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Abstract. A general assumption in all existing algorithms permitting to mine functional dependencies is that the database is
static. However, real life databases are frequently updated. To the best of our knowledge, the discovery of functional dependencies
in dynamic databases has never been studied. A naı̈ve solution consists in re-applying one of the existing algorithms to discover
functional dependencies holding on the updated database. Nevertheless, in many domains, where response time is crucial,
re-executing algorithms from scratch would be inacceptable. In this paper, we propose a new technique that makes use of
the previously discovered results to cut down the amount of work that has been done to discover the new set of functional
dependencies satisfied by the updated database.
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1. Introduction

Across a wide variety of fields, data is collected and accumulated at a dramatic pace. The traditional
method of extracting knowledge from data relies on manual analysis and interpretation. Nevertheless,
this method is completely impractical in many domains. Hence, there is an urgent need for tools to assist
humans in extracting knowledge from the rapidly growing volumes of digital data. These tools are the
subject of the data mining field. Association mining is an important task in data mining, which consists
in taking data as input and provides associations, such as association rules, implications, or functional
dependencies as output. In this paper, we focus on functional dependencies.

Originally, the study of functional dependencies (FDs) has been motivated by the fact that they could
express constraints holding on a relation independently of a particular instance [1]. Later, Mannila
and Räihä studied FDs with a data mining point of view. Indeed, the idea was introduced in [18]
as the inference of functional dependencies problem. Its principle consists in determining a cover
of all functional dependencies holding on a given relation r. Motivations for addressing functional
dependencies inference arise in several areas [3,6,12,15,16,19,21,23,24]. Indeed, FDs were applied in
database management [9,17], data reverse engineering [22], query optimization [20], data streams [10]
and data mining [12].
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A crucial study of the dedicated literature allows one to note that a general assumption in all existing
algorithms is that the database is static. However, real life databases are dynamic where they are constantly
updated. Hence, a possible solution consists in re-applying one of the existing algorithms on the updated
database. This solution though simple, has disadvantages. All the previous computation done to discover
FDs is wasted and the process of FDs discovery must restart from the scratch. Nevertheless, the more
the size of the database and the frequency of its update increase the more this solution becomes time
consuming and inacceptable in many applications. In dynamic databases, the problem of functional
dependencies inference is reformulated as follows: determining a cover of all functional dependencies
holding on the updated relation with lower costs.

In this paper, we show that the problem of FDs inference in dynamic database can be reduced to a
problem of maintaining FDs. Indeed, given a relation r and a new tuple t, we propose to discover the
canonical cover of the FDs holding on (r∪ t) by taking advantages of the canonical cover of FDs holding
on r. For that:

1. we start by verifying that the updated relation does not violate any FD of the canonical cover of
FDs holding on r;

2. if there are some FDs violated by the updated relation, we maintain partially the canonical cover of
FDs holding on r in order to deduce the canonical cover of FDs holding on (r ∪ t).

The main idea of our proposal is described graphically by Fig. 1. We conducted experiments on synthetic
databases in order to assess our approach and compare it against re-applying an existing algorithm on
the updated database. The experimental results showed that our approach is 23 to 24125 times faster
than re-executing existing algorithm from the scratch.

The remainder of the paper is organized as follows. Section 2 gives some formal definitions and
notations used throughout the paper. Section 3 presents the problem of maintaining FDs and describes
our proposal: the INCFDS algorithm. The empirical study about the utility of our algorithm is provided
in Section 4. The paper ends with a conclusion of our contributions and sketches forthcoming issues in
the Section 5.

2. Theoretical background

In this section, we present the basic concepts used throughout the paper.

2.1. Functional dependencies

In what follows, we briefly review definitions and results from relational database theory [1,11].
Let A = {a1, . . . , am} be a finite set of attributes. Each attribute ai has a finite domain, denoted

dom(ai), representing the values that ai can take on. For a subset X = {ai, . . . , aj} of A, dom(X) is
the Cartesian product of the domains of the individual attributes in X. A relation r on A is a finite set
of tuples {t1, . . . , tn} from A to dom(A) with the restriction that for each tuple t ∈ r, t[X] must be in
dom(X), such that X ⊆ A and t[X] denotes the restriction of the tuple t to X.

Definition 1. Let r be a relation on A. A functional dependency (FD) over A is an expression X → A
where X ⊂ A and A ∈ A. We refer to X as the antecedent and A as the consequent. A FD X → A
holds on r (denoted r |= X → A) if and only if ∀(ti, tj) ∈ r, ti[X] = tj[X] ⇒ ti[A] = tj[A]. A FD
X → A is minimal (or elementary) if and only if r |= X → A and ∀Z ⊂ X, r 	|= Z → A. We denote
by Fr the set of all functional dependencies satisfied by r.



G. Gasmi et al. / An incremental approach for maintaining functional dependencies 367

Fig. 1. The outline of the proposed approach.

Example 1. Let us consider the following relation the relation r describing a hotel rooms. For briefness,
attributes “HotelID”, “NumRoom”, “TypeRoom”, “CatHoltel” and “Price” are renamed A,B,C,D
and E, respectively.

BD → A is a functional dependency satisfied by r. It is minimal since it does not exist a subset Z of
BD such that r |= Z → A. The functional dependency A → B is not satisfied by r, since for the tuples
(t1, t3) ∈ r, we have t1[A] = t3[A] however t1[B] 	= t3[B].

