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Abstract 25 

An overview of the literature was conducted to assess prevalence and mechanisms of 26 

antibiotic resistance to date, mainly to β-lactam antibiotics, cephalosporins, carbapenems, 27 

colistin and tigecycline in DR Congo. English and French publications were listed and 28 

analysed using PubMed/Medline, Google Scholar and African Journals database between 29 

January 1st, 1990 and December 31, 2019. For the 30 published articles found: i) Bacterial 30 

resistance to antibiotics concerned both Gram-negative and Gram-positive bacteria; ii) 31 

Multidrug resistance prevalence was the same in half of Streptococcus pneumoniae isolates; 32 

iii) A worrying prevalence of methicillin-resistant Staphylococcus aureus (MRSA) was noted, 33 

associated with co-resistance to several other antibiotics; iv) Resistance to 3rd generation 34 

cephalosporins was very high in Enterobacteriaceae, mainly due to blaCTX-M-1 group and 35 

blaSHV genes. Data on carbapenem and colistin resistance were not available until now. 36 

Further work is required to set up a surveillance system for antibiotic resistance in this 37 

country. 38 

39 
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Introduction  40 

There is a growing concern on antimicrobial resistance (AMR) worldwide [1]. 41 

Resistance against antimicrobial agents s in clinically relevant bacteria is one of the most 42 

imminent threats to public health and especially to our most vulnerable patient populations 43 

[2,3]. The treatment of bacterial infections in Africa is largely empirical and, in most 44 

instances, there are no laboratory results to guide therapy [4,5]. The spread of AMR bacteria is 45 

problematic for the medical community as a whole as it compromises empirical treatment 46 

regimens by delaying the administration of appropriate antibiotic therapy and reducing 47 

appropriate treatment options [6,7]. AMR remains a real challenge in resource-limited 48 

countries due to a lack of available antibiotics with multidrug-resistant isolates being labelled 49 

on the basis of a small number of antibiotics tested, with economic consequences and yet the 50 

use of the old molecules is very effective. The consequences of AMR are not limited to 51 

patients with infections, but to a whole system including the environmental and agro-pastoral 52 

sector that hemming enough resistance genes. Hence, there is a need for action to significantly 53 

reduce the expansion of the phenomenon, whose distribution varies considerably from one 54 

country to another [8,9]. To combat the global threat of AMR, improved surveillance to detect 55 

emerging and long-term resistance trends is vital, several global initiatives, such as the 56 

Fleming Fund, have been recently established to improve laboratory capacity in low- and 57 

middle-income countries [10]. 58 

 As recently reported, there is a link between antibiotic resistance genes found in 59 

human pathogens and those found in non-pathogenic, commensal and environmental 60 

organisms, prompting further studies of natural and human-associated reservoirs of resistance 61 

genes [11]. Many hypotheses can be evoked, even though the relationship between antibiotic 62 

use and antibiotic resistance remains complex [12]. Resistance selection pressure continues as 63 
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antimicrobials are released into the environment, largely while remaining in their active 64 

forms. These drugs frequently found in wastewater for example contributed greatly to the 65 

environmental selection of antibiotic-resistant bacteria [13-17]. As reported by many health 66 

care settings, Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii 67 

have been identified as emerging organisms of concern for multidrug resistance, and have 68 

encouraged researches in this area [18,19]. Resistance to antibiotics is the result of either by 69 

reducing its affinity, lowering its concentration, or destroying it in order to effectively reduce 70 

or cancel the interaction with its target [20]. Therefore, depending on the involved 71 

mechanism, the resistance level can vary considerably [21]. 72 

Over the past decade, the increase in multidrug resistance of Gram-negative rods and 73 

in particular the spread of resistance to carbapenems in Enterobacteriaceae, Pseudomonas 74 

spp. and Acinetobacter spp., has prompted the return of colistin (or polymyxin E) as a 75 

treatment of last resort. Extended-spectrum β-lactamase (ESBL)-producing pathogens and 76 

