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Global Diversity and Biogeography of Bacterial Communities in Wastewater Treatment Plants

Microorganisms in wastewater treatment plants (WWTPs) are essential for water purification to protect public and environmental health. However, their diversity and the factors that control it are poorly understood. Using a systematic global-sampling effort, we analyzed the 16S rRNA gene sequences from ~1,200 activated sludge samples taken from 269 WWTPs in 23 countries on 6 continents. Our analyses revealed that the global activated sludge bacterial communities contain ~1 billion bacterial phylotypes with a Poisson lognormal diversity distribution. Despite this high diversity, activated sludge has a small global core bacterial community (n = 28 OTUs) that is strongly linked to activated sludge performance. Meta-analyses with global datasets associate the activated sludge microbiomes most closely to freshwater populations. In contrast to macroorganism diversity, activated sludge bacterial communities show no latitudinal gradient. Furthermore, their spatial turnover is scale-dependent and appears to be largely driven by stochastic processes (dispersal, drift), although deterministic factors (temperature, organic input) also are important. Our findings enhance mechanistic understanding of the global diversity and biogeography of activated sludge bacterial communities within a theoretical ecology framework and have important implications for microbial ecology and wastewater treatment processes.

Introduction

Microorganisms, the most diverse group of life on Earth 1 , play crucial roles in the biogeochemical cycling of carbon (C), nitrogen (N), sulfur (S), phosphorus (P), and various metals. Unraveling the mechanisms generating and underlying microbial biodiversity is key to predicting ecosystem responses to environmental changes [START_REF] Chase | Disentangling the importance of ecological niches from stochastic processes across scales[END_REF] and improving bioprocesses, such as wastewater treatment and soil remediation [START_REF] Ofiţeru | Combined niche and neutral effects in a microbial wastewater treatment community[END_REF] . With recent advances in metagenomic technologies [START_REF] Zhou | High-Throughput Metagenomic Technologies for Complex Microbial Community Analysis: Open and Closed Formats[END_REF] , microbial biodiversity and distribution are being intensively studied in a wide variety of environments [START_REF] Thompson | A communal catalogue reveals Earth's multiscale microbial diversity[END_REF][START_REF] Fierer | The diversity and biogeography of soil bacterial communities[END_REF][7] , including the human gut, oceans, freshwater, air, and soil. However, we are just beginning to understand the diversity and biogeography of microbial communities in wastewater treatment plants (WWTPs) [START_REF] Ofiţeru | Combined niche and neutral effects in a microbial wastewater treatment community[END_REF][START_REF]Microbiomes of the built environment: a research agenda for indoor microbiology, human health, and buildings[END_REF] .

More than 300 km [START_REF] Ofiţeru | Combined niche and neutral effects in a microbial wastewater treatment community[END_REF] of wastewater is produced globally each year [START_REF] Mateo-Sagasta | [END_REF] . This volume equals one seventh of the global river volume [START_REF] Gleick | Water resources[END_REF] . About 60% of this wastewater is treated prior to release, and biological processes such as activated sludge are widely used in WWTPs [START_REF] Mateo-Sagasta | [END_REF] . Activated sludge employs microbial flocs or granules to remove C, N, P, micropollutants (e.g., toxins, pesticides, hormones, pharmaceuticals), and pathogens [START_REF] Van Loosdrecht | Anticipating the next century of wastewater treatment[END_REF] . Activated sludge relies on complex and incompletely defined microbial communities. As the largest application of biotechnology in the world [START_REF] Xia | Bacterial community structure in geographically distributed biological wastewater treatment reactors[END_REF] , activated sludge is a vital infrastructure of modern urban societies [START_REF] Grant | Taking the "waste" out of "wastewater" for human water security and ecosystem sustainability[END_REF] . Despite recent advances in understanding the microbial ecology of activated sludge [START_REF] Saunders | The activated sludge ecosystem contains a core community of abundant organisms[END_REF][START_REF] Zhang | Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[END_REF][START_REF] Wagner | Bacterial community composition and function in sewage treatment systems[END_REF] , the global picture of microbial diversity and distribution remains elusive. This information is essential to resolving controversies concerning the relative importance of stochastic versus deterministic community assembly in activated sludge [START_REF] Ofiţeru | Combined niche and neutral effects in a microbial wastewater treatment community[END_REF] . Such information is also important for identifying key players in the process and providing a basis for targeted manipulation of activated sludge microbiomes.

We created a Global Water Microbiome Consortium (GWMC) (http://gwmc.ou.edu/) and conducted a global campaign for systematically collecting and analyzing activated sludge microbiomes. We collected activated sludge samples from 269 WWTPs in 86 cities, 23 countries, and 6 continents (Fig. 1a, Supplementary Table 1). Deep sequencing and analysis of 16S rRNA genes were performed to address fundamental ecological questions, including: (i) What is the extent of global diversity of activated sludge microbial communities? (ii) Does a core microbiome exist in activated sludge processes across different continents? (iii) Do activated sludge microbiomes show a latitudinal diversity gradient (LDG)? (iv) Is microbial biodiversity important to function in activated sludge processes? and (v) What is the relative importance of deterministic versus stochastic factors in regulating the composition, distribution, and functions of activated sludge microbial communities?

Species abundance distributions

Species abundance distribution (SAD), a universal tool in ecology [START_REF] Morlon | Spatial patterns of phylogenetic diversity[END_REF] and central to biodiversity theory, has not been rigorously tested in microbial ecology until recently [START_REF] Shoemaker | A macroecological theory of microbial biodiversity[END_REF] . Here, we tested common SAD models, including Poisson lognormal, log-series, Broken-stick, and Zipf. The Poisson lognormal model explained 99% of the variation of the activated sludge bacterial SADs, compared with 72% for log-series, 94% for Zipf model, and 14% for Broken-stick (Fig. 1b; Supplementary Table 2). Consistent with previous studies [START_REF] Shoemaker | A macroecological theory of microbial biodiversity[END_REF] , the Poisson lognormal model gave the best fit to the observed SADs.

Extent of global microbial diversity

One grand challenge in biodiversity research is determining the number of species in an ecological system [START_REF] Locey | Scaling laws predict global microbial diversity[END_REF] . We estimated the global richness of activated sludge bacterial communities based on two parameters [START_REF] Locey | Scaling laws predict global microbial diversity[END_REF][START_REF] Curtis | Estimating prokaryotic diversity and its limits[END_REF] . One is the total number of individuals (N T ), which was estimated as 4 -6 × 10 23 bacteria in the global activated sludge community, based on published data [START_REF] Mateo-Sagasta | [END_REF] . The other is the quantity of the most abundant taxa (N max ), which can be estimated based on either our sequence data or the dominance-scaling law [START_REF] Locey | Scaling laws predict global microbial diversity[END_REF] . The lognormal model predicts 1.1 (± 0.07) × 10 9 species in activated sludge systems globally, with N max at 1.2% of N T based on our sequence data. The number of species increases only slightly, to 2.0 (± 0.2) × 10 9 species, using N max = 0.4×N T 0.93 from the dominance-scaling law [START_REF] Locey | Scaling laws predict global microbial diversity[END_REF] (Fig. 1c). The estimates of global activated sludge bacterial richness are only about one order of magnitude lower than that of the global ocean microbiome [START_REF] Locey | Scaling laws predict global microbial diversity[END_REF] (~ 10 10 ), even though the world's oceans represent an enormously larger ecosystem, which could be attributed to the higher volumetric productivity, thus higher concentration of bacterial cells, in activated sludge.

Global core bacterial community

Previous studies have reported the core community in WWTPs at regional scales. For example, core genera existed in Danish [START_REF] Saunders | The activated sludge ecosystem contains a core community of abundant organisms[END_REF] and Asian [START_REF] Zhang | Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[END_REF] WWTPs, but less than 10% of the genera overlapped.

Thus, a global core cannot be established from those regional studies.

At the global scale, occupancy-frequency and occupancy-abundance analyses revealed a hyperdominant pattern (Supplementary Fig. 1a) in which the 866 most abundant OTUs (1.39% of the total OTU number) accounted for 50.06% of the total abundance. Similar hyper-dominance patterns were observed in other macro- [START_REF] Ter Steege | Hyperdominance in the Amazonian tree flora[END_REF] and microbial communities [START_REF] Vargas | Eukaryotic plankton diversity in the sunlit ocean[END_REF] .