Definition 2. Let F and G be two sets of functional dependencies. F is a cover of G if F |= G (this
notation means that each dependency of G holds in any relation satisfying all the dependencies in F)
and G |= F .

Definition 3. Let r be a relation on A. The canonical cover of Fr is defined as follows: Cover(Fr) =
{X → A|X ⊂ A, A ∈ A, r |= X → A,X → A is minimal}.

Definition 4. Let X ⊆ A and Cover(Fr) be the canonical cover of Fr. The closure of X w.r.t
Cover(Fr), denoted (XCover(Fr))+, is given by X ∪ {A|Y → A ∈ Cover(Fr), Y ⊆ X}.

2.2. Hypergraph theory

In this section, we start by recalling some formal definitions and the necessary properties on hy-
pergraphs. Then, we illustrate the connection between functional dependency mining and hypergraph
theory. For more theoretical issues the reader is referred to [4].

A hypergraph H is an ordered pair H = (V, E) of a finite set V = {V1, . . . , Vn} and a family
E = {E1, . . . , Em} of subsets of V . The elements of V are called nodes while the elements of E are
called hyperedges of the hypergraph H. H is simple if for every pair Ei, Ej ∈ E , Ej ⊂ Ei ⇒ j = i.
Min(H) is the set of minimal hyperedges of H with respect to set inclusion, i.e., Min(H) = {Ei ∈ E|
	 ∃Ej ∈ E such that Ej ⊂ Ei}.

Example 2. Let us consider the hypergraph H = (V, E) such that V = {A,B,C,D,E} and E =
{AB,BDE,BE,ABCD}. Then, H is not simple since AB ⊂ ABCD. Min(H) = {AB,BE}.

Let H = (V, E) be a hypergraph. A set T ⊆ V is called a transversal (or, hitting set) of H if it intersects
all the hyperedges of H, i.e., T ∩ Ei 	= ∅,∀Ei ∈ E . A transversal T is minimal if no proper subset T ′
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of T is a transversal of H. The family of all minimal transversals of H constitutes a simple hypergraph
called the transversal hypergraph ofH denoted by Tr(H). It hasV as nodes and the minimal transversals
of H as hyperedges.

The following lemmas capture important relations between a hypergraph and its transversal hypergraph.

Lemma 1. Tr(H) = Tr(Min(H)).

Lemma 2. Tr(Ei) = {{e}|{e} ∈ Ei}.

In [4], the author propose to compute Tr(H) incrementally. Its idea is formally presented as follows.

Lemma 3. Let H = (V, E) be a hypergraph such that E = {E1, . . . , Em}. Let us define a
sequence T0, . . . ,Tm by T0 = {∅} and Ti = Min(T ∪ {e}|T ∈ Ti−1, {e} ∈ Ei). Then,
Tj = Tr({E1, . . . , Ej}), j ∈ [0 . . . m]. Thus, Tm = Tr(H).

Example 3. LetH = (V, E) be a hypergraph such that E = {AB,BCD}. T0 = {∅}, T1 = Min(A,B),
T2 = Min(AB,AC,AD,B,BC,BD). Thus, T2 = {B,AD,AC} = Tr(H).

Hypergraph theory is an important subfield of discrete mathematics with many relevant applications
in both theoretical and applied computer science [7,8] including distributed systems, databases [5,11],
boolean circuits [13] and artificial intelligence [14]. Furthermore, it is important to note that a connexion
between computing transversal hypergraph and canonical cover of FDs satisfied by a relation r was
studied in [11]. Indeed, it was pointed out that determining minimal FDs having A as consequent is
reduced to compute transversal hypergraph. Moreover, we will show later that hypergraph theory will
be of use to mine FDs in evolving databases.

3. Incremental updating of functional dependencies

The problem of functional dependency mining consists in discovering a cover for the functional
dependencies holding on a relation r. The majority of the dedicated works discover the canonical cover
since it is unique for a given relation r. Nevertheless, one general assumption in all existing approaches is
that the database is static [3,6,12,15,16,19,21,23,24]. However, real life databases are dynamic and they
are constantly updated. A possible solution consists in re-applying one of the existing algorithms on the
updated database. This solution though simple, has disadvantages. All the previous computation done
to discover FDs is wasted and the process of FDs discovery must restart from the scratch. Nevertheless,
the more the size of the database and the frequency of its update increase the more this solution becomes
time consuming and inacceptable in many applications. Hereafter, we propose the first algorithm, called
INCFDS, which takes into consideration the dynamic feature of the databases. The idea behind our
algorithm is “natural”. Indeed, when some changes occur on a given situation, we, first, ask ourselves if
the characteristics of the initial situation are still valid. After, if there are some characteristics that are
no longer valid, we modify them in order to make them sound on the new situation. Let us consider our
initial relation r “characterized” by the canonical cover of the FDs holding on r. After “changing” r by
augmenting it with t:

1. we verify whether Cover(Fr) could be also be the canonical cover of the FDs holding on (r ∪ t).
2. if there are some minimal FDs of Cover(Fr) that are violated by (r ∪ t), we update them in order

to deduce Cover(Fr∪t).
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Table 1
Example of a relation

Tuple ID HotelID NumRoom TypeRoom CatHoltel Price
t1 1 100 1 2 50
t2 4 101 1 2 50
t3 1 102 2 2 70
t4 1 200 1 2 50
t5 2 101 3 3 100
t6 2 200 1 3 70
t7 1 100 3 2 50