methicillin resistant Staphylococcus aureus (MRSA) are endemic in many hospitals 77 

worldwide and are also increasingly detected in the community [22-25]. Carbapenem-resistant 78 

enterobacterial infections (CRE) are being increasingly observed, mainly in health care 79 

facilities, but also in the community; they are associated with management difficulties due to 80 

the lack of alternative active molecules and cause outbreaks difficult to control in health care 81 

facilities in low-income countries where hygiene is poor and the population is overcrowded, 82 

in addition to an epidemic context of ESBL that was still not effectively controlled [26]. 83 

84 
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Challenge of humanitarian disaster, infectious diseases and AMR spread in war context 85 

In Democratic Republic of Congo (DRC), data on AMR are scarce; some bacteria are 86 

being included in surveillance cross sectional study, such as Salmonella spp. and S. aureus, 87 

but there are unknown prospects focused on other bacteria and in many parts of the country 88 

[27,28]. The DRC is a vast country (2.3 million km of area) divided into 26 provinces. Each 89 

province is divided into health districts, which in turn are divided into health zones (called 90 

“zones de santé”). A health zone in the DRC corresponds to what is internationally referred to 91 

as a health district [29]. The conflict in DRC has resulted in a health-system collapse and 92 

created a humanitarian disaster. An estimated 5.4 million excess deaths occurred from 1997 to 93 

2004, with fewer than 10% attributable to violence and the rest to preventable and treatable 94 

medical conditions, such as malaria, diarrhea, pneumonia, and malnutrition [30]. Armed 95 

conflicts and other disastrous natural phenomena can lead to major population displacements. 96 

An emergency unsustainable infrastructure is temporarily built, and often with overcrowding, 97 

insufficient if not insufficient drinking water and sanitation, which gives its populations a risk 98 

of exposure to communicable diseases, especially those with epidemic potential [31].  The 99 

country had been the site of two wars involving multiple African nations and armed conflict 100 

between rebels and soldiers for the past 16 years, characterized by extreme violence, massive 101 

population displacements from east to west, and the collapse of all existing infrastructure 102 

[32,33]. Massive population movements are at the root of most risk factors, people are 103 

displaced to regions and areas where resources and services are insufficient and where contact 104 

with other naïve populations with new vectors of infectious diseases is potentially more 105 

frequent. This leads to large numbers of people going to camps, often associated with 106 

overcrowding, inadequate housing and poor water conditions, resulting in the spread of 107 

pathogenic microorganisms, as reported by UNHCR in January 2018 in Eastern Congo (Fig. 108 

1) [34,35]. 109 
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The deterioration of health services is probably one of the main risk factors for communicable 110 

diseases in this type of humanitarian disaster, both for individuals and populations. Access to 111 

health care in such conditions is impossible, which is a key risk factor for the serious 112 

progression of most communicable diseases in the individual. As the spread and detection of 113 

cases becomes a major challenge, emergency measures to be implemented remain 114 

unavailable, including public health services, vaccination, communicable disease prevention 115 

and control measures and surveillance, making epidemics more likely, more difficult to detect 116 

and more difficult to control [35,36]. 117 

 
118 

Review methods 119 

For this review, we searched PubMed/Medline, Google Scholar and African Journals for 120 

articles written in French and in English on bacterial resistance to antibiotics in DR Congo. 121 

We used the search terms “bacterial resistance”, “antibiotic and resistance”, “antimicrobial 122 

resistance”, “microbial resistance”, “susceptibility”, “resistance” combined with the name of 123 

Democratic Republic of Congo. We screened the search results for relevant, methodologically 124 

rigorous studies and conducted a forward search of the references of many of the relevant 125 

results to identify additional studies. Articles were reviewed and publications using original 126 

data on antibiotics resistance in humans and environment samples were included. The studies 127 

site, study period, organism isolated, the resistance phenotype observed, the molecular 128 

methodology used as well as the antimicrobial resistance genes found were appraised and 129 

analysed. This review on antibacterial resistance in DRC focuses on available published 130 

literature on the subject dating from 1990 to December 31st, 2019. 131 

132 
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Resistance pattern among Gram-negative and Gram-positive bacteria 133 