A core bacterial community was determined based on abundance and occurrence frequency of OTUs (see Methods for details). About 0.05% (28 OTUs) constituted a global core that accounted for 12.4% ± 0.2% (mean ± SE) of the sequences in activated sludge samples (Fig. 2a; Supplementary Table 3). Most (82%) of the core community members belonged to Proteobacteria, with 15 OTUs classified as β-Proteobacteria (Fig. 2b). The most abundant OTU, accounting for 1.14% ± 0.05% of the sequence abundance in activated sludge samples and occurring in 85% of all samples, was 99% similar to the γ-proteobacterium Dokdonella kunshanensis DC-3 23 . The second most abundant OTU (0.89% ± 0.06% in relative abundance and occurring in 96% of all samples) belonged to Zoogloea, a dominant genus in activated sludge communities [START_REF] Zhang | Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[END_REF] , with Z. ramigera known to enhance the flocculation of activated sludge 24 .

A Nitrospira OTU (OTU_6) was also identified as a core taxon, reflecting its importance for nitrite oxidation or complete ammonia oxidation in activated sludge [START_REF] Daims | Complete nitrification by Nitrospira bacteria[END_REF][START_REF] Daims | In Situ Characterization ofNitrospira-Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants[END_REF] . OTU_7 is closely related to Arcobacter species, which are highly abundant in raw sewage [START_REF] Fisher | Population dynamics and ecology of Arcobacter in sewage[END_REF] and include potential pathogens, such as A. cryaerophilus, A. butzleri, and A. skirrowii [START_REF] Collado | Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter[END_REF] . Furthermore, two putative polyphosphate-accumulating organisms (PAOs), a "Candidatus Accumulimonas" OTU (OTU_37) and a "Candidatus Accumulibacter" OTU (OTU_25), were identified as core taxa, although only 149 out of the 269 sampled WWTPs operate as enhanced biological P removal (EBPR) systems. Apparently, "Candidatus Accumulimonas" and "Candidatus Accumulibacter" exhibit some metabolic versatility.

The global core community has some overlap with previous studies. For example, Zoogloea species were proposed as core denitrifiers, and certain Saprospiraceae species play an important role in hydrolysis in EBPR systems [START_REF] Nielsen | Microbial communities involved in enhanced biological phosphorus removal from wastewater-a model system in environmental biotechnology[END_REF] . However, some discrepancies also occurred. Saunders et al.

showed Nitrotoga rather than Nitrospira as primary nitrite-oxidizers in Danish WWTPs [START_REF] Saunders | The activated sludge ecosystem contains a core community of abundant organisms[END_REF] .

Lawson et al. found low abundances of both Nitrotoga and Nitrospira in a pilot-scale EBPR treatment plant, but Nitrotoga maintained high potential activities based on high SSU rRNA:rDNA ratios [START_REF] Lawson | Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems[END_REF] . Regarding PAOs, we identified "Candidatus Accumulimonas" and "Candidatus Accumulibacter" as global core taxa, while Tetrasphaera was the core PAO in Danish WWTPs [START_REF] Saunders | The activated sludge ecosystem contains a core community of abundant organisms[END_REF][START_REF] Stokholm-Bjerregaard | A critical assessment of the microorganisms proposed to be important to enhanced biological phosphorus removal in full-scale wastewater treatment systems[END_REF] .

We similarly determined core communities for a variety of ecosystems at the global scale based on the Earth Microbiome Project (EMP) datasets [START_REF] Thompson | A communal catalogue reveals Earth's multiscale microbial diversity[END_REF] . Soil, human feces, air, and freshwater microbiomes had 9, 6, 2, and 1 bacterial OTUs identified as core taxa, respectively (Supplementary Table 4). No core taxa were found for animal feces and the ocean, possibly due to highly variable community compositions. Notably, the core community for activated sludge had no overlap with the other habitats, suggesting that activated sludge selects for a unique core community.

Latitudinal diversity pattern

Latitudinal diversity gradients (LDG), whereby species richness tends to decrease as latitude increases [START_REF] Hillebrand | On the generality of the latitudinal diversity gradient[END_REF] , are well documented in plant and animal ecology [START_REF] Martiny | Microbial biogeography: putting microorganisms on the map[END_REF] . Recently, several studies examined LDG patterns in natural microbial communities, but found no clear trends [START_REF] Fierer | The diversity and biogeography of soil bacterial communities[END_REF]7,[START_REF] Fuhrman | A latitudinal diversity gradient in planktonic marine bacteria[END_REF] . In contrast, activated sludge operates under relatively stable and similar conditions everywhere.

Thus, one might not expect activated sludge microbial communities to exhibit LDG.

We examined the relationship between OTU richness and latitude. OTU richness peaked at intermediate latitude, with a mean air temperature ~15 o C (Fig. 1d). As taxonomic and phylogenetic diversity were highly correlated (R 2 = 0.92), the trend was similar for phylogenetic diversity (Supplementary Fig. 2a). These results suggest that a LDG does not occur in activated sludge microbiomes; this parallels the global ocean microbiome 7 , but contrasts with some ocean [START_REF] Fuhrman | A latitudinal diversity gradient in planktonic marine bacteria[END_REF] and soil communities [START_REF] Zhou | Temperature mediates continental-scale diversity of microbes in forest soils[END_REF] . In addition, the relationship between bacterial richness and temperature (Supplementary Fig. 2b,c) did not fit predictions from the metabolic theory of ecology [START_REF] Brown | Toward a metabolic theory of ecology[END_REF] . This theory cannot explain bacterial richness based on air temperature (Supplementary Fig. 2b, R 2 < 0.001) and mixed liquid temperature (Supplementary Fig. 2c, R 2 = 0.03).

Continental-level differences in bacterial community structure

Variations in community composition (β-diversity) are key for understanding community assembly mechanisms [START_REF] Chase | Disentangling the importance of ecological niches from stochastic processes across scales[END_REF][START_REF] Martiny | Drivers of bacterial beta-diversity depend on spatial scale[END_REF] and ecosystem functioning [START_REF] Zhou | Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community[END_REF] . To understand how the bacterial community composition of activated sludge varied across different spatial scales, we examined taxonomic and phylogenetic diversity. First, diversity was highest in Asia and lowest in South America (Supplementary Table 5). Second, considerable variations between activated sludge samples were observed even at the phylum level (Supplementary Fig. 1b). Although the taxonomic and phylogenetic community structures were not clearly separated at the OTU level in two-dimensional ordinations (Supplementary Fig. 1c,d), PERMANOVA indicated that taxonomic and phylogenetic composition were significantly different (P < 0.001) between any two continents (Supplementary Table 6). Third, climate and activated sludge process type exerted significant effects (P = 0.001) on microbial community structure, but these were overwhelmed by continental geographical separation (Supplementary Table 7). For example, bacterial communities of the same climate type in North America and Asia were distinguished by their continental origins rather than being clustered together (Supplementary Fig. 1e,f). While the activated sludge bacterial communities had higher similarity to those of freshwater and soil than to other environments (Fig. 3a), they harbored a unique microbiome distinctly different from all other habitats (Supplementary Table 8).

A Bayesian approach [START_REF] Knights | Bayesian community-wide culture-independent microbial source tracking[END_REF] was employed to identify potential sources of activated sludge bacterial communities at the genus level. The most dominant potential source was freshwater, attributing on average 46% of genera, followed by soil (17% on average) and ocean (12% on average) (Fig. 3b). Apparently, environmental characteristics are more similar between an activated sludge bioreactor and freshwater than the others. Activated sludge and freshwater have potentially high immigration events through connected water systems, such as wastewater discharge to rivers after treatment.

Scale-dependent distance-decay patterns

Another fundamental pattern in ecology is the distance-decay relationship (DDR) [START_REF] Morlon | Spatial patterns of phylogenetic diversity[END_REF][START_REF] Zhou | Stochastic Community Assembly: Does It Matter in Microbial Ecology?[END_REF] , in which community similarity decreases as geographic distance increases. Consistent with results in other domains [START_REF] Martiny | Drivers of bacterial beta-diversity depend on spatial scale[END_REF] , we hypothesized that (i) the slope of the DDR curve would vary over local, regional, and global scales, and (ii) the spatial turnover rates of activated sludge microbial communities would be lower than those observed in natural habitats, especially for non-flowing ecosystems, such as soils [START_REF] Zhou | Stochasticity, succession, and environmental perturbations in a fluidic ecosystem[END_REF] .