3.1. Checking whether Cover(Fr) = Cover(Fr∪t)

In order to check whether Cover(Fr) is equal to Cover(Fr∪t), a solution consists in verifying that
the updated relation (r ∪ t) does not violate any minimal FD of Cover(Fr). It means that for each
minimal functional dependency X → A, we have to verify, for each couple (t, t′), t′ ∈ r and t is the
tuple to insert into r, that if t[X] = t′[X] ⇒ t[A] = t′[A]. Obviously, the more the sizes of Cover(Fr)
and the relation r increase the more disadvantageous this solution would be. To offset this shortcoming,
we have to reduce: (i) the number of candidate couples; (ii) the number of minimal FDs that should be
checked (i.e., checked whether they are not violated by (r ∪ t)).

3.1.1. Reducing the candidate couples
We note that tuples of r that must be considered are those ones sharing with t the same value of at

least one attribute. It would be interesting then to restrict r to these tuples. For that, we introduce the
notion of equivalence classes of r with respect to t defined as follows:

Definition 5. Let r be a relation onA and t be a tuple. Then, for a given attribute A ∈ A, the equivalence
class of r with respect to t is r(A)t = {t′|t[A] = t′[A], t′ ∈ r}. We denote by EC(r)t = {r(A)t|A ∈ A}
all equivalence classes of r with respect to t.

Example 4. Let us consider the relation of Table 1 and suppose that it contains only the six first tuples.
The equivalence classes of r with respect to t7 are:
r(A)t7 = {t1, t3, t4};
r(B)t7 = {t1};
r(C)t7 = {t5};
r(D)t7 = {t1, t2, t3, t4};
r(E)t7 = {t1, t2, t4}.
Then, EC(r)t7 = {r(A)t7 , r(B)t7 , r(C)t7 , r(D)t7 , r(E)t7}.
Through this example, we show that thanks to the equivalence classes of r with respect to t7, we reduced
the number of candidate couples. As we remark, the couple (t6, t7) was not considered.

3.1.2. Minimizing the number of minimal FDs to check
Initially, all minimal FDs of Cover(Fr) are candidate to be violated by the updated relation (r ∪ t).

Nevertheless, it would be interesting to narrow the search space of the minimal FDs that are candidate
to be violated. A minimal FD X → A of Cover(Fr) still holds on (r ∪ t) if and only if ∀(t, t′) such
that t′ ∈ r, if t[X] = t′[X] ⇒ t[A] = t′[A]. In other words, if t and t′ are agree on X, they have to be
agree also on A. Hence, we are sure that for each minimal FD X → A of Cover(Fr), if A belongs to
all attribute sets on which (t, t′) are agree, then X → A still holds on (r ∪ t). Thus, computing attribute
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Fig. 2. The refinement of the search space of the minimal FDs candidate to be violated.

sets on which (t, t′) are agree, such that t′ ∈ r (i.e., agree sets induced by t) would guide us to identify a
first set of minimal FDs of Cover(Fr) which are satisfied also by (r ∪ t). Consequently, a first level of
refinement of the search space of the candidate violated FDs is based on the agree sets induced by t.

For a minimal FD X → A, which belongs to the remaining set of the candidate violated FDs of
Cover(Fr), we have at least one agree set induced by t that does not contain A. In addition, two cases
can arise:

– if X is not contained in any agree set induced by t, then X → A is not violated by (r ∪ t);
– if X is contained in at least one agree set induced by t, then X → A is violated by (r ∪ t).

Thus, identifying agree sets induced by t which contain at least one antecedent of the remaining minimal
FDs, candidate to be violated, (i.e., agree generators induced by t) will allow us to determine the set of
minimal FDs that have to be updated.

Through Fig. 2, we describe graphically how we reduce the search space of the minimal FDs that are
candidate to be violated. Hereafter, we will detail the both levels of refinement summarized above.
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3.1.2.1. A first level of refinement based on the agree sets induced by t
As said before, computing agree sets induced by t would offer us a key permitting to reduce the search

space of the minimal FDs candidate to be violated.
Computing the agree sets induced by t: Before giving the formal definition of agree sets induced by t,

we first recall the definition of an agree set. According to a couple of tuples, an agree set is defined as
the set of all attributes which have the same values for the considered tuples. Formally, this concept was
defined in [15] as follows:

Definition 6. Let t and t’ be two tuples of r and X ⊆ A be a set of attributes. Then, the tuples t and
t′ are agree on X if and only if t[X] = t′[X]. Hence, according to t and t′, the agree set, denoted
Ag(t, t′) = {A|t[A] = t′[A], A ∈ A}. Ag(r) = {Ag(t, t′)|(t, t′) ∈ r, t 	= t′} denotes all agree sets of r.

Based on Definition 6, we define formally the agree sets induced by a tuple t as follows:

Definition 7. Let r be a relation and t be a tuple. Then, with respect to r, agree sets induced by the tuple
t are {Ag(t, t′)|t′ ∈ r} and they are denoted by Ag(r)t.

For computing agree sets induced by a tuple t, a naı̈ve solution consists in computing Ag(t, t′) for each
couple of tuples (t, t′) such that t′ ∈ r and t the tuple to insert into r. Nevertheless, the more the number
of tuples of r increases the more expensive this solution would be. To palliate this problem, we provide
a new characterization of the agree sets induced by t based on the equivalence classes of r with respect
to t. Before providing the new characterization of the agree sets induced by t, we need to define the
maximal equivalence classes of r with respect to t.