Enterobacteriaceae:  134 

For Enterobacteriaceae, the emergence and spread of CTX-M type ESBLs are global, with 135 

the highest prevalence observed in low-income countries, particularly in the community with 136 

an estimated carrying prevalence of 70%, 35% and 15% respectively in Asia, the Eastern 137 

Mediterranean Basin and Africa [24]. 138 

Salmonella  139 

Salmonella spp. is the most studied bacterial genus in DRC as a result of the research 140 

set up and is still ongoing since 2008 on bacteremia. Indeed, since the first publications on 141 

bacteremia, the prevalence of resistance to ampicillin, chloramphenicol and cotrimoxazole are 142 

particularly high (90 – 100%) [37,38]. The most frequently isolated species are Salmonella 143 

enteritidis, Salmonella typhimurium and Salmonella Typhi. The level of resistance is as high 144 

for S. Typhi as it is for non-Typhi Salmonella (NTS). Ampicillin, chloramphenicol and 145 

cotrimoxazole are no longer susceptible in more than 70% of isolates [38,39,40]. For 146 

Muyembe et al. in 2009, all isolates (11 isolates) of S. Typhi were resistant to ampicillin and 147 

cotrimoxazole [41]. Finally, a decreased susceptibility to ciprofloxacin was also observed 148 

between 59 to 65% [42,43,44]. Several resistance genes were detected in Salmonella spp. 149 

strains isolated from DRC including, blaTEM-1b and blaSHV-2a genes [27,37,43]. Moreover, S. 150 

Typhi harboring blaCTX-M genes has been described in blood cultures in a bacteremic patient in 151 

2018 [45].   Resistance to chloramphenicol, aminoglycosides, quinolones and sulfonamides is 152 

correlated to the presence of catA1, strA/B, sul1, dfrA1 genes and the aac(6’)-1aa gene 153 

[37,40]. Some mutations on gyrA gene, as well as the presence of qnrB1 and aac(6’)-Ib-cr 154 

genes were found in strains resistant to fluoroquinolones (Table 1 and Table 2). Puyvelde et 155 
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al., in 2019, analysed the entire genome of 81 strains of S. typhimurium by high-throughput 156 

sequencing. They reported that 67% of the isolates (54/81) were ESBL-producers and 63% 157 

were multidrug resistant (MDR), according to the definition used for Salmonella spp., i.e. 158 

resistant to both ampicillin, chloramphenicol and cotrimoxazole. Several resistances genes 159 

were found, including catA, blaTEM-1, blaSHV-2A, dfrA, dfrA1, dfrA14, mphA and a mutation in 160 

the gyrA gene (S83Y) [46].  Bieke et al., in 2019, analysed 295 S. Typhi, 93 of which were 161 

sequenced (WGS): 38.4% (114/295) were resistant to ampicillin, chloramphenicol and 162 

cotrimoxazole; 24.5% (73/295) had decreased sensitivity to ciprofloxacin, mainly due to 163 

mutations detected in the gyrA (S83E, S83Y, D87Y, D87G, A119E) and gyrB (E466D, 164 

S464Y) genes [47]. 165 

Escherichia coli 166 

E. coli is one of the most isolated microorganisms in bacteriology laboratories. A 167 

single emerging clonal group of E. coli, designated sequence type 131 (ST131) by multilocus 168 

sequence typing, has been identified as a factor in the AMR epidemic in E. coli, especially for 169 

first-line agents such as fluoroquinolones and extended-spectrum cephalosporins. E. coli 170 

contains a wide array of genetic diversity, most notably among genes that confer virulence 171 

and resistance [48,49].  In DRC, five studies carried out in 2001, 2014 and 2015 showed that 172 

the resistance rates of E. coli varied from 65 to 90% to penicillin [42,50,51], from 6 to 15% to 173 

ceftriaxone and 15.4% to 31.5% to ciprofloxacin [52,53]. For studies in which resistance 174 

genes were sought, the blaCTX-M-15 and blaSHV-18 genes were reported (Table 1) [53,54].  In 175 