Supporting our first hypothesis, significant negative DDRs (P < 0.001) were observed across all scales based on taxonomic diversity (slope = -0.06 for Sorensen, -0.08 for Bray-Curtis, and -0.08 for Canberra distance) and phylogenetic diversity (slope = -0.04 for unweighted Unifrac, and -0.02 for weighted Unifrac) (Fig. 4a, Supplementary Table 9). The slopes of DDRs depended significantly on spatial scale. The DDR slopes across cities within a continent (-0.13 ~ -0.16 for taxonomic similarity indices; -0.03 ~ -0.09 for phylogenetic similarity indices) were significantly (P = 0.001) steeper (> 2 times) than the overall slopes for all similarity metrics (Supplementary Table 9). Countering our second hypothesis, the overall spatial turnover rates of the activated sludge communities were similar to those found in non-flowing natural habitats such as soils [START_REF] Fierer | The diversity and biogeography of soil bacterial communities[END_REF] and sediments [START_REF] Martiny | Drivers of bacterial beta-diversity depend on spatial scale[END_REF] .

Relationships between the community structure and activated sluge functions

Understanding the relationships between biodiversity and ecosystem function is a critical topic in ecology [START_REF] Hooper | A global synthesis reveals biodiversity loss as a major driver of ecosystem change[END_REF] . Despite decades of intensive studies, the biodiversity-function relationship is still hotly debated, particularly in microbial ecology [START_REF] Krause | Trait-based approaches for understanding microbial biodiversity and ecosystem functioning[END_REF] . A recent meta-analysis of the microbial ecology literature found that less than one-half of all mechanistic claims were backed up by any statistical tests [START_REF] Bier | Linking microbial community structure and microbial processes: an empirical and conceptual overview[END_REF] . Since activated sludge is an engineered system, we hypothesized that there would be a strong linkage between the activated sludge bacterial community structure and its functions.

To assess functions, we calculated the removal rates of organic matter (biochemical oxygen demand (BOD), chemical oxygen demand (COD)), total phosphorus, total nitrogen, and ammonium nitrogen. Partial Mantel tests revealed that the distance-corrected changes of activated sludge-community composition were significantly correlated with all measured removal rates (P < 0.032), except for the ammonium-nitrogen removal rate (P > 0.18) (Supplementary Table 10). Of the 28 global core OTUs, 27 were significantly correlated (adjusted P < 0.05) with at least one of the five functions examined. Most of the correlations (81%) were positive (Fig. 2c). Also, about 80% of the non-core OTUs showed significant correlations (adjusted P < 0.05) with at least one function, and 40% of these correlations were positive (Supplementary Fig. 3a). All of these results indicated that the structure of the activated sludge bacterial communities, particularly the dominant populations, is critical to maintaining activated sludge functions.

The global dataset also allows us to assess the importance of specific functional groups to activated sludge functions. The nitrifying microbial community, including Nitrospira and Nitrosomonas OTUs, showed a closer correlation with the ammonium-nitrogen removal rate than did the whole community (Supplementary Table 10; P of Bray-Curtis distance =0.04).

Further analysis revealed significant positive correlations of Nitrospira (Spearman's ρ = 0.40, adjusted P < 0.001) and Nitrosomonas (Spearman's ρ = 0.21, adjusted P < 0.001) abundance to the percentages of ammonium-nitrogen removal (% of influent concentration), but not to the ammonium-nitrogen removal rate (Supplementary Fig. 3b). Nitrospira was the top genus correlating with the percentage of ammonium-nitrogen removal, corroborating its role in nitrite oxidation in activated sludge. Regarding ammonium-oxidizing bacteria (AOB), an activated sludge bioreactor harboured 15 Nitrosomonas OTUs on average, which made up 0.73% ± 0.06% of the sequence abundance (Supplementary Table 11).

Consistent with our expectation, the activated sludge community composition was significantly correlated with the TP removal rate for the samples from EBPR plants, but not for non-EBPR plants (Supplementary Table 10), as P removal processes in non-EBPR plants are predominantly chemical. The diversity of the three potential PAOs 31 were significantly different (P <0.0001, two tailed paired-t test between any two organisms): 8.2 ± 0.2 "Candidatus Accumulimonas" OTUs, 6.6 ± 0.2 "Candidatus Accumulibacter" OTUs, and 3.2 ± 0.1 Tetrasphaera OTUs within a typical activated sludge bioreactor. While the relative abundance of "Candidatus

Accumulimonas" (0.42% ± 0.06%) was not different from that of "Candidatus Accumulibacter" (0.42% ± 0.04%) (two tailed paired-t test, P = 0.92), both were more abundant than Tetrasphaera (mean relative abundance 0.17% ± 0.02%) (two tailed paired-t test, P < 0.0001) (Supplementary Table 12).

Stochastic community assembly

Since WWTPs are well-controlled engineered ecosystems, we hypothesized that the activated sludge community assembly has a deterministic nature, and we calculated the null model-based stochastic ratios [START_REF] Zhou | Stochasticity, succession, and environmental perturbations in a fluidic ecosystem[END_REF] with taxonomic and phylogenetic metrics. The average stochastic ratios based on these four metrics all were higher than 0.75 (Fig. 4b), suggesting that stochastic factors were more important than deterministic factors in influencing community composition, at least partially contradicting our hypothesis.

To discern the relative importance of various factors contributing to spatial turnover of the activated sludge bacterial communities, we performed multiple 'regression on matrices' (MRM)

analyses and a subsequent variance partition analysis (VPA) based on various taxonomic and phylogenetic diversity metrics (Fig. 4c, Supplementary Fig. 4). Over all scales, the MRM model explained considerable and significant portions of the community variations based on Bray-Curtis similarity (R 2 = 0.46, P = 0.001) (Fig. 4c), with >50% variations unexplained. Among these, 25%, 11%, and 10% of the variations were explained by geographical distance, environmental variables, and their interactions, respectively (Fig. 4c). Similar trends were observed across different scales, with environmental variables explaining < 30% of community variations based on different similarity metrics (Supplementary Fig. 4). These results support those inferred from the null-model-based stochastic ratio analysis.

Environmental drivers of community composition

Because both stochastic and deterministic factors are important in forming the activated sludge community assembly, we attempted to discern the roles of individual deterministic factors in shaping community structure. We correlated the geographic distance-corrected dissimilarities of community composition with those of environmental variables by the partial Mantel test (Supplementary Fig. 5a, Supplementary Table 13). Overall, the microbial community composition had strong correlations with absolute latitude, mean annual temperature (MAT), solids retention time (SRT, the average time which activated sludge solids are in the system), and influent COD and BOD concentrations, representing organic matter (r m = 0.23-0.30, P = 0.001).

More in-depth analysis by structural equation modeling (SEM) revealed direct and indirect effects of the environmental drivers (Fig. 5a). Consistent with the Mantel test, temperature had the strongest direct effects on PC1 representing the community structure (standardized path coefficient, β = 0.50, P < 0.001). It also had weak negative impacts on species richness (β = -0.14, P < 0.001). This is consistent with previous observations at local [START_REF] Wells | Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea[END_REF][START_REF] Karkman | Cold temperature decreases bacterial species richness in nitrogen-removing bioreactors treating inorganic mine waters[END_REF] and regional [START_REF] Griffin | Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly[END_REF] scales that highlighted temperature as a key factor influencing activated sludge community structure and, in particular, abundance and diversity of slow-growing microorganisms such as AOB and nitrite oxidizing bacteria (NOB).

