

Detailed description of Senegalia massiliensis strain SIT17T, a bacterium isolated from the human gut

S.I. Traore, I.I. Ngom, C.I. Lo, F. Di Pinto, C. Sokhna, P.-E. Fournier, D.

Raoult, F. Fenollar

▶ To cite this version:

S.I. Traore, I.I. Ngom, C.I. Lo, F. Di Pinto, C. Sokhna, et al.. Detailed description of Senegalia massiliensis strain SIT17T, a bacterium isolated from the human gut. New Microbes and New Infections, 2020, 37, pp.100700. 10.1016/j.nmni.2020.100700 . hal-03159664

HAL Id: hal-03159664 https://amu.hal.science/hal-03159664v1

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Detailed description of *Senegalia massiliensis* strain Marseille-P2130^T, a bacterium isolated from the human gut.

Sory Ibrahima TRAORE^{1,2}, Issa Isaac NGOM^{1,2}, Cheikh Ibrahima LO^{2,3}, Fabrizio DI PINTO^{1,2}, Cheikh SOKHNA^{2,4}, Pierre-Edouard FOURNIER^{2,3}, Didier RAOULT^{1,2} and Florence FENOLLAR^{2,3*}

¹ Aix Marseille Univ, IRD, AP-HM, MEΦI, Marseille, France

² IHU-Méditerranée Infection, Marseille, France

³ Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France

⁴ Campus Commun UCAD-IRD of Hann, Dakar, Senegal

* Corresponding author : Florence FENOLLAR, Institut Hospitalo-Universitaire Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille cedex 05, France ; tel +33 413 732 401 ;
fax : +33 413 732 402 ; e-mail: florence.fenollar@univ-amu.fr.

Running title: Senegalia massiliensis Keywords: Senegalia massiliensis; culturomics; taxonogenomics; human gut; Bacteria

1 Abstract

- 2 Strain Marseille-P2130^T was isolated from the stool of healthy 13-month-old Senegalese
- 3 boy. It is a Gram-positive, aero-anaerobic rod-shaped, non-spore-forming and mobile
- 4 bacillus. It exhibited a 92.74% 16S rRNA gene sequence similarity with the *Brassicibacter*
- 5 *thermophilus* strain Cel2f, the phylogenetically closest-related species. Its genome is about
- 6 2.87 Mb long with 27.39 mol% G+C content. Therefore, we provide more details of
- 7 Senegalia massiliensis strain Marseille-P2130T (= CSURP2130 =DSM 103071) which its
- 8 creation was announced before.

9 Introduction

10 Recently, the culturomics concept developed in our laboratory allowed to change the paradigm of the human gut microbiota [1]. Indeed, by this method, more than 50% of the 11 microorganisms present in the human gut microbiota are known. In order to improve culture 12 and bacterial identification, culturomics is associated with a new process named taxono-13 genomics to provide exhaustive information and to better characterize bacterial species [4-14 5]. Combining phenotypic characteristics and genomic analysis and comparison, this 15 polyphasic approach exceeds the limits of conventional methods long used for the 16 description of new species [7-8]. 17

Here, we present the classification and features of *Senegalia massiliensis* strain Marseille-P2130^T, including a description of the complete genome sequencing and annotation.

21 Isolation and growth conditions

Strain Marseille-P2130^T was first isolated in 2015 from the stool of a healthy 13-22 month-old Senegalese boy [11]. The sample was collected in Senegal and was then frozen at 23 -80°C. Subsequently, it was transported in dry ice to Marseille, where the bacterial culture 24 was started. The initial growth of bacterial cells was obtained on Columbia agar with 5% sheep's 25 blood after 2 days of anaerobic incubation at 37°C. The identification of strain Marseille-26 P2130^T using Matrix Assisted Laser Desorption Ionization -Time of Flight Mass Spectrometry 27 (MALDI-TOF MS) was unsuccessful. The process was performed on a Microflex LT spectrometer 28 (Bruker, Daltonics, Bremen, Germany) as previously described [15]. The spectra obtained were 29 imported and analyzed using the Biotyper 3.0 software against the Bruker database permanently 30 improved with the local MEPHI database (Figure 1). 31

32 Strain identification and phylogenetic analysis

In order to identify the strain Marseille-P2130^T, the 16S rRNA gene was amplified using the fD1 and rP2 primer pair (Eurogentec, Angers, France) and sequenced using the