Definition 8. Let r be a relation and t be a tuple. The maximal classes of r with respect to t are:
MC(r)t = Max{r(A)t|r(A)t ∈ EC(r)t}

Example 5. For the equivalence classes of r with respect to t7 (c.f., Example 4). The maximal classes
are: MC(r)t7 = {{t5}, {t1, t2, t3, t4}}.

Through Proposition 1, we point out that agree sets induced by t can be computed straightforwardly
from the equivalence classes of r with respect to t.

Proposition 1. Let r be a relation and t be a tuple to insert into r. The agree sets induced by t are given
by: Ag(r)t = {Ag(t, t′)|t′ ∈ c, c ∈ MC(r)t} Such that Ag(t, t′) = {A|r(A)t}.

Proof. We recall that Ag(r)t contains all agree sets induced by t: Ag(r)t = {Ag(t, t′)|t′ ∈ r} (c.f.,
Definition 7). Since the equivalence classes of r with respect to t contain the tuples of r sharing with
t the same value of at least one attribute, then agree sets induced by t can be written as follows:
Ag(r)t = {Ag(t, t′)|t′ ∈ c, c ∈ EC(r)t}. However, a tuple t′ can belong to more than one equivalence
class. Then, agree sets induced by t can be written as follows: Ag(r)t = {Ag(t, t′)|t′ ∈ c, c ∈ MC(r)t}.

Now, let us prove that Ag(t, t′) = {A|t′ ∈ c, c ∈ EC(r)t, A ∈ A}. According to Definition 6,
Ag(t, t′) = {A|t[A] = t′[A], A ∈ A}. This means that the agree set of the couple (t, t′) is the maximal
set of attributes whose values are shared by t and t′. Hence, according to Definition 5, agree set of the
couple (t, t′) can be written as follows: Ag(t, t′) = {A|t′ ∈ c, c ∈ EC(r)t, A ∈ A}.
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Example 6. Let us consider the relation of Table 1 and suppose that it contains only the six first tuples
and we want insert the tuple t7. The agree sets induced by t7 are computed as follows. The tuples of r
that have to be considered are deduced from the maximal equivalence classes of r with respect to t (c.f.,
Example 5). They are equal to: {t1, t2, t3, t4, t5}. After, we can compute straightforwardly agree sets
induced by the tuple t7 as follows.
Ag(t7, t1) = ABDE because t1 belongs to r(A)t7 , r(B)t7 , r(D)t7 and r(E)t7.
Ag(t7, t2) = DE because t2 belongs to r(D)t7 and r(E)t7
Ag(t7, t3) = AD because t3 belongs to r(A)t7 and r(D)t7 .
Ag(t7, t4) = ADE because t4 belongs to r(A)t7 , r(D)t7 and r(E)t7 .
Ag(t7, t5) = C because t5 belongs to r(C)t7 .
Consequently, Ag(r)t7 = {ABDE,AD,ADE,DE,C}.

Pruning a first set of candidate violated FDs: Once agree sets induced by t are computed, we can
determine a first set of FDs which are not violated after the insertion of t. Indeed, we are sure that each
minimal FD X → A of Cover(Fr), such that A belongs to all agree sets induced by t, still holds on
(r ∪ t).

Example 7. Let us consider the relation r of Table 1 and suppose that it contains only the three first
tuples and we will insert tuple t4. The canonical cover of r is the following:

B → A AC → B B → C ∅ → D B → E
AE → B E → C C → E

After computing the agree sets induced by t4, we obtain Ag(r)t4 = {ACDE,CDE,AD}. Hence,
we are sure that minimal FDs having D as consequent will be valid after the insertion of t4 (since
D ∈ ACDE,D ∈ CDE and D ∈ AD). Thus, we narrow the search space of the candidate violated
FDs by pruning those having D as consequent.

3.1.2.2. A second level of refinement based on agree generators induced by t
As said before (c.f., Sub-section 3.1.2), computing agree generators induced by t allows us to determine

the set of minimal FDs that have to be updated (i.e., those violated after the insertion of the new tuple).
Identifying the agree generators induced by t: Appellation of agree generators induced by t is justified

by the fact that we generate a new canonical cover of (r ∪ t) if we have at least one agree generator
induced by t. Formally, agree generators induced by t are defined as follows.

Definition 9. An agree set X induced by t, is said to be an agree generator induced by t if and only if
X 	= (XCover(Fr))+. The whole set of agree generators induced by t is denoted by Gen(r)t.

Example 8. Let us consider the relation r of Table 1 and suppose that it contains only the three first
tuples and we will insert tuple t4. The canonical cover of r is given in Example 7. After computing
the agree sets induced by t4, we obtain Ag(r)t4 = {ACDE,CDE,AD}. Let us identify the agree
generators induced by t4.
For ACDE, (ACDECover(Fr))+ = ABCDE. Then, ACDE is an agree generator induced by t4.
For CDE, (CDECover(Fr))+ = CDE. Then, CDE is not an agree generator induced by t4.
For AD, (ADCover(Fr))+ = AD. Then, AD is not an agree generator induced by t4.
Consequently, Gen(r)t4 = {ACDE}.
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Determining the set of violated FDs: Proposition 2 ensures that, thanks to agree generators induced by
t, we can determine the set of FDs which will be violated after the insertion of t.