Various biotic and abiotic factors (e.g., food-to-microorganisms ratio [F/M] (the ratio of organic matter to microorganisms), dissolved oxygen concentration, and SRT) directly affected BODremoval rates (Fig. 5a). Influent BOD likely has an impact on bacterial composition through its effect on the F/M ratio (β = 0.31, P < 0.001), which is inversely related to the SRT. Influent BOD is the most influential environmental variable directly related to bacterial richness (β = -0.28, P < 0.001), and the abundance-weighted mean rRNA gene copy number significantly increased with the influent BOD (R 2 = 0.19, P < 0.0001; Fig. 5b). All of these results are consistent with the resource-competition theory [START_REF] Tilman | Resource competition and community structure[END_REF] , which predicts that high species diversity occurs with low to intermediate supply of resources, but fast-growing r-strategists outcompete efficient-scavenging K-strategists at high resource levels [START_REF] Wu | Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters[END_REF] .

To independently test the strength of correlation for each of the three strongest parameters (temperature, SRT, and influent BOD) with bacterial community structure, we performed random-forest analysis, a machine learning-based method. Using species abundance as the input data, the model predicted temperature, SRT, and influent BOD with an explained variance of 69%, 25%, and 18%, respectively (Fig. 5c, Supplementary Fig. 5b). When controlling for spatial auto-correlation, models of temperature continued to have higher accuracy (Supplementary Fig. 5b). For example, the America-fitted model of temperature, i.e., a model trained solely by North and South America samples, was able to capture variations in the temperatures of Asia samples (cross-validated R 2 = 0.47) (Fig. 5c). The random-forest model also revealed the most important OTUs for predicting temperature (Supplementary Fig. 5c). These results corroborate that temperature is the major environmental variable shaping the activated sludge bacterial compositions at the global scale, although it only has a weak effect on species richness (Fig. 5a).

Conclusions and future perspectives

Through well-coordinated international efforts, we systematically examined global diversity and biogeography of activated sludge bacterial communities within the context of theoretical ecology frameworks. Our findings enhance understanding of microbial ecology in activated sludge, setting the stage for various future analyses of WWTP microbiomes, as well as other microbial communities that span the globe.

Based on experimental and theoretical analyses, we estimate that activated sludge systems are globally inhabited by ~ 10 9 different bacterial species. In contrast, only about 10 4 species have been cultivated and studied in detail [START_REF] Locey | Scaling laws predict global microbial diversity[END_REF] . If we assume that all cultivated species are present in activated sludge, potentially 99.999% of activated sludge microbial taxa remain uncultured.

Although more and more microorganisms have been genomically characterized, exploring physiological attributes, which requires cultivation, represents a formidable task for future microbiologists and process engineers [START_REF] Pedrós-Alió | The vast unknown microbial biosphere[END_REF] . This finding also highlights how little we know of the world's microbiome, even in one of the most common and well-controlled systems in the built environment. Despite the very large diversity in activated sludge, a functionally important global core community consists of fewer than 30 taxa. This core might serve as the "most wanted" list for future experimental efforts to understand their genetic, biochemical, physiological, and ecological traits.

Even though activated sludge is a managed ecosystem, its bacterial composition appears to be driven most likely by stochastic processes, such as dispersal and drift, which apparently contradicts conventional wisdom. However, deterministic factors (e.g., temperature, SRT, and organic C inputs) play important roles in regulating the structure of the activated sludge community. This could be important for developing operating strategies to maintain biodiversity that promotes stable system performance. Perhaps one could overcome dispersal limitation by establishing WWTPs, or repopulating failed WWTPs using an inoculum of activated sludge from functioning WWTPs, which is a common practice in environmental engineering. Alternately, one could alternate organic C loadings and/or operational conditions to manipulate the activated sludge community's structure to select for the microorganisms having the desired functions.

Finally, apart from the practical implications of this study, it appears that the global bacterial communities in activated sludge follow various macroecological patterns, such as SADs, DDRs, resource theory, and community assembly mechanisms. Given that activated sludge can be controlled and monitored, it could be an excellent system for testing how well different macroecological theories apply to microbial ecology: e.g., the relationships among biodiversity, food-web interactions, succession, stability, and ecosystem functioning.
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To whom correspondence should be addressed regarding analysis, synthesis and reprints, E-mail: jzhou@ou.edu. To whom correspondence should be addressed regarding experimental design and sampling, E-mails: xhwen@tsinghua.edu.cn, tom.curtis@newcastle.ac.uk, qianghe@utk.edu. (EMP), which employed a bottom-up strategy to solicit microbial samples [START_REF] Thompson | A communal catalogue reveals Earth's multiscale microbial diversity[END_REF] , we used a top-down approach to select WWTPs for sampling by considering their latitudes, climate zones, spatial scales, activated sludge process type, and accessibility for sampling.
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The main goal of this study was to provide system-level mechanistic understanding of global diversity and distribution of municipal WWTP microbiomes. WWTPs were selected based on the following criteria: (i) Continental-level geographic locations. Samples were obtained from all continents except for Antarctica, but with special focus on North America, Asia, and Europe (Fig. 1a). Because of the low accessibility, WWTPs in Africa and South America were underrepresented. (ii) Latitude. To address questions related to latitudinal diversity gradient (LDG), WWTPs were intensively sampled in North America along the East and West Coasts, and Highway 35, as well as Highway 40 (from East to West) (Fig. 1a), in Asia, Europe, and Australia. Although we tried to collect the global samples in the same season, seasonal temporal turnover in activated sludge communities could have had some effect on the community variations we observed to some degree. Based on limited published work [START_REF] Ju | Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant[END_REF][START_REF] Xia | Diversity and temporal assembly patterns of microbial communities in municipal wastewater treatment systems[END_REF] , such temporal variations should be much smaller than the spatial variations at the global/continental scales. For example, a previous study on 5-year temporal dynamics of activated sludge community showed no significant seasonal succession [START_REF] Ju | Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant[END_REF] . It's also revealed that the activated sludge communities were relatively stable across three months, with average Bray-Curtis distance 0.45 ± 0.10 (mean ± SD) between samples [START_REF] Xia | Diversity and temporal assembly patterns of microbial communities in municipal wastewater treatment systems[END_REF] ; this variation was smaller than our observed mean variations even at local city level (0.54 ± 0.19) (Fig. 4a).

At local scale, we defined a city based on it having a large enough geographic scale, not on an administrative division (see Supplementary Table 1 for defined cities). For each city, we usually collected at least 12 samples, and had ≥12 samples/city in 77% cities, with <3 samples/city in only 1% of cities. We also sampled at least 2 WWTPs in 72% of the cities. In each plant, we collected at least 3 mixed liquor samples, generally from 3 different positions (the front, middle, and end part) of the aerobic zone in each aeration tank. In a few cases (3.3% plants), where only one sampling position was applicable, 3 samples were taken in sequence with at least 30-min interval. Altogether, we collected 1,186 activated sludge samples from 269 WWTPs across 23 countries from global scale (e.g., across 6 continents), regional scale (e.g., individual continents), to local scale (e.g., geographic sites or individual cities) (Fig. 1a).

At each sampling position, approximately 1 liter mixed liquor was sampled and well mixed, and 40 mL was transferred into a sterile tube. The mixed liquor samples were kept on ice (≤4ºC), transported to laboratory within 24 hours, divided into aliquots, and then centrifuged at 4ºC, 15,000 g for 10 min to collect pellets. Sludge pellets were transported (if necessary) with dry ice to the designated laboratories within 48 hours and preserved at -80ºC before DNA extraction.

indicating the concentration of biomass in the activated sludge, dissolved oxygen, pH, and mixed liquid temperature; some provided the measured values when sampling.

Activated sludge performance was calculated as the specific removal rates (g per g biomass per day) of organic C (BOD and COD), nutrients (total nitrogen and total phosphorus) and ammonium nitrogen (NH 4 -N):

removal rate = ( ( ) - ( )) × ×
The WWTPs represent diverse geographies and a large range of climatic conditions, operation parameters, and chemical conditions across and within continents (Supplementary Fig. 7). For instance, the average influent BOD ranged from 30 to 1,000 mg/L. Such a broad range of diverse parameters is critical to disentangling mechanisms of activated sludge microbial community assembly.

DNA Extraction

To minimize the variations associated with sample processing, identical protocols were used in Uruguay, and Brazil, the DNA was extracted by GWMC members in these countries. DNA was extracted from sludge samples using MoBio PowerSoil DNA isolation kit. For each sample, a pellet from 3 mL mixed liquor was used. In addition to the manufacture protocol, we always placed exactly 12 bead tubes on the vortex evenly and vortex at maximum speed for 10 min to minimize the lysis efficiency difference between samples. All DNA samples were processed at OU for sequencing.