Big Dye® Terminator v1.1 Cycle Sequencing Kit and 3500xLGenetic Analyzer capillary 35 sequencer (Thermofisher, Saint-Aubin, France), as previously reported [16]. The 16S rRNA 36 nucleotide sequences were assembled and corrected using CodonCode Aligner software 37 (http://www.codoncode.com). The polymerase chain reaction-amplified genes coding for 38 16S rRNA of Senegalia massiliensis yielded 92.74% similarity level with Brassicibacter 39 thermophilus strain Cel2f (GenBank accession no: NR137216) [9], the phylogenetically 40 closest species with standing in nomenclature (Figure 2). This value was lower than the 41 95%, the recommended threshold for delineating a new bacterial genus based on 16S rRNA 42 gene sequence without DNA-DNA hybridization [36]. Classification and general features 43 are summarized in Table 1. 44

45 Phenotypic and biochemical characteristics

Colonies of the strain Marseille-P2130^T were grey and translucent with a size of 0.5-46 1 mm on Columbia agar with 5% sheep's blood. Growth was observed from 28 to 45°C, 47 with an optimal growth at 37°C, and colonies were obtained after 48 hours of culture. 48 Bacterial cells were Gram-positive, rod-shaped and motile, but non spore forming (Figure 49 3A). Observed under electronic microscopy, the cells presented a mean diameter of 0.4 µm 50 and a mean length of 3.2 µm (Figure 3B). Bacterium had a catalase positive but no oxidase 51 negative activities. Senegalia massiliensis is able to grow in an environment with a pH 52 ranging from 6 to 8.5, with an optimal value of 7. Strain Marseille-P2130^T is an anaerobic 53 bacterium that can grow in a microaerophilic atmosphere. On the other hand, no growth was 54 observed under aerobic conditions. The biochemical and phenotypic features of strain 55 Marseille-P2130^T were compared to other close representative strains in the *Clostridiaceae* 56 family (Table 2). Using API ZYM strips (bioMérieux), positive reactions were observed for 57 esterase, esterase lipase, alkaline phosphatase, α -chymotrypsin, acid phosphatase, naphthol-58 AS-BI-phosphohydrolase and β -galactosidase. However, we noted that the enzymatic 59

activities for lipase, leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, α -60 galactosidase, β -glucuronidase, β -glucosidase, N-acetyl- β -glucosaminidase, α -mannosidase 61 and a-fucosidase, were negative. Using API 50 CH, positives reactions were observed for 62 glycerol, D-ribose, L-xylose, D-galactose, D-glucose, D-fructose, D-mannose, L-rhamnose, 63 inositol, D-mannitol, D-sorbitol, methyl α-D-glucopyranoside, N-acetylglucosamine, 64 amygdalin, arbutin, salicin, D-cellobiose, D-maltose, D-lactose, D-sucrose, D-trehalose, D-65 melezitose, D-raffinose, D-turanose, D-xylose, D-fucose, L-fucose, D-arabitol, potassium 66 gluconate and starch. However, there was no metabolism for the following carbohydrates: 67 erythritol, L-arabinose, D-adonitol, methyl β-D-xylopyranoside, methyl α-D-68 mannopyranoside, D-arabinose, inulin and glycogen. Cellular fatty acid methyl esters 69 (FAME) analysis of the strain Marseille-P2130^T was carried out by operating gas 70 chromatography/mass spectrometry (GC/MS) as previously described [22-23]. The result 71 showed that Hexadecanoic acid (32.6%), 9-Octadecenoic acid (21.6%) and 13-methyl-72 tetradecanoic acid (11.9%), are the most abundant fatty. Other saturated and unsaturated 73 fatty acids are also found (Table 3). 74

74 Tatty actus are also found (Table 5).

75 Genomic properties and comparison

The genome of strain Marseille-P2130 is 2,866,883 bp long with 27.39 mol% G+C 76 content and contains 2,933 coding genes (Figure 4). It is composed of 22 contigs. By 77 comparing it with others related species, its genome (2.87 Mbp) is smaller than Alkaliphilus 78 oremlandii strain OhILAsm, Proteiniborus ethanoligenes DSM strain 21650, 79 Clostridiisalibacter paucivorans strain DSM 22131, Alkaliphilus transvaalensis strain 80 ATCC 700919, Paramaledivibacter caminithermalis strain DSM 15212, Alkaliphilus 81 peptidifermentans strain DSM 18978 and Alkaliphilus metalliredigens strain L21-TH-D2 82 (3.12, 3.16, 3.24, 4.02, 4.05, 4.45 and 4.93 Mbp, respectively), but larger than the genome of 83 Caldisalinibacter kiritimatiensis (2.79 Mbp). The G+C content of strain Marseille-P2130^T 84