Bukavu, a recent study conducted in 2019 by Irenge et al. using whole genome sequencing of 176 

21 E. coli strains showed that 33% of the strains (7 out of the 21 E. coli) belonged to ST131 177 

and exhibited more virulence genes as compared to compared to the same clone in the NCBI 178 

database. The majority of ESBL genes included blaCTX-M-15 and blaSHV-12 in all the isolates. 179 
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Several other AMR genes have been found including blaOXA-1, blaTEM-1, as well as genes 180 

encoding resistance to aminoglycosides, quinolones, chloramphenicol, rifampicin, 181 

tetracyclines and sulfonamides. As a matter of fact, blaCTX-M-15 gene is the most frequently 182 

found ESBL gene among African hospital strains [55,56]. 183 

Klebsiella pneumoniae 184 

K. pneumoniae is a frequent cause of nosocomial infections and has also emerged as an 185 

agent of severe community-acquired infections, including pyogenic liver abscess, pneumonia, 186 

and meningitis. K. pneumoniae clinical isolates are evolving toward increasing levels of 187 

antimicrobial drug resistance, placing this species among the infectious bacterial pathogens 188 

that are most challenging to control [57].  In a study on urinary tract infection aetiologies in 189 

Bukavu, Leonid et al. found that K. pneumoniae was the second most frequently identified 190 

microorganism after E. coli [53]. Its resistance profile in studies published in the DRC in 2012 191 

and 2015 showed a resistance rate of less than 35% for both amoxicillin/clavulanate acid 192 

(14%-19%), ceftriaxone (14% -19%) and ciprofloxacin (12%-33%). One out of the 21 strains 193 

of K. pneumoniae was phenotypically resistant to imipenem. No further studies were 194 

performed to screen for the carbapenemase genes. Studies have shown that the use of 195 

carbapenems promotes the emergence of carbapenemase-producing isolates. In Bukavu, the 196 

use of these molecules is increasingly becoming part of the therapeutic arsenal of clinicians 197 

[58].  The resistance genes described for K. pneumoniae in DRC are the blaCTX-M-15 and 198 

blaSHV-18 genes, as previously reported for E. coli [52,54,59]. 199 

Others Gram-negative bacteria (including non-fermenting rods) 200 

The available data do not allow the resistance profile of these other bacteria to be 201 

established, given the small number of isolates tested (Table 2). Those microorganisms are 202 

Citrobacter freundii, Enterobacter spp., and Proteus spp. Enterobacter cloacae is an 203 
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opportunistic pathogen that can cause several types of infections in the lower respiratory tract, 204 

surgical sites, urinary tract and central nervous system. Moreover, this species is frequently 205 

associated with nosocomial infections during outbreaks, emphasizing the need for rapid 206 

detection and typing of such pathogens. C. freundii is considered a commensal of the 207 

intestinal tract of humans and other animals. However, this species can also cause diarrhea 208 

and other infections in humans [60,61]. De Boeck et al. in Kinshasa reported the presence of 209 

blaCTX-M-15, blaSHV-18 and blaSHV-2-like genes in C. freundii and E. cloacae strains, 210 

demonstrating that the two ESBL genes are widely disseminated in Enterobacteriaceae 211 

[54,59]. In a recent study conducted by Leonid et al., out of the 78 analysed strains of Vibrio 212 

cholerae, all were resistant to cotrimoxazole and nalidixic acid, 12% (9/78) had reduced 213 

susceptibility to ciprofloxacin and 14% (11/78) were resistant to ampicillin. They were still 214 

sensitive to chloramphenicol and tetracyclines. Many AMR genes were detected (Tab. 1) [62]. 215 