DNA quality for all samples was evaluated with a NanoDrop spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE, USA) at OU. Final DNA concentrations were quantified using PicoGreen with a FLUO star Optima instrument (BMG Labtech, Jena, Germany). Purified DNA was stored at -80 °C.

16S rRNA gene sequencing and sequence processing

The V4 region of the 16S rRNA gene was amplified and sequenced using standardized protocols with the phasing amplicon sequencing (PAS) approach as described previously [START_REF] Wu | Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis[END_REF] and the primers 515F (GTGCCAGCMGCCGCGGTAA) and 806R (GGACTACHVGGGTWTCTAAT) of the Earth Microbiome Project [START_REF] Caporaso | Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample[END_REF] . In silico primer coverage analysis using SILVA TestPrime 1.0 [START_REF] Klindworth | Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies[END_REF] and SILVA dataset r123 showed that these primers cover 86.8% and 52.9% of all bacterial and archaeal sequences with 0 mismatches, respectively.

To mitigate quantitative problems associated with amplicon sequencing [START_REF] Zhou | Reproducibility and quantitation of amplicon sequencing-based detection[END_REF] , the 16S rRNA gene fragments were amplified from community DNAs (10 ng) with two-step PCR using lower numbers of amplification cycles (10 and 20 cycles for the 1 st and 2 nd step, respectively). The two-step PAS approach offers several advantages: lower amplification biases, better sequenceread quality, higher effective sequence read numbers and length, and lower sequencing errors [START_REF] Wu | Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis[END_REF] .

All samples were sequenced using the same MiSeq instrument at the Institute for Environmental Genomics, OU. Generally, about 400 samples were combined for each round of MiSeq sequencing. Since the numbers of sequence reads varied substantially from sample to sample, most samples were sequenced more than once (e.g., 19% twice; 33%, three times; 43%, > 3 times) to meet the target number of about 30K sequencing reads per sample, as determined in our previous analysis [START_REF] Wen | Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform[END_REF] .

The numbers of sequences (reads) per sample ranged from 25,631 to 351,844 (Supplementary Table 5), and a total of 96,148 OTUs were obtained. About 1.3% of these OTUs were from archaea, which accounted for 0.13% of the total abundance. The choice of the PCR primer pair 506F/806R (that was also used in the EMP project) is very likely to have strongly influenced this low archaeal abundance due to the much lower coverage of the primers of archaeal 16S rRNA genes compared to the bacterial counterparts. Because of the low archaeal abundance, the term "bacteria" is used for simplicity. Also, the terms microbiome and microbial (or bacterial) community are used interchangeably.

Raw sequence data were processed as previously described [START_REF] Zhou | Temperature mediates continental-scale diversity of microbes in forest soils[END_REF] , except for OTU generation by UPARSE [START_REF] Edgar | UPARSE: highly accurate OTU sequences from microbial amplicon reads[END_REF] at the 97% similarity threshold, resulting in 96,148 OTUs. We define operational taxonomic units (OTUs) (based on 97% sequence similarity) for bacterial and archaeal phylotypes. Although there is potential misconnection between OTUs and microbial species [START_REF] Mclaren | In Nature, There Is Only Diversity[END_REF] , we use this popular definition for simplicity, and it also allows us to compare with previous studies of other systems. The representative sequences were aligned using Clustal Omega v1.2.2 [START_REF] Sievers | Fast, scalable generation of high quality protein multiple sequence alignments using Clustal Omega[END_REF] for constructing the phylogenetic tree by FastTree2 v2.1.10 67 . OTUs were taxonomically annotated by RDP Classifier [START_REF] Wang | Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[END_REF] with a confidence cutoff of 80%, using the MiDAS database (version 2.1) which specifically provides a curated taxonomy for abundant and functionally important microorganisms in activated sludge [START_REF] Mcilroy | MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups[END_REF] . After removal of the global singletons [START_REF] Edgar | UPARSE: highly accurate OTU sequences from microbial amplicon reads[END_REF] , the sequence number in each sample was rarefied to the same depth (25,600 sequences per sample), resulting in 61,448 OTUs overall, which were used in subsequent comparative analyses.

Although our sequencing depths were considerably higher than those in many similar studies [START_REF] Delgado-Baquerizo | A global atlas of the dominant bacteria found in soil[END_REF] , rarefaction curves (Supplementary Fig. 2d,e) of activated sludge microbial communities indicated that additional rare taxa were likely present in individual samples. Nevertheless, pooling all sequences gave a sufficient number for estimating global-and continent-level diversity of activated sludge microbial communities (Supplementary Fig. 2f,g). The global OTU richness per sample was 2,309±559 (Supplementary Table 5). Besides richness, we also calculated other alpha diversity indices on a global and regional scale (Supplementary Table 5).

The rRNA operon copy number for each OTU was estimated through the rrnDB database based on its closest relatives with known rRNA operon copy number [START_REF] Stoddard | rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development[END_REF] . The abundance-weighted mean rRNA operon copy number was then calculated for each sample as described previously [START_REF] Wu | Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters[END_REF] .

Sequence comparison against reference databases

To compare the sequence diversity in this study to that in existing databases, the 96,148 representative sequences from the activated sludge samples were compared against the representative set (97% similarity level) of full-length sequences from Greengenes 13.8 [START_REF] Mcdonald | An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea[END_REF] (released on August 2013) and the non-eukaryotic fraction of Silva 132 databases [START_REF] Quast | The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[END_REF] (released on December 2017). We used the open-source sequence search tool USEARCH10 [START_REF] Edgar | Search and clustering orders of magnitude faster than BLAST[END_REF] in global alignment search mode, and we required 97% similarity across the query sequence. Our activated sludge sequences match to 38.6% of Greengenes and 37.2% of SILVA 16S rRNA gene OTUs at 97% similarity. These matches accounted for 18.2% and 22.5% of the representative sequences in our datasets, respectively, indicating that the majority of activated sludge microbial species diversity is not yet captured in full-length sequence databases; this is similar to the observations in the EMP [START_REF] Thompson | A communal catalogue reveals Earth's multiscale microbial diversity[END_REF] .

Species abundance distribution (SAD) fitting

We compared the SAD of each sample, based on the rank-abundance distribution, with predictions from Poisson lognormal, log-series, Broken-stick, and Zipf models. Although numerous SAD models are available, lognormal and log-series have been the most successful in predicting SADs, and they are the standards for testing other models [START_REF] Shoemaker | A macroecological theory of microbial biodiversity[END_REF] . While the logseries model is well supported by macroecological studies, the Poisson lognormal model is more commonly observed with microorganisms [START_REF] Shoemaker | A macroecological theory of microbial biodiversity[END_REF] . By comparing (rank-for-rank) the observed and predicted SADs using regression analysis, we could directly infer the percentages of variations in abundance among species explained by each model using the same code, developed by Shoemaker et al [START_REF] Shoemaker | A macroecological theory of microbial biodiversity[END_REF] .

Estimation of global bacterial diversity of WWTPs

We used the methods described in Curtis et al. [START_REF] Curtis | Estimating prokaryotic diversity and its limits[END_REF] and Locey and Lennon [START_REF] Locey | Scaling laws predict global microbial diversity[END_REF] to predict global bacterial richness (S T ) using the lognormal model. The lognormal prediction of S T is based on the total abundance (N T ), the abundance of the most abundant species (N max ), and the assumption that the rarest species is a singleton, N min = 1. In communities with N T individuals, the richness can be estimated by:

= √ (i)
where is an inverse measure of the width of the distribution, which can be numerically solved from:

= ( ) - ( ) + + ( ) (ii)
We used published data to estimate the total microbial abundance in WWTPs as follows.

Empirical records compiled from a variety of sources, for example, AQUASTAT [START_REF] Aquastat | FAO global information system on water and agriculture[END_REF] and Sato et al 2013 [START_REF] Sato | regional, and country level need for data on wastewater generation, treatment, and use[END_REF] , suggest that about 330 km 3 year -1 of municipal wastewater are produced globally, of which 60% is treated [START_REF] Mateo-Sagasta | [END_REF] . Assuming that they are all treated in WWTPs, then about 0.54 km 3 municipal wastewater are treated by WWTPs globally per day. The total effective volume of aerobic tanks of WWTPs can be estimated by:

= × (iii)
where Q is the influent flow rate (m 3 day -1 ) and HRT is the hydraulic retention time (day) of the aerobic tank. Our dataset indicates that the average HRT of aerobic tanks is 9.8 (± 0.3 s.e.) hours.