(27.39 mol%) is smaller than A. oremlandii, P. ethanoligenes, C. paucivorans, A. 85 transvaalensis, P. caminithermalis, A. peptidifermentans, A. metalliredigens and C. 86 kiritimatiensis (36.3, 32.6, 31.4, 34, 30.5, 34.1, 36.8 and 30.1 mol%, respectively). The gene 87 content of strain Marseille-P2130^T (2,933 genes) is larger than A. oremlandii (n=2,898), C. 88 kiritimatiensis (n=2,557) and P. ethanoligenes (n=2,846), but smaller than C. paucivorans 89 (n=3,014), A. peptidifermentans (n=4,072), A. metalliredigens (n=4,641), A. transvaalensis 90 (n=3,640) and P. caminithermalis (n=3,543). Distribution of functional classes of predicted 91 genes according to the clusters of orthologous groups (COGs) was reported in Table 4. 92 Results from pairwise genome comparison obtained from analysis of the digital DNA-DNA 93 hybridization (dDDH) using GGDC software are shown in Table 5. OrthoANI values among 94 the closely related species ranged from 64.37%, between A. metalliredigens and C. 95 paucivorans, to 70.05 % between C. kiritimatiensis and S. massiliensis. When S. 96 massiliensis was compared to these closely species, values ranged from 65.93% with A. 97 metalliredigens to 70.05 % with C. kiritimatiensis (Figure 5). 98

99 Conclusion

100 On the basis of phenotypic, phylogenetic and genomic analyses, we formally propose the 101 creation of *Senegalia massiliensis* gen. nov. sp. nov., that contains the strain Marseille-102 P2130^T. Thus, the combination of culturomics and taxono-genomics would contribute to a 103 better knowledge of the associated human microorganisms and could help to better 104 understand physiological functioning in health and disease.

105 Description of Senegalia gen. nov.

106 Senegalia (Se.ne.ga.lia. L. gen. n. Senegalia) is the Latin name of Senegal, where the stool
107 specimen was collected. Cells are Gram-positive, non spore-forming, motile and aero108 anaerobic bacilli. The type species is *Senegalia massiliensis* sp. nov.

109 Description of Senegalia massiliensis sp. nov.

Senegalia massiliensis gen. nov., sp. nov. (mas.si.li.en'sis. L. fem. adj., from massiliensis, of 110 Massilia), the Latin name of Marseille where the strain was first isolated. It is classified as a 111 member of the family Clostridiaceae within the phylum Firmicutes. The strain Marseille-112 P2130^T designed the type strain of *Senegalia massiliensis* gen. nov., sp. nov., and was 113 deposited in CSUR (CSURP2130) and DSMZ (DSM 103071) collections. It is Gram 114 positive bacilli, motile, catalase positive, oxidase negative and non-spore forming. Strain 115 Marseille-P2130^T was first isolated from the stool of a healthy 13-month-old Senegalese 116 boy. Its genome is 2,866,883 bp long with 27.39 mol% G+C content and possesses 2933 117 coding genes. The genome and 16S rRNA sequences of the strain Marseille-P2130^T are both 118 deposited in GenBank under accession numbers UZAQ00000000 and LN881608, 119 120 respectively.

121 Acknowledgements

- 122 The authors thank Catherine Robert for sequencing the genome and Aurelia Caputo for
- 123 submitting the genomic sequence to GenBank.

124 Conflict of interest

125 The authors declare no conflict of interest.

126 Funding sources

- 127 This study was supported by the Institut Hospitalo-Universitaire (IHU) Méditerranée
- 128 Infection, the National Research Agency under the program « Investissements d'avenir »,
- 129 reference ANR-10-IAHU-03, the Région Provence-Alpes-Côte d'Azur and European
- 130 funding FEDER PRIMI.

131 Ethics and consent

- 132 The child's parents provided a signed informed consent and the study was approved by the
- 133 ethics committee of the Institut Fédératif de Recherche IFR48 under number 09-022.