Finally, there are no data available on the occurrence and resistance profile of non-fermenting 216 

Gram-negative bacilli in RDC. 217 

Resistance pattern among Gram-positive bacteria 218 

Staphylococcus aureus  219 

S. aureus is one of major human pathogens, associated with wide spectrum of 220 

localized or systemic infections including wound infections, osteomyelitis, food poisoning, 221 

endocarditis, as well as more serious illnesses, such as pneumonia and bacteremia [63,64]. In 222 

RDC, the prevalence of bacterial infections caused by methicillin-resistant S. aureus (MRSA) 223 

varied from 16 to 64% [28,44,65,66,67], which is similar to the prevalence reported in other 224 

African countries [68]. The reported prevalences of antibiotics resistance are as follows: 33 to 225 

72 % against to tetracyclines, 5 to 54 % against cotrimoxazole, 31 % against gentamicin, 26 to 226 

69% against erythromycin and 20 to 59% against ciprofloxacin [28,44,66]. 227 



11 

 

Streptococcus pneumoniae 228 

S. pneumoniae is the leading cause of pneumonia and bacterial meningitis. It is 229 

commonly encountered in children and in immunocompromised and elderly populations and 230 

it has considerable implications for healthcare systems worldwide [69]. To date, multidrug-231 

resistant S. pneumoniae (MDR-SP) have been isolated from both adults and children around 232 

the world. These isolates are resistant to penicillin, clindamycin, cotrimoxazole and 233 

erythromycin [70]. In DRC, a study performed on 23 S. pneumoniae isolates, showed that the 234 

prevalence of penicillin resistance was 34%, 21% to cotrimoxazole and 13% to cefuroxime 235 

(Table 2) [71]. Serotyping had not been completed, yet it would give us valuable information 236 

on circulating strains depending on the vaccine used. A recent study of 163 nasal carriage 237 

isolates of S. pneumoniae in children under 60 months of age reported 62% (n=101) of 238 

resistance to penicillin G, 42% (n=68) to ampicillin, and 37% (n=61) to ceftriaxone. Almost 239 

all strains were resistant to cotrimoxazole (94%) and 43% (n=70) were resistant to more than 240 

three classes of antibiotics [72]. 241 

Perspectives 242 

Surrounded by nine neighboring countries, the DRC faces many security and health 243 

challenges, including population movement, high mortality rates and recurrent endemic 244 

diseases, which make it impossible for the health system to make antibiotic resistance a 245 

priority. With an annual budget of about US$6 billion, 1.2% of which is allocated to the 246 

health sector, for a population estimated at 85 million [73]. Despite the existence of 39 247 

officially recognized medical schools, most of which are located in urban areas, the training 248 

of clinical microbiologists remains a real problem because entirely self-financed, so that the 249 

number of microbiologists is very low in relation to actual needs [29]. The DRC is almost last 250 

with its human development index (168/169), public spending on health is among the lowest 251 
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with two dollars per capita. In this context of advanced poverty, investment in laboratory 252 

materials and other diagnostic equipments for infectious diseases is therefore impossible. The 253 

WHO recommends a minimum of $35 per capita to safeguard a country's population [74]. Out 254 

of the 424 hospitals in the country, very few have organized a microbiology service due to 255 

lack of electricity, infrastructure and especially qualified personnel, as the only university in 256 

the country that trains them markets 2 to 4 clinical microbiologists per year [75]. The serious 257 

threat of antibiotic resistance in the DRC is the ineffectiveness of the antibacterial molecules 258 

available on the market, which means that the use of old molecules which prove to be more 259 

active with multidrug resistant isolates elsewhere should quickly orient the regulatory 260 

authorities to change procurement policies.  261 

In light of these challenges, there is an urgent need to create collaborative networks 262 

with all microbiology laboratories across the country, which will then be linked to external 263 

laboratories to effectively address the AMR problem. 264 

 265 

Conclusion 266 

This review summarizes the current state of our knowledge regarding antimicrobial 267 

susceptibility of the common organisms causing serious community and hospital-acquired 268 

infections in DRC. Many studies focused on Salmonella spp., S. aureus and V. cholerae. 269 