Proposition 2. X → A is violated by (r ∪ t) if and only if ∃G ∈ Gen(r)t such that X ⊆ G and A 	∈ G.

Proof. For a minimal FD X → A, which belongs to the remaining set of the candidate violated FDs of
Cover(Fr), we have at least one agree set induced by t that does not contain A. We denote by Ag(r)t/A
the collection of agree sets induced by t that do not contain A. Then, two cases can arise:

1. if X is not contained in any agree set of Ag(r)t/A, then X → A is not violated by (r ∪ t).
2. if X is contained in at least one agree set of Ag(r)t/A, then X → A is violated by (r ∪ t). Hence,

for each agree set Y of Ag(r)t/A that contains X, A belongs necessarily to the closure of Y (c.f.,
Definition 4) and according to Definition 9, Y is an agree generator induced by t.

Example 9. Let us continue with the Example 8. We recall that after the first refinement the remaining
set of the candidate violated FDs of Cover(Fr) are:

B → A AC → B B → C B → E
AE → B E → C C → E

According to Example 8, Gen(r)t4 = {ACDE}. Then, the violated functional dependencies are those
whose antecedents are contained in ACDE and their consequents do not belong to ACDE: AC → B
and AE → B. Thus, we see that thanks to the second refinement, we pruned five other FDs.

3.2. Maintaining the set of violated FDs

If there are FDs that are violated after the insertion of t, means that Cover(Fr) 	= Cover(Fr∪t).
Hence, we have to compute Cover(Fr∪t). However, we have already computed a part of this canonical
cover. Indeed, Cover(Fr∪t) contains:

– the minimal FDs of Cover(Fr) that are not violated after the insertion of t. These FDs are already
determined in the previous step.

– the minimal FDs which replace the violated ones.

Hereafter, we provide the following properties related to the agree generators induced by t which will
be of use to comprehend the method used to maintain the violated FDs.

Property 1. Let r be a relation and X be an agree set induced by t. If ∃(t′, t”) ∈ r such that Ag(t′, t”) =
X, then, X is not an agree generator induced by t.

Proof. Suppose that ∃(t′, t”) ∈ r such that Ag(t′, t”) = X. Hence, it 	 ∃Y → A ∈ Cover(Fr) such that
Y ⊆ X and A 	∈ X (because this means that t′ and t” are agree on Y however they are not agree on
A). Hence, X = (XCover(Fr))+. Consequently, X cannot be an agree generator induced by t.

Thanks to Property 1, we can deduce the following property.

Property 2. Let Ag(r ∪ t) and Ag(r) be the agree sets of, respectively, the updated relation(r ∪ t) and
r. Then, Ag(r ∪ t) = Ag(r) ∪ Gen(r)t.
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Proof. It is obvious that Ag(r ∪ t) = Ag(r) ∪ Ag(r)t. Since it may exist an agree set X induced by t
such that Ag(t′, t”) = X and (t′, t”) ∈ r. Then, we can deduce that Ag(r ∪ t) = Ag(r) ∪ Gen(r)t.

Now, let us explain the idea of maintaining the violated FDs. A functional dependency X → A ∈
Cover(Fr) is violated by (r ∪ t) means that:

– r |= X → A: 	 ∃Y ∈ Ag(r) such that X ⊆ Y and A 	∈ Y .
– (r ∪ t) 	|= X → A: ∃G ∈ Gen(r)t such that X ⊆ G and A ∈ G (c.f., Proposition 2).

Hence, when we update a violated minimal functional dependencyX → A, we must satisfy the following
conditions. Suppose that Z → A is the new FD obtained after maintaining X → A:

1. Z should not be included in any agree set of Ag(r) that does not contain A.
2. Z should not be included in any agree generator induced by t that does not contain A.
3. Z → A has to be minimal since it belongs to Cover(Fr∪t).

Through Proposition 3, we point out that maintaining a violated FD can be reduced to the problem of
computing minimal transversals of a hypergraph.

Proposition 3. Let X → A be a minimal FD of Cover(Fr) violated after the insertion of t.
MG1,MG2, . . . ,MGn are the maximal agree generators induced by t that do not contain A and
L1, L2, . . . , Ln are the antecedents of the FDs obtained when MG1,MG2, . . . ,MGn are, respectively,
considered. Then, X → A will be replaced by the following minimal FDs:
{Z → A|Z ∈ Ln} such that:

L0 = X and Li = Min{T ∪ {e}|T ∈ Li−1, {e} ∈ MGi} (MGi is the complementary set of
MGi : A− MGi).