134 References

135	1.	Lagier J-C, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial
136		culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 2012;
137		18(12):1185-93. doi: 10.1111/1469-0691.12023.
138	2.	Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, et al. Culture of previously
139		uncultured members of the human gut microbiota by culturomics. Nat Microbiol 2016;
140		1:16203. doi: 10.1038/nmicrobiol.2016.203.
141	3.	Lagier J-C, Hugon P, Khelaifia S, Fournier P-E, La Scola B, Raoult D. The rebirth of culture
142		in microbiology through the example of culturomics to study human gut microbiota. Clin
143		Microbiol Rev 2015; 28(1):237-64. doi: 10.1128/CMR.00014-14.
144	4.	Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E, Rolain J-M, et al. Ongoing
145		Revolution in Bacteriology: Routine Identification of Bacteria by Matrix-Assisted Laser
146		Desorption Ionization Time-of-Flight Mass Spectrometry. Clin Infect Dis 2009; 49 (4):543-
147		51. doi: 10.1086/600885.
148	5.	Fournier PE, Drancourt M. New Microbes New Infections promotes modern prokaryotic
149		taxonomy: a new section "TaxonoGenomics: new genomes of microorganisms in humans".
150		New Microbes New Infect 2015; 7:48-9. doi: 10.1016/j.nmni.2015.06.001.
151	6.	Fournier P-E, Lagier J-C, Dubourg G, Raoult D. From culturomics to taxonomogenomics: A
152		need to change the taxonomy of prokaryotes in clinical microbiology. Anaerobe 2015;
153		36:73-8. doi: 10.1016/j.anaerobe.2015.10.011.
154	7.	Ramasamy D, Mishra AK, Lagier JC, Padhmanabhan R, Rossi M, Sentausa E, et al. A
155		polyphasic strategy incorporating genomic data for the taxonomic description of novel
156		bacterial species. Int J Syst Evol Microbiol 2014; 64 (Pt 2):384-91. doi:
157		10.1099/ijs.0.057091-0.
158	8.	Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J. Polyphasic taxonomy, a
159		consensus approach to bacterial systematics. Microbiol Rev. 1996; 60 (2):407-38.
160	9.	Wang B, Ji SQ, Tian XX, Qu LY, Li FL. Brassicibacter thermophilus sp. nov., a
161		thermophilic bacterium isolated from coastal sediment. Int J Syst Evol Microbiol 2015;
162		65(9):2870-4. doi: 10.1099/ijs.0.000348.
163	10.	Rezgui R, Ben Ali Gam Z, Ben Hamed S, Fardeau ML, Cayol JL, Maaroufi A, et al.
164		Sporosalibacterium faouarense gen. nov., sp. nov., a moderately halophilic bacterium
165		isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2011; 61(Pt 1):99-104. doi:
166		10.1099/ijs.0.017715-0.
167	11.	Traore SI, Cadoret F, Fournier P-E, Raoult D. "Senegalia massiliensis," a new bacterium
168		isolated from the human gastrointestinal tract. New Microbes New Infect 2016; 12:88-9. doi:
169		10.1016/j.nmni.2016.05.005.
170	12.	Seng P, Rolain JM, Fournier P-E, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass
171		spectrometry applications in clinical microbiology. Future Microbiol 2010; 5 (11):1733-54.
172		doi: 10.2217/fmb.10.127.
173	13.	Fall B, Lo CI, Samb-Ba B, Perrot N, Diawara S, Gueye MW et al. The ongoing revolution of
174		MALDI-TOF mass spectrometry for microbiology reaches tropical Africa. Am J Trop Med
175		Hyg 2015; 92(3):641-7. doi: 10.4269/ajtmh.14-0406.
176	14.	Lo CI, Sankar SA, Fall B, Sambe-Ba B, Diawara S, Gueye MW. High-quality draft genome
177		sequence and description of Haemophilus massiliensis sp. nov. Stand Genomic Sci. 2016;
178		11:31. doi: 10.1186/s40793-016-0150-1.