Bacterial resistance to antibiotics concerns both Gram negative and Gram-positive bacteria. 270 

Multidrug resistance prevalence is almost common in half of S. pneumoniae isolates. More 271 

disturbing, we can note a worrying prevalence of MRSA with co-resistance to several other 272 

antibiotics, and of ESBL-producers in Enterobacteriaceae with the diffusion of blaCTX-M-15 and 273 

blaSHV-18 genes. Data on non-fermenting Gram negative bacilli, as well as carbapenem and 274 

colistin resistance, are not available. 275 
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Figure 1: Movement of population in the context of armed conflict in Eastern part of Democratic Republic of Congo. 534 
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Figure 2: Localization of published data on antimicrobial resistance in Democratic Republic of the Congo. 537 
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Table 1: Main antimicrobial resistance genes found in Democratic Republic of Congo  539 

540 

Species Methods 
N° of 

strains 
Antibiotic resistance genes  References 

Salmonella spp. 
PCR, gene sequencing,  
whole genome sequencing 

453 

blaCTX-M-15, blaSHV-2a, mph(A), gyrA mutation, qnrB1, 

aac(6′)-Ib-cr, blaTEM-1, blaTEM-1b, catA1, strA/B, sul1, 

dfrA1, aac(6’)-1aa 

 

[27,37, 38, 40, 
43,45,47,77] 

E. coli 
PCR, Whole genome 
sequencing 

21 

blaCTX-M-1, blaTEM, blaCMY, blaOXA, aac3, ant2’’, 

ant3’’, aph3’’, aph6, pbp2, aac6’, qnrB, mphA, cat, 

catA, catB, arr, folp, sulI, sulII, tetA, tetB, tetD, dhfr 

 

[53,56] 

Klebsiella spp. PCR 3 blaCTX-M-15, blaSHV variants [59] 

S. aureus 
PCR, Whole genome 
sequencing 

148 
aac(6’)-aph(2’’), tetK, emrC, mecA gene found, 
mutation in femA gene found, dfrG, rpoB, emrC 

[28,44] 

 

Vibrio cholerae Whole genome sequencing 78 
cardB, intSXT, sxt/R391, sulII, sulI, qnrVC, aph3-

dprime, aph6, drfA, dhfr, flor, gyrA (S83I), parC 

(S85L) 
[46] 
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Table 2. Prevalence of resistance among bacteria isolated in Democratic Republic of Congo 

Study period Microorganism isolated  

(year of isolation) 
Prevalence of resistance % (N) Gene identified References 

1993 Salmonella spp.(1986) 
90% (n=90) of resistance to ampicillin, chloramphenicol, 
streptomycin and tetracycline 
 

NDa [76] 

2001 Salmonella spp. and E. coli (1990) 

100% of resistance to ampicillin and chloramphenicol for S. 

enteridis, 65% (n=46) of resistance to ampicillin and 
chloramphenicol for E. coli (n=19) 
 

ND [42] 

2009 Salmonella Typhi (2005) 
All the strains (n=11) exhibited resistance to ampicillin 
(>256 mg/L) and cotrimoxazole (>32 mg/L) 
 

ND [41] 

2010 Salmonella spp.(2006) 

For S. typhimurium, high proportion of isolates were 
resistant to ampicillin (85.7%), chloramphenicol (92.5%), 
and cotrimoxazole (94.7%), 6.1% of S. enteritidis tested 
were resistant to nalidixic acid and ciprofloxacin, 10.2% of 
S. enteritidis isolates were resistant to gentamicin. 89.7% of 
S. Typhi isolates presented a similar antimicrobial resistant 
profile as the one observed among NTSb 
 