Thus, the total effective volume is estimated as 0.22 (± 0.007) km [START_REF] Ofiţeru | Combined niche and neutral effects in a microbial wastewater treatment community[END_REF] . The total cells in activated sludge are about 2.3 (± 0.4)× 10 9 (ml -1 ) [START_REF] Foladori | Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry[END_REF] ; thus, N T (global activated sludge bacterial abundance) is about 4.0-6.1 × 10 23 .

We then estimated N max based on the ratio of N max to N T of our sequencing data, i.e., the relative abundance of the most abundant OTU, or using scaling law [START_REF] Locey | Scaling laws predict global microbial diversity[END_REF] . The knowledge of N T , N max , and N min allows equation (ii) to be solved numerically for the parameter and, subsequently, for S T using equation (i).

Using the same method, we estimated the total bacterial richness of individual WWTPs, along with WWTPs in the United States and China. The volume of aerobic tanks of a WWTP in Beijing, China is 10,000 m 3 , making the total cells about 2.3 (± 0.4) × 10 19 . N T of WWTPs in US and China were estimated based on their published data of treating amount [START_REF] Agency | The Sources and Solutions: Wastewater[END_REF][START_REF] Chan | Wastewater: Good To The Last Drop[END_REF] , with activated sludge harboring similar numbers of species for the US (4.6 × 10 8 to 1.1 × 10 9 ) and China (3.9 × 10 8 to 1.0 × 10 9 ). N max was further estimated based on our 16S rRNA gene sequencing data or using a scaling law [START_REF] Locey | Scaling laws predict global microbial diversity[END_REF] . The total bacterial richness estimates of individual human gut, individual cow rumen, global ocean and Earth were taken from Locey and Lennon [START_REF] Locey | Scaling laws predict global microbial diversity[END_REF] .

We downloaded the OTU table of 16S rRNA gene amplicon studies from the EMP (ftp://ftp.microbio.me/emp/release1/otu_tables/closed_ref_greengenes/emp_cr_gg_13_8.subset_ 5k.biom) [START_REF] Thompson | A communal catalogue reveals Earth's multiscale microbial diversity[END_REF] . This table was generated using closed reference against Greengenes 13.8 and contained 5,000 global samples from multiple habitats. To compare community compositions at the OTU level, our activated sludge OTUs were repicked using closed reference against Greengenes 13.8, which picked 68.1% of the sequences. This OTU table was then merged with the EMP OTU table. To give relatively equal representation of samples across environments, we further collapsed our activated sludge samples at the plant level by summing the abundance of each OTU across samples of the same plant, resulting in 269 activated sludge samples. Our activated sludge samples and the EMP samples from freshwater (including that from freshwater and freshwater biofilm), ocean (including that from sea water and biofilm), animal feces, human feces, soil and air were selected from the merged OTU table. We then subsampled to 10,000 sequences per sample. To compare microbial community compositions across habitats, the Nonmetric Multidimensional Scaling (NMS) analysis was performed using the Bray-Curtis dissimilarity matrix.

The proportion of each activated sludge microbiota attributable to freshwater, soil, ocean, animal and human feces, and air at the genus level were estimated using SourceTracker [START_REF] Knights | Bayesian community-wide culture-independent microbial source tracking[END_REF] , which was run through QIIME with default settings using activated sludge microbiota as the sink and those in other habitats as sources. Genera detected in less than 1% of the samples were filtered out before source-tracking modeling.

Diversity analyses: αand β-diversity and correlation with environment

Richness and Faith's index were used to measure taxonomic and phylogenetic α-diversity, respectively, and they were computed using the Picante R package [START_REF] Kembel | Picante: R tools for integrating phylogenies and ecology[END_REF] . Other taxonomic αdiversity indices, including Shannon index, Simpson index and Pielou's evenness, were calculated using the vegan R package [START_REF] Oksanen | Community ecology package, version 2[END_REF] .

Bray-Curtis (abundance-based) and Sorensen (incidence-based) distances were calculated to represent the taxonomic β-diversity using the vegan R package [START_REF] Oksanen | Community ecology package, version 2[END_REF] . Canberra's distance was also calculated to give more weight to rare taxa, using the vegan R package [START_REF] Oksanen | Community ecology package, version 2[END_REF] . The weighted (abundance-based) and unweighted UniFrac (incidence-based) distance [START_REF] Lozupone | UniFrac: a new phylogenetic method for comparing microbial communities[END_REF] were calculated to represent the phylogenetic β-diversity usig the GUniFrac R package [START_REF] Chen | GUniFrac: generalized UniFrac distances[END_REF] . For each environmental variable, we performed a partial Mantel test to examine the correlation between environmental variable and microbial community composition independent of geographical location (999 permutations) using the vegan R package [START_REF] Oksanen | Community ecology package, version 2[END_REF] .

PERMANOVA was applied to assess the difference of community composition among continents, climate types, and activated sludge process types using the vegan R package [START_REF] Oksanen | Community ecology package, version 2[END_REF] . In PERMANOVA, climate types were defined at main climate group level, which includes 5 groups: A (tropical), B (arid), C (temperate), D (cold), and E (polar) [START_REF] Peel | Updated world map of the Köppen-Geiger climate classification[END_REF] . The activated sludge process types were classified into 9 general groups: complete mix, conventional plug flow, sequential batch reactors (SBR), anaerobic/anoxic/oxic (A 2 O), anoxic/oxic (AO), oxidation ditch, contact stabilization, pure oxygen and extended aeration.

Unifrac, the stochasticity ratio was calculated based on typical null-model algorithms for phylogenetic metrics 91,[START_REF] Kembel | Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests[END_REF] . Samples within each city were considered sharing the same regional species pool in null model algorithms.

Partitioning the environment and distance effect

To give a quantification of relative contribution of the environment effect versus the distance effect on β-diversity, we performed a variation partition analysis (VPA) based on multiple regression on matrices (MRM). We used a modified MRM approach as described previously [START_REF] Martiny | Drivers of bacterial beta-diversity depend on spatial scale[END_REF] .

Briefly, we first selected a non-redundant environmental variable set. The final set included temperature, precipitation, design capacity, SRT, dissolved oxygen, pH, and influent BOD. The highest correlation was between design capacity and SRT (Pearson' r = -0.25), and it indicated a low level of collinearity among these variables. MRM was performed in different spatial scales.

Geographic distance and microbial community distance were ln-transformed. A Euclidean distance matrix was calculated for each environmental variable. To reduce the effect of spurious relationships between variables, we first ran the MRM test with all the variables in the nonredundant environmental variable set, removed the non-significant variables from this initial MRM test, and then reran the test [START_REF] Martiny | Drivers of bacterial beta-diversity depend on spatial scale[END_REF] . The significance of the partial regression was tested by matrix permutation for 999 times [START_REF] Legendre | Modeling brain evolution from behavior: a permutational regression approach[END_REF] . In VPA, the R 2 of the selected environmental variables as independent matrices (R ), geographical distance as independent matrix (R ), and all matrices (R ) were used to compute the four components of variations as described elsewehere 94 : (i) pure environmental variation = R -R ; (ii) pure geographical distance = R -R ; (iii) detected in at least 20% of all the plants and in all continents were used for modelling. We allowed a baseline model to learn using the full data-set for training, and subsequently, we trained new random forests for each plant with customized training sets that excluded plants within a defined radius of the target plant. The size of this radius ranged from 0 to 5000 km. To delineate the model prediction strength, the cross-validated R 2 was calculated as 1 -