Proof. As we said before, a violated FD X → A has to be replaced by Z → A where Z is not
contained in any set of Ag(r ∪ t)/A (the agree sets that do not contain A). Furthermore, Z has to be
minimal. Dually, Z should have a non empty intersection with each complemented set of Ag(r ∪ t)/A
(the complementary set of X, denoted X = A−X). Hence, Z is a minimal transversal of the hypergraph
H = (A, {Ag−m, . . . , Ag0, G1 . . . , Gn}) where ∀i ∈ [−m..0], Agi are the agree sets of r which do not
contain A and ∀j ∈ [1..n], Gj are the agree generators induced by t which do not contain A. According
to Proposition 1,Z is a minimal transversal of Min(H) =(A, {MAg−m, . . . ,MAg0,MG1 . . . ,MGn})
where ∀i ∈ [−m..0], MAgi are the maximal agree sets of r which do not contain A and ∀j ∈ [1..n],
MGj are the maximal agree generators induced by t which do not contain A. According to Proposition 3,
Tr(Min(H)) can be determined incrementally. Indeed, let us define a sequence{L−m, . . . , L0, . . . , Ln}
are the transversal hypergraph obtained when MAg−m, . . . ,MAg0,MG1 . . . ,MGn are, respectively,
considered. It is obvious that X ∈ L0 (since L0 contains all minimal transversals of the complementary
sets of Ag(r)A). Hence, in order to update X → A, we have to restrict L0 to X and continue to
compute incrementally Tr(G) where G =(A, {MG1 . . . ,MGn}), L0 = X and Li = Min(T ∪{e}|T ∈
Li−1, {e} ∈ MGi).

Example 10. Let us consider the relation r of Table 1 and suppose that it contains only the five first
tuples and we will insert the tuple t6. The following table gives Cover(Fr).

BC → A AB → C A → D AB → E
BD → A BD → C C → D BD → E
BE → A E → C E → D C → E
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After computing the agree sets induced by t6, we obtain Ag(r)t6 = {C,E,BC,AD}. After the
identification of the agree generators induced by t6, we obtain Gen(r)t6 = {C,E,BC}. Thanks to
this set, we can deduce FDs which will be violated after the insertion of t6. Indeed, BC → A,E →
C,C → D,E → D and C → E will be violated. Let us maintain C → E. The maximal agree
generators induced by t6 that do not contain E are {BC}. Hence, the complemented set of BC is ADE.
C → E will be replaced by the following minimal FDs: {Y → E|Y ∈ L1} such that L0 = C and
L1 = Min{AC,CD,CE}. Consequently, C → E will be replaced by AC → E and CD → E.

Proposition 3 underpins the procedure of maintaining a violated functional dependencyX → A which
uses a depth-first search. Indeed we use a search tree having X as root and whose leaf nodes represent
candidate antecedents of FD which would replace X → A. An arbitrary node, in level i, represents
an antecedent obtained by considering maximal agree generators induced by t MG1,MG2, . . . ,MGn.
Indeed, the nodes of level i represent the set Li (c.f., Proposition 3). In order to obtain a candidate of
level i + 1, from a node Y of level i, we should consider the i + 1th maximal agree generator induced
by t. We distinguish two cases:

– If Y is a minimal transversal of MGi+1, then this maximal agree generator induced byt is ignored.
– Else, we generate a child node equal to the union of Y and {e}, such that {e} ∈ MGi+1.

For each leaf node Y , we have to verify that it does not exist a FD of Cover(Fr∪t) having an antecedent
included in Y .

Example 11. Let us maintain C → E violated after the insertion of tuple t6. The maximal agree
generators induced by t6 that do not contain E are {BC}. Firstly, we initialize the search tree by the
root labeled C . We check if C is a minimal transversal of ADE (the complemented of BC). This
test fails. Consequently, we generate a child node AC that represents the antecedent of the functional
dependency AC → E. After, we generate a second child node CD that represents the antecedent of the
functional dependency CD → E. We do not generate the child CE since E belongs to CE.

3.3. Illustrative example

In the following, we present an example that illustrates the whole process of FDs updating. Let us
consider the relation of Table 1 and suppose that it contains only the five first tuples and we will insert
the tuple t6. The following table gives Cover(Fr).

BC → A AB → C A → D AB → E
BD → A BD → C C → D BD → E
BE → A E → C E → D C → E

Initially, we start by reducing the relation r. For that, we generate the equivalence classes of r with
respect to t6.
r(A)t6 = {t5};
r(B)t6 = {t4};
r(C)t6 = {t1, t2, t4};
r(D)t6 = {t5};
r(E)t6 = {t3}.
Then, EC(r)t6 = {r(A)t6 , r(B)t6 , r(C)t6 , r(D)t6 , r(E)t6}.
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After, we check whether Cover(Fr) could be the canonical cover of (r ∪ t6). In the beginning, all
minimal FDs of Cover(Fr) are candidate to be violated by (r∪ t6). In order to reduce this search space,
we apply a first refinement based on the agree sets induced by t6. Tanks, to the maximal equivalence
classes of r with respect to t6, one can deduce all tuples which share with t6 the value of at least one
attribute. Indeed, MC(r)t6 = {{t1, t2, t4}; {t5}; {t3}}. Hence, Ag(t1, t6) = C (since t1 belongs only
to r(C)t6) ; Ag(t2, t6) = C (since t2 belongs only to r(C)t6); Ag(t4, t6) = BC (since t4 belongs to
r(B)t6 and r(C)t6); Ag(t5, t6) = AD (since t5 belongs to r(A)t6 and r(D)t6); Ag(t3, t6) = E (since t1
belongs only to r(E)t6 ). Ag(r)t6 = {C,BC,AD,E}. Hence, we are sure that all minimal FDs having
a consequent included in all agree sets induced by t6 are not violated by (r ∪ t6). For this case, the first
level of refinement does not prune any minimal FD.