Two isolates displayed resistance to 
cefoxitin (32mg/L); the presence of 
the genes blaCMY-1, blaCMY-2, blaACC, 

blaCTX-M, and blaTEM was negative 

[39] 

2013 Salmonella typhimirium (2006) 
100% (n=11) of resistance to ampicillin, cotrimoxazole, and 
chloramphenicol 

blaTEM-1b, catA1, strA/B, sul1, dfrA1, 

aac(6’)-1aa 
[37] 

2014 Salmonella spp. (2011) 
96% (n=180) of resistance to ampicillin; chloramphenicol 
and cotrimoxazole, 

blaSHV-2a, mph(A) [38] 

2014 Salmonella spp. (2012) 

72.2% (n=18) of S. Typhi isolates showed co-resistance to 
ampicillin and cotrimoxazole, 33.3% showed additional 
resistance to chloramphenicol and hence were MDRc. 97.6% 
(n=85) of NTS isolates were MDR; 1.0 % S. typhimurium 
isolate had additional DCSd  

 

gyrA gene mutation found [40] 

2015 Salmonella spp. (2014) S. Typhi isolates (n=164), MDR and DCS rates were 37.8% gyrA mutation found, qnrB1, aac(6′)- [27] 



24 

 

and 37.2%, respectively.  
MDR were 90.2% and 79.7%, respectively for S. 

typhimurium (386) and S. enteritidis (390). ESBL production 
was observed in 12.7% of S. typhimurium isolates 
 
 

Ib-cr, blaTEM-1 

2017 Salmonella Typhi (2015) 

Production of ESBLe was confirmed by PCR, the first time 
in DR Congo on S. Typhi. The isolate further showed 
decreased ciprofloxacin to pefloxacin and nalidixic acid with 
resistance 
 

blaCTX-M-15 [43] 

2018 Salmonella Typhi (2017) 
ESBL-producing S. Typhi isolate with a decreased 
ciprofloxacin susceptibility 
 

blaCTX-M-15 [45] 

2018 Salmonella spp. (2014) 
27% (n=60) of resistance to cefuroxime, 20% to ceftriaxone 
and norfloxacin 
 

ND [80] 

2019 Salmonella typhimurium (2016) 
67% (54/81) were ESBL producers and 63% were MDR 
(resistance both to ampicillin, chloramphenicol and 
cotrimoxazole). 

catA, blaTEM-1, dfrA, dfrA1, dfrA14, 

blaSHV-2A, mphA, gyr A mutation 
(S83Y) 

[46] 

2019 Salmonella Typhi (2017) 

38.4% (114/295) were resistant to ampicillin, 
chloramphenicol and cotrimoxazole; 24.5% (73/295) had 
decreased sensitivity to ciprofloxacin 
 

gyrA (S83E, S83Y, D87Y, D87G, 
A119E), gyrB (E466D, S464Y) 

[47] 

2012 Enterobacteriaceae (2011) 
7.4% (n=190) ESBL-producing Enterobacteriaceae 

 
blaCTX-M-1 group [59] 

2014 
Enterobacteriaceae and Non 
fermenting Gram-negative rods 
(2013) 

16.3% (n=643) of isolates displayed a MDR phenotype; 80% 
(n=25) of isolates were ESBL-producers 
 
 

blaCTX-M-1 group [53] 

2014 Enterobacteriaceae (2013) 

100% (n=79) of resistance to tetracycline, over 90% of 
resistance to ampicillin, cotrimoxazole and chloramphenicol 
and over 65% of resistance to norfloxacin  
 

ND [51] 
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2015 Enterobacteriaceae (2014) 

100% (n=112) of resistance to cotrimoxazole, 67-100% of 
resistance to ampicillin and > 50% of them were ESBL 
producers 
 

ND [52] 

