
0.012 with probability of a close fit = 1.00.  (b) The average rRNA gene copy number of the 1248 
community increased with the influent biochemical oxygen demand (BOD)/(1+recycle ratio) 1249 
which approximates the influent BOD level of aerobic tank (n = 641 biologically independent 1250 
samples). The P value (two-sided) denotes the significance of the slope of ordinary least squares 1251 
regression. (c) The strength of association between taxonomic composition and temperature was 1252 
tested by random forest (n = 269 WWTPs).  The red diagonal shows the theoretical curve for 1253 
perfect predictions.  The inset shows a model trained on data from North and South America 1254 
samples to predict the temperature in Asian samples (n = 73 WWTPs). 1255 
 1256 
 1257 
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