After, we apply a second refinement based on the agree generators induced by t6. For that, we
have first to identify the agree generators induced by t6. For C, (CCover(Fr))+ = CDE. Then, C

is an agree generator induced by t6. For BC, (BCCover(Fr))+ = ABC . Then, BC is an agree
generator induced by t6. For AD, (ADCover(Fr))+ = AD. Then, AD is not an agree generator
induced by t6. For E, (ECover(Fr))+ = CDE. Then, E is an agree generator induced by t6. Hence,
Gen(r)t6 = {C,BC,E}. Consequently, BD → A, BE → A, AB → C , BD → C , A → D,
AB → E, BD → E are not violated by (r ∪ t6) because, for these FD, it does not exist an agree
generator induced by t6 that contains their antecedents and does not contain their consequents. Thus,
only BC → A, E → C , C → D, E → D and C → E have to be updated. Consequently, Cover(Fr)
cannot be the canonical cover of (r ∪ t6). However, we initialize Cover(Fr∪t6) by the non violated
minimal FDs of Cover(Fr). Thus, Cover(Fr∪t6) is initially as follows:

BE → A AB → C A → D AB → E
BD → A BD → C BD → E

After, we maintain the violated minimal FDs. For BC → A, the maximal agree generators induced
by t6 that do not contain A are {C,BC,E}. We build a tree having BC as root and we check if BC

is a minimal transversal of ABDE (the complemented set of C). The test succeeds. Then ABDE is
ignored. We check if BC is a minimal transversal of ADE the complemented set of BC). The test fails.
Then, we would have three child nodes: ABC,BCD,BCE. The first child node is ignored since the
consequent belongs to ABC . Then, we generate the second child node BCD. After, we check if BCD

is a minimal transversal of ABCD the complemented set of E). The test succeeds. Then, ABCD is
ignored. Thus, BCD is a leaf node. However, we note that BD → A belongs already to Cover(Fr∪t6)
and BD ⊂ BCD. Then, BCD is ignored since BCD → A is not minimal. After, we generate the
third child node BCE. After, we check if BCE is a minimal transversal of ABCD. The test succeeds.
Then, ABCD is ignored. Thus, BCE is a leaf node. However, we note that BE → A belongs already
to Cover(Fr∪t6) and BE ⊂ BCE. Then, BCE is ignored since BCE A is not minimal.

After updating the whole set of violated FDs, we obtain the following Cover(Fr∪t6).

BE → A AB → C A → D AB → E
BD → A BD → C CE → D BD → E

AE → C BE → D AC → E
DE → C CD → E
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4. Experimental evaluations

In this section, we aim to show the effectiveness of INCFDS algorithm compared to the non-incremental
approach. For this purpose, we conducted a set of experiments comparing INCFDS performances to those
of the non incremental algorithm FASTFDS [23]. This choice is motivated by features shared by both
algorithms. We implemented both algorithms in Java on a PC equipped with a 2 GHz Intel processor
and 3 GB of main memory. Firstly, we give an overview of the FASTFDS algorithm against which we
compare the performances of INCFDS. Then, in order to control various parameters during the tests, we
carried out experiments on synthetic databases. By this way, the pros and cons for the two algorithms
can be studied in depth. Finally, we illustrate the sensitivity of both approaches to some real world data.

4.1. The FastFDs algorithm

Several algorithms for discovering functional dependencies have been presented [12,15,16,21,23,24].
However, we choose to compare INCFDS to FASTFDS because they share some features. Indeed, they
are agree sets based algorithms; moreover, they use a depth-first search to discover the canonical cover
of the FDs. Given a relation r, FASTFDS algorithm starts by computing the difference sets of r which are
the complemented sets of the agree sets. After, it computes the canonical cover of FDs holding on r by
using a depth-first search strategy [23].

4.2. Synthetic databases

Our first set of experiments involved integer-valued relations. We firstly create a table with |A|
attributes in the database and then insert |r| tuples one by one. Each inserted value depends on the
parameter c, which is the rate of identical values. It controls the number of identical values in a column
of the table. After each insertion, we record the execution time of both algorithms INCFDS and FASTFDS.
The experiments were carried out on: (1) a relation composed of 10000 tuples, 20 attributes and 50% of
identical values per attributes. (2) a relation composed of 10000 tuples, 20 attributes and 25% of identical
values per attributes. (3) a relation composed of 10000 tuples, 10 attributes and 50% of identical values
per attributes.

When we observed the results of the experiments conducted on integer-valued relations, we noted
that the length of agree sets is not large (e.g., for a relation of 10000 tuples, 20 attributes and 50% of
identical values, the maximal length of agree sets is 3). Consequently, the number of the minimal FDs
is few. Moreover, the lengths of their antecedents are not large. These two reasons explain the fact
that over 90% of time is spent for computing agree sets. However, it would be interesting to study the
behavior of the both algorithms when the number of the violated minimal FDs is large. For that, we
used a second kind of database where over 90% of time is spent for searching the minimal FDs from
agree sets: the Bernoulli relations. This kind of relations involves only two values and they are similar
to the transactional databases, used in the problem of association rules mining [2]. For |A| attributes,
the expected average length of the antecedents of minimal FDs is |A|/2 when the number of tuples
|r| = 2|A|/4. The number of minimal FDs increases exponentially with |A|.