2015 
Enterobacteriaceae and Gram-
positive cocci (2015) 

98% (n=38) of E. coli and 65% (n=22) of S. aureus resisted 
to penicillin, and 92% of E. coli and 73% of S. aureus 
resisted to cefotaxime 
 

ND [50] 

2012 
Klebsiella spp. and E. aerogenes 

(2010) 
5.3% (150) of ESBL producers (8 isolates). 5 blaCTX-M genes and 3 blaSHV variants [54] 

2019 Escherichia coli (2014) 
All isolates were MDR corresponding to ESBL producers 
(n=21). Twenty-one (21/21) and 19/21 strains were 
susceptible to imipenem and amikacin, respectively 

blaCTX-M-1, blaTEM, blaCMY, blaOXA, 

aac3, ant2’’, ant3’’, aph3’’, aph6, 

pbp2, aac6’, qnrB, mphA, cat, catA, 

catB, arr, folP, sulI, sulII, tetA, tetB, 

tetD, dhfr 

 

[56] 

2014 Staphylococcus spp.(2013) 
63.5% (n=74) of S. aureus and 90% (n=15) of CNSf were 
MRSAg and MR-CNS, respectively  
 

ND [66] 

2015 Staphylococcus aureus(2011) 
16% (n=63) of MRSA 
 

ND [65] 

2016 Staphylococcus aureus (2014) 
33% (n=100) were MRSA, 72% of resistance to cyclins and 
54% of resistance to cotrimoxazole 
 

mecA, mutation in femA gene found, 
dfrG, rpoB, emrC 

[28] 

2017 Staphylococcus aureus (2016) 
36% (n=45) of isolates were MRSA 
 

ND [67] 

2017 Staphylococcus aureus (2013) 

25% (n=108) were MRSA, 31% were resistant to 
aminoglycosides, 26 % to macrolides and 20 % to 
ciprofloxacin 
 

aac(6’)-aph(2’’), tetK, emrC  [44] 

2015 Vibrio cholerae (2013) 
98% (n=36) of resistance to cotrimoxazole, 71% to 
nitrofurantoin and 18% to nalidixic acid. 

ND [77] 

2015 Vibrio cholerae (2012) 
Although sensitivity to fluoroquinolones seemed to be 
preserved, strain resistance patterns continued to evolve with 

MLVA genotyping, no resistance 
genes searched 

[78] 
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the circulation of isolates resistant to tetracyclines and 
ampicillin from 2007 to 2010, and displayed a single 
antimicrobial drug susceptibility profile: resistance to most 
antimicrobial drugs (chloramphenicol, erythromycin, 
cotrimoxazole) except cyclines and fluoroquinolones. 
 

2019 Vibrio cholerae (2017) 
100% (n=78) of resistance and nalidixic acid, 12% and 14% 
of resistance to ciprofloxacin and ampicillin, respectively 

cardB, IntSXT, sxt/R391, sulII, sulI, 

qnrVC, aph3-dprime, aph6, drfA, 

dhfr, flor, gyrA (S83I), parC (S85L), 
 

[62] 

2016 
Streptococcus pneumoniae and 

Haemophilus influenzae (2014) 

83% (n=23) of S. pneumoniae isolates were resistant to 
penicillin, 28% (n=23) of H. influenzae were resistant to 
amoxicillin/clavulanate acid 
 

ND [71] 

2018 Streptococcus pneumoniae (2015) 

70 out of the 163 isolates (43%) of the pneumococci were 
MDR (non-susceptible to ≥3 classes of antimicrobial agents, 
including the β-lactams). 
 

ND (PCR done for serotyping only) [72] 

 

a ND, not determined; b NTS: Non Typhi Salmonella; c MDR: multidrug resistant; d DCS: Decreased Ciprofloxacin Susceptibility; e ESBL: 

extended spectrum β-lactamase; f CNS: coagulase negative Staphylococcus; g MRSA: methicillin resistant S. aureus. 