179	15.	Sankar SA, Lagier JC, Pontarotti P, Raoult D, Fournier PE. The human gut microbiome, a
180		taxonomic conundrum. Syst Appl Microbiol. 2015; 38(4):276-86. doi:
181		10.1016/j.syapm.2015.03.004.
182	16.	Stackebrandt E, Ebers J. Taxonomic parameters revisited : tarnished gold standards.
183		Microbiol Today. 2006; 6:152–5.
184	17.	Diop K, Diop A, Levasseur A, Mediannikov O, Robert C, Armstrong N, Couderc C.
185		Microbial Culturomics Broadens Human Vaginal Flora Diversity: Genome Sequence and
186		Description of <i>Prevotella lascolaii</i> sp. nov., isolated from a Patient with Bacterial Vaginosis.
187		OMICS. 2018; 22(3):210-222. doi: 10.1089/omi.2017.0151.
188	18.	Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
189		Nucleic Acids Res 2004; 32(5):1792-7.
190	19.	Price MN, Dehal PS, Arkin AP. FastTree 2approximately maximum-likelihood trees for
191		large alignments. PLoS One 2010; 5(3):e9490. doi: 10.1371/journal.pone.0009490.
192	20.	Citron DM, Ostovari MI, Karlsson A, Goldstein EJ. Evaluation of the E test for
193		susceptibility testing of anaerobic bacteria. J Clin Microbiol 1991; 29(10):2197-203.
194	21.	Matuschek E, Brown DF, Kahlmeter G. Development of the EUCAST disk diffusion
195		antimicrobial susceptibility testing method and its implementation in routine microbiology
196		laboratories. Clin Microbiol Infect. 2014; 20(4):O255-66. doi: 10.1111/1469-0691.12373.
197	22.	Sasser M (2006). Bacterial identification by gas chromatographic analysis of fatty acids
198		methyl esters (GC-FAME). http://midi-inc.com/pdf/MIS_Technote_101.pdf.
199	23.	Dione N, Sankar SA, Lagier JC, Khelaifia S, Michele C, Armstrong N, et al. Genome
200		sequence and description of Anaerosalibacter massiliensis sp. nov. New Microbes New
201		Infect. 2016; 10:66-76. doi: 10.1016/j.nmni.2016.01.002.
202	24.	Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic
203		gene recognition and translation initiation site identification. BMC Bioinformatics
204		2010;11:119. doi: 10.1186/1471-2105-11-119.
205	25.	Lowe TM, Eddy SR. tRNAscan-SE: A Program for Improved Detection of Transfer RNA
206		Genes in Genomic Sequence. Nucleic Acids Res. 1997; 25(5):955-64.
207	26.	Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T, Ussery DW. RNAmmer:
208		consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;
209		35(9):3100-8.
210	27.	Dyrløv Bendtsen J, Nielsen H, von Heijne G, Brunak S. Improved Prediction of Signal
211		Peptides: SignalP 3.0. J Mol Biol. 2004; 340(4):783-95.
212	28.	Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein
213		topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;
214		305(3):567-80.
215	29.	Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, et al. Artemis:
216		sequence visualization and annotation. Bioinformatics 2000; 16(10):944-5.
217	30.	Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear
218		interactive genome visualization. Bioinformatics. 2009; 25(1):119-20. doi:
219		10.1093/bioinformatics/btn578.
220	31.	Gouret P, Paganini J, Dainat J, Louati D, Darbo E, Pontarotti P, et al. Integration of
221		evolutionary biology concepts for functional annotation and automation of complex research
222		in evolution: the multi-agent software system DAGOBAH. In: Evolutionary biology-
223		concepts biodiversity, macroevolution and genome evolution (p. 71-87). Editions Springer.
224		DOI: 10.1007/978-3-642-20763-1_5.

225	32.	Gouret P, Vitiello V, Balandraud N, Gilles A, Pontarotti P, Danchin EG. FIGENIX:
226		Intelligent automation of genomic annotation: expertise integration in a new software
227		platform. BMC Bioinformatics 2005; 6: 198.
228	33.	Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for
229		calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66(2):1100-1103.
230		doi: 10.1099/ijsem.0.000760.
231	34.	Auch AF, Jan M von, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial
232		species delineation by means of genome-to-genome sequence comparison. Stand Genomic
233		Sci. 2010; 2(1):117-34. doi: 10.4056/sigs.531120.
234	35.	Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species
235		delimitation with confidence intervals and improved distance functions. BMC
236		Bioinformatics 2013; 14:60. doi: 10.1186/1471-2105-14-60.
237	36.	Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-
238		DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64(Pt 2):352-6. doi:
239		10.1099/ijs.0.056994-0.
240	37.	Skerman VBD, McGowan V and Sneath PHA. Approved Lists of Bacterial Names. Int J
241		Syst Bacteriol. 1980; 30:225-420.
242	38.	Liebgott PP, Joseph M, Fardeau ML, et al. Clostridiisalibacter paucivorans gen. nov., sp.
243		nov., a novel moderately halophilic bacterium isolated from olive mill wastewater. Int J Syst
244		Evol Microbiol. 2008;58(Pt 1):61-67. doi:10.1099/ijs.0.65182-0
245	39.	Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrickson JK.
246		Alkaliphilus transvaalensis gen. nov., sp. nov., an Extremely Alkaliphilic Bacterium Isolated
247		From a Deep South African Gold Mine. Int J Syst Evol Microbiol 2001; 51 (Pt 4), 1245-56.
248	40.	Niu L, Song L, Dong X. Proteiniborus ethanoligenes gen. nov., sp. nov., an anaerobic
249		protein-utilizing bacterium. Int J Syst Evol Microbiol. 2008; 58(Pt 1):12-16.
250		doi:10.1099/ijs.0.65108-0.
251	41.	Rezgui R, Ben Ali Gam Z, Ben