∑( ) ∑( ) ,
where is the value of the parameter for sample , is the prediction for that same sample (obtained by held-out cross-validation), and is the overall mean (the summation runs over all the samples). 
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  DNA extraction and 16S rRNA gene sequencing. All samples from China and Japan were shipped to Dr. Xianghua Wen's Laboratory at Tsinghua University for DNA extraction. All other samples, including samples from Europe collected by Dr. Thomas Curtis at Newcastle University, were shipped to Dr. Jizhong Zhou's Laboratory at University of Oklahoma (OU) for 29 DNA extraction. Due to the tight restriction of sample shipment in South Africa, Mexico, Chile,
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 45 Spatial turnover of the activated sludge bacterial communities. (a) Distance-decay relationships (DDRs) based on Bray-Curtis similarity. Black line denotes the least-squares linear regression across all spatial scales (n= 702,705 pairwise distances). Colored lines denote separate regressions: within cities (n= 9,753 pairwise distances), within continents (n= 220,136 pairwise distances ), and intercontinental (n= 472,816 pairwise distances ). P values (one-sided) for regression slopes were determined by matrix permutation tests. (b) Ecological stochasticity in bacterial community assembly estimated by stochasticity ratio, which is calculated for each pair of samples (n= 71 cities) based on taxonomic diversity (Taxo., Bray-Curtis/Sorensen) and phylogenetic diversity (Phyl., Unifrac) weighted with abundance (Wt) or not (Uw). Boxes and whiskers indicate quartiles and triangles indicate mean values. (c) Variance partition analysis showing relative contributions of geographic distance (Geo) and environmental variables (ENV) to the community variations based on Bray-Curtis distance. Environmental drivers of the activated sludge community composition. (a) A structural equation model (SEM) shows relationships among environmental variables, community composition, and WWTP functioning. The composite variable of 'SRT effect' was constructed as a linear combination of solids retention time (SRT) and the square of SRT (SRT.SQ). F/M is the food to microorganisms ratio. The community composition is represented by the first principal component score (PC1) from the Bray-Curtis distance-based principal coordinate analysis. Blue and red arrows represent significant (P < 0.05) positive and negative pathways, respectively. Numbers near the pathway arrow indicate the standard path coefficients
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  The WWTPs sampled spanned latitudes from 43.6ºS to 64.8 ºN. (iii) Climate zones. Since climate could have significant impacts on microbial communities, the samples covered 17 different climate types (Supplementary Fig.6). To distinguish independent effects of continents versus climate zones, we increased sampling efforts for climate zones that were present in multiple continents, such as Humid Subtropical Climate. (iv) Scales. The samples were collected from very broad spatial scales: global (across 6 continents), regional (e.g., individual continents or climate zones), and local (e.g., individual cities). Within some cities, multiple WWTPs and multiple samples per WWTP were collected; (v) Wastewater treatment process types. To address the relationship of structure to function for activated sludge, we sampled the aerobic zone of conventional plug flow, oxidation ditch, sequential batch reactors, anaerobic/anoxic/oxic (A 2 O), and other activated sludge process types.

A unified protocol was used for sampling, sample preservation, metadata collection, DNA extraction, sequencing, and sequence analysis, to minimize potential experimental variations
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. Detailed sampling and metadata collection methods and protocols are available at the GWMC web site (http://gwmc.ou.edu/protocols/view/11).

Sampling was carried out in June to November 2014 in the Northern Hemisphere and December 2014 to April 2015 in the Southern Hemisphere. The sampling time was generally between 10:00 am to 2:00 pm, when the WWTPs were relatively stable under normal conditions.

Fig. 1. The Global Water Microbiome Consortium captures microbial diversity of globally distributed wastewater treatment plants (WWTPs

  ). (a) Geographical distribution of 269 WWTPs where activated sludge samples and environmental data were collected. (b) Predicting species abundance distribution (SAD) of activated sludge bacterial communities. The grey line represents a SAD that was randomly chosen from our data. Each model was fit to the observed SAD (see Methods). Supplementary Fig.1ashows the variations of the SADs explained by each model across all 1186 activated sludge communities, indicating the best performance of the Poisson lognormal model. (c) Estimation of activated sludge microbial richness of WWTPs. Microbial species are defined as OTUs at 97% sequence similarity threshold. The microbial richness (S)-abundance (N) scaling relationship (dashed grey line with pink hull as 95% prediction interval), and the grey dots representing richness estimates from other systems were derived from Locey and Lennon[START_REF] Locey | Scaling laws predict global microbial diversity[END_REF] . Richness was predicted from the lognormal model using N T estimated from published data, and N max inferred from our sequencing data (filled circle) or N max predicted from the dominance-scaling law[START_REF] Locey | Scaling laws predict global microbial diversity[END_REF] (hollow circles). 'WWTP' indicates one WWTP, as do 'Human gut' and 'Cow rumen'. (d) Latitudinal distribution of activated sludge bacterial diversity, plotting OTU richness against the absolute latitude of sampling locations shows the peak of richness at intermediate latitude (n = 1,186 biologically independent samples). The line shows the second order polynomial fit based on ordinary least squares regression. P < 2×10-16 (two-sided) for both regression coefficients. The color gradient denotes the annual mean air temperature. Shapes of symbols denotes whether a sample originated from Northern (circle) or Southern Hemisphere (square).

	Fig. 2

. Abundance, composition and functional importance of the global core operational taxonomic units (OTUs) in activated sludge. (

  a) Percentage and relative abundance of the global core OTUs versus the remaining microbial OTUs. In total, 0.05% (28 out of 61,448 OTUs) were identified as abundant and ubiquitous across wastewater treatment plants at global scale, which accounted for 12.4% of the 16S rRNA gene sequences in an activated sludge sample on average. (b) The taxonomic composition of the global core OTUs on phylum and class level. (c) Activated sludge functions were calculated as the removal rate of organic carbon FDR) controlling procedure (n = 14,235 pairwise cases). Only global core OTUs were shown, with their mean relative abundance indicated on the left of the heatmap. Methods for details). Bray-Curtis distance was calculated to represent the dissimilarity in bacterial community compositions. (b) Percentage of activated sludge bacterial genera attributable to air, animal and human feces, freshwater, ocean and soil, as determined by SourceTracker. In the boxplots, hinges show the 25, 50 and 75 percentiles. The upper whisker extends to the largest value no further than 1.5 * IQR from the upper hinge, where IQR is the inter-quartile range between the 25% and 75% quartiles; The lower whisker extends to the smallest value at most 1.5 * IQR from the lower hinge. Sample size: n = 6, 73, 18, 34, 127 and 11 WWTPs for Africa, Asia, Australasia, Europe, North America and South America, respectively.

	Fig. 3. Comparing bacterial community compositions across continents and with other
	habitats. (a) Nonmetric Multidimensional Scaling analysis (NMDS) showing that activated
	sludge of WWTPs harbored a unique microbiome as compared with other habitats. For
	comparison, we merged our OTU table (n = 269 WWTPs) with that released by EMP 5 , which
	contained thousands of bacterial communities from various habitats such as soil (n = 338
	samples), ocean (n = 969 samples), freshwater (n = 447 samples), air (n = 81 samples), human
	feces (n = 99 samples) and animal feces (n = 622 samples), but not activated sludge from
	WWTPs (see
	(biochemical oxygen demand (BOD) removal, chemical oxygen demand (COD) removal),
	nutrients (total nitrogen (TN) and total phosphorus (TP) removal) and ammonia nitrogen (NH 4 -N
	removal) (g chemical per g MLSS per day, where MLSS is mixed liquor suspended solids
	relating to microbial biomass). The color gradient on the right indicates Spearman's rank
	correlation coefficients, with more positive values (dark blue) indicating stronger positive
	correlations, and more negative values (dark red) indicating stronger negative correlations. The
	asterisks denote the significance levels (two-sided) of the Spearman's rank correlation

coefficients (n = 1,186 biologically independent samples): *** P < 0.001, ** P < 0.01, * P < 0.05. In the correlation analysis, all OTUs detected in at least 20% of samples were included, and P values were adjusted for multiple testing using the Benjamini and Hochberg false discovery rate (
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Global Water Microbiome Consortium