Figure 3 depicts the performances of INCFDS and FASTFDS. The curves (1), (2) and (3) illustrate the
performances of both algorithms for, respectively, a relation composed of 10000 tuples, 20 attributes
and 50% of identical values per attributes; a relation composed of 10000 tuples 20 attributes and 25%
of identical values per attributes and a relation composed of 10000 tuples 10 attributes and 50% of
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Fig. 3. The performances of FASTFDS and INCFDS.

identical values per attributes. The curve Bernoulli illustrate a Bernoulli relation having 32 tuples and
20 attributes.

Through Fig. 3, we can note that:

– the more the size of the database increases, the more the gap between FASTFDS and INCFDS increases.
– For the integer-valued relations ((1),(2) and (3)), the more the rate of identical values increases, the

more the gap between FASTFDS and INCFDS increases.
– FASTFDS is more sensitive to the variation of the relation size than INCFDS.
– The execution time of FastFDs could decrease when the relation size increases.

In order to explain the behavior of both algorithms, depicted by Fig. 3, we provide additional details
that allow us to study in depth the algorithms performances. These details are given by Tables 2 and 3.
Table 2 reports the details when the 1000th, 4000th, 7000th and 10000th tuple is added to an integer-
valued relation where |A| = 20 and c = 50%. Table 3 reports details when the 4th, 8th, 16th and 32nd

tuple is added to a Bernoulli relation where |A| = 20 and |r| = 32. For both tables, the second column
gives the execution time for computing agree sets of the whole relation. The third column illustrates the
execution time of FASTFDS. The fourth column gives the number of couples of tuples which are agree on
at least one attribute of the relation. The fifth column gives the number of agree sets of the relation. The
sixth column reports the average size of agree sets. The seventh column presents the size of Cover(Fr).
The eighth column shows the execution time for computing agree sets induced by t (the new tuple to
add), the ninth column gives the execution time of INCFDS. The tenth column reports the number of
tuples that are agree with t. The eleventh column reports the average size of agree sets induced by t. The
twelfth column gives the number of agree sets induced by t. The thirteenth column shows the number of
the violated FDs.

Through Tables 2 and 3, we can note that:
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Table 2
FASTFDS versus INCFDS (c = 50% and |A| = 20)

Table 3
FASTFDS versus INCFDS for a Bernoulli relation (|r| = 32 and |A| = 20)

– For FASTFDS, the more the size of the relation increases the more the number of couples of tuples,
the number of agree sets and thus, execution time increase. Indeed, by augmenting the relation
with new tuples, we increase the chance of having tuples that are agree on at least one attribute of
the relation. Hence, the number of couples of tuples would increase. Consequently, the number of
agree sets and the time required for their computing would increase. For the integer-valued relation,
where the average size of agree sets is not large, computing the canonical cover from agree sets is not
costly. However, for Bernoulli relations, the average size of agree sets is large and the computing of
the canonical cover from agree sets is costly. Hence, we can deduce that performances of FASTFDS

algorithms are sensitive to the variation of the relation size, the rate of identical values and the
average size of the agree sets.

– For INCFDS, the more the size the number of tuples sharing with t at least the value of one attribute
increases the more the number of agree sets induced by t and the time required for their computing
increase. Moreover, we note that the more the average size of agree sets induced by t and the number
of violated minimal FDs increase the more the time required for computing the new canonical cover
increases. Hence, we can conclude that performances of INCFDS algorithms are sensitive to the
variation number of tuples sharing with t at least the value of one attribute, the average size of the
agree sets induced by t and the number of violated minimal FDs.

4.3. Real world databases

Hereafter, we illustrate the sensitivity of FASTFDS and INCFDS to some real world data available in the
repository of machine learning databases. For that, we choose the following databases: (1) Mushrooms
that includes 8124 descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms
in the Agaricus and Lepiota Family; (2) Nursery developed to rank applications for nursery schools.
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Fig. 4. The sensitivity of FASTFDS and INCFDS to some real world data.

It includes 12960 tuples and 8 attributes; (3) Flare that concerns solar flare. It contains 323 tuples and
10 attributes; (4) Credit which concerns credit card applications. It has 1000 tuples and 15 attributes.

According to curves of Fig. 4, we can note that INCFDS outperforms FASTFDS algorithm.

5. Conclusion and perspectives

Dynamicity is an important feature of real life database that should be taken into consideration by
functional dependencies mining approaches. In this paper, we proposed the first algorithm, called INCFDS

to maintain the canonical functional dependencies incrementally, when a new tuple is appended to the
original database. Indeed, given a relation r and a new tuple t, we propose to discover the canonical
cover of the FDs holding on (r ∪ t) by taking advantages of the canonical cover of FDs holding on r.
For that, we start by verifying that the updated relation does not violate any FD of the canonical cover of
FDs holding on r. Whenever there are some FDs violated by the updated relation, we maintain partially
the canonical cover of FDs holding on r in order to deduce the canonical cover of FDs holding on (r∪ t).
Experimental results revealed benefits of using incremental approach to mine the canonical cover of FDs.

In this paper, we addressed a particular case of update, which consists in adding a single new tuple.
However, it would be interesting to setting up a thorough framework which can handle all the update
cases including insertion, deletion and modification of a set of tuples. The study of this issue is currently
under investigation. However, it is important to mention that the insertion of a set of tuples can be easily
addressed by changing slightly the INCFDS algorithm. Indeed, we have only to compute the agree sets
induced by the whole set of inserted tuples instead of the agree sets induced by t. Another extension
would concern the study of incremental mining of approximate dependencies. Furthermore, the study of
possible parallelization of INCFDS should be investigated.
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