Members besides the authors listed on the first page: Dany Acevedo 1 , Miriam Agullo-Barcelo 2 , Gary L. Andersen [START_REF] Ofiţeru | Combined niche and neutral effects in a microbial wastewater treatment community[END_REF][START_REF] Zhou | High-Throughput Metagenomic Technologies for Complex Microbial Community Analysis: Open and Closed Formats[END_REF] , Juliana Calabria de Araujo 5 , Kevin Boehnke 6 , Philip Bond 2 , Charles B. Bott 7 , Patricia Bovio 8 , Rebecca K. Brewster 6 , Faizal Bux 9 , Angela Cabezas 8 , Léa Cabrol [START_REF] Gleick | Water resources[END_REF][START_REF] Van Loosdrecht | Anticipating the next century of wastewater treatment[END_REF] , Si Chen [START_REF] Xia | Bacterial community structure in geographically distributed biological wastewater treatment reactors[END_REF] , Ting Chen [START_REF] Grant | Taking the "waste" out of "wastewater" for human water security and ecosystem sustainability[END_REF][START_REF] Saunders | The activated sludge ecosystem contains a core community of abundant organisms[END_REF] , Claudia Etchebehere 8 , Amanda Ford 7 , Dominic Frigon 15 , Janeth Sanabria Gómez 1 , James S. Griffin 16 1; Supplementary Fig. 7). We collected metadata (e.g., chemical properties, operation conditions, process type) from each plant using a standard sampling data sheet, which ensured that the data from all plants was in the same format. Raw metadata were processed as one metadata table (Supplementary Table 1) and classified into three categories: geological variables, plant operation and monitoring variables, and sample properties. The geological variables included latitude and longitude; ambient climate variables such as climate type, mean annual temperature (MAT), and precipitation; and population size and gross domestic product (GDP) for the city where the WWTP was located.

Climate type was determined by the Köppen-Geiger climate classification [START_REF] Peel | Updated world map of the Köppen-Geiger climate classification[END_REF] . GDP and population data were derived from the Brookings analysis of Global Metro Monitor [START_REF] Berube | Global Metro Monitor[END_REF] . Variables related to plant design and operation include plant age, design capacity, actual flow rate, volume of aeration tanks, hydraulic retention time (HRT) and solids retention time (SRT). The activated sludge process type, aerator type, and coupling with N removal processes (nitrification and denitrification) in the WWTP were also provided by the plant managers as possible. Plant monitoring variables include influent and effluent biochemical oxygen demand (BOD) and chemical oxygen demand (COD) representing organic carbon (C) level, total nitrogen and total phosphorus representing nutrient level, ammonium N, as well as the food to microorganism (F/M) ratio, indicating the average organic C loading to microorganisms. For sample properties, most plant managers provided the yearly average value of mixed liquor suspended solids (MLSS),

Core community determination

A global-scale core microbial community was determined based on multiple reported measures.

First, "overall abundant OTUs" were filtered out according to mean relative abundance across all samples (MRA) [START_REF] Hanski | Dynamics of regional distribution: the core and satellite species hypothesis[END_REF] . Previous studies used different criteria (e.g., MRA > 1% [START_REF] Lawson | Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems[END_REF][START_REF] Galand | Ecology of the rare microbial biosphere of the Arctic Ocean[END_REF] or 0.1% [START_REF] Székely | The importance of species sorting differs between habitat generalists and specialists in bacterial communities[END_REF][START_REF] Cheng | Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children[END_REF] without any objective or standard rule. Thus, we selected all top 0.1% OTUs (62) as overall abundant OTUs. Their MRA was higher than 0.2%, within the range of reported criteria.

Second, "ubiquitous OTUs" were defined as OTUs with occurrence frequency in more than 80% of all samples [START_REF] Ju | Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant[END_REF] . Finally, "frequently abundant OTUs" were selected based on their relative abundances with a sample. In each sample, the OTUs were defined as abundant when they had a higher relative abundance than other OTUs and made up the top 80% of the reads in the sample [START_REF] Saunders | The activated sludge ecosystem contains a core community of abundant organisms[END_REF] .

A frequently abundant OTU was defined as abundant in at least half samples, which is stricter than the reported criterion (10 in 26 samples [START_REF] Saunders | The activated sludge ecosystem contains a core community of abundant organisms[END_REF] ). Since the above three measures are complementary to one another when defining core community, only OTUs fulfilling all three criteria were defined as the global scale core bacterial community.

Following the same criteria as described above, the core community was identified for each continent. That is, a core OTU for a specific continent should be one that was from the top 0.1% OTUs of that continent; a core OTU also had to be detected in more than 80% of the samples and dominant for more 50% of the samples of that continent.

Comparison of bacterial community composition of WWTPs to natural habitats and source tracking Distance Decay relationships

The rate of the distance-decay relationship (DDR) was calculated as the slope of a linear least squares regression on the relationship between ln-transformed geographic distance versus lntransformed bacterial community composition similarity. We used matrix permutation tests to examine the statistical significance of the distance-decay slope [START_REF] Martiny | Drivers of bacterial beta-diversity depend on spatial scale[END_REF] . The samples were permuted 999 times, and the observed slope was compared with the distribution of values in the permuted datasets. We also tested whether the slopes of the distance-decay curve at the three spatial scales (0 to 100 km; 100 to 5,000 km; and 5,000 to 25,000 km) were significantly different from the slope of the overall distance-decay curve, using matrix permutations to compare the observed difference between slopes within the three spatial scales with the overall distance-decay slope to that over 999 permutations.

Estimating stochasticity of community assembly

We assessed community-assembly stochasticity with a null-model-based index. The Stochasticity ratio was described previously [START_REF] Zhou | Stochasticity, succession, and environmental perturbations in a fluidic ecosystem[END_REF][START_REF] Guo | Climate warming leads to divergent succession of grassland microbial communities[END_REF] . Since null-model algorithms usually require a high number of replicates, we selected 71 cities, each of which had more than 9 samples; we randomly drew 9 samples from each city to make sampling even. We calculated stochasticity ratio using taxonomic and phylogenetic metrics. Whether using the Bray-Curtis (abundanceweighted) or Sorensen (unweighted) model, the stochasticity ratio was calculated based on typical null-model algorithms for taxonomic metrics [START_REF] Chase | Using null models to disentangle variation in community dissimilarity from variation in α-diversity[END_REF]91 . When using weighted and unweighted spatially structured environmental variation = R + R -R ; and (iv) unexplained variation = 1 -R .

Structural equation model (SEM)

SEM was used to explore the direct and indirect relationships among environmental variables, bacterial communities, and activated sludge function. The community composition was represented by the first principal component (PC1) of Principal coordinate analysis (PCoA) based on Bray-Curtis distance. We first considered a full model that included all reasonable pathways, and then we sequentially eliminated non-significant pathways until we attained the final model whose pathways all were significant. To capture the quadratic correlation of SRT to diversity and BOD removal, we constructed a composite variable [START_REF] Grace | Representing general theoretical concepts in structural equation models: the role of composite variables[END_REF] of 'SRT effect' as a linear combination of SRT and the square of SRT (SRT.SQ). We used a χ 2 test and the root mean square error of approximation to evaluate the fit of model. The SEM-related analysis was performed using the lavaan R package [START_REF] Rosseel | An R package for structural equation modeling and more. Version 0.5-12 (BETA)[END_REF] .

Random Forest models

We applied a machine-learning model, random forest, to examine the strengths of the associations between environmental variable and compositional data, using the randomForest R package [START_REF] Liaw | Classification and regression by randomForest[END_REF] . We used OTUs as predictors and environmental variable as response data. To correct the potential spatial autocorrelation, we used OTU data at the plant level, by averaging the relative abundance of each OTU across samples of the same plant. OTUs which were (β). Arrow width is proportional to the strength of the relationship. R 2 represents the proportion of variance explained for every dependent variable. Model χ 2 = 13.92, df = 12, P = 0.31, n = 1,186 biologically independent samples; root mean square error of approximation (RMSEA) = 0.012 with probability of a close fit = 1.00. (b) The average rRNA gene copy number of the community increased with the influent biochemical oxygen demand (BOD)/(1+recycle ratio) which approximates the influent BOD level of aerobic tank (n = 641 biologically independent samples). The P value (two-sided) denotes the significance of the slope of ordinary least squares regression. (c) The strength of association between taxonomic composition and temperature was tested by random forest (n = 269 WWTPs). The red diagonal shows the theoretical curve for perfect predictions. The inset shows a model trained on data from North and South America samples to predict the temperature in Asian samples (n = 73 WWTPs). 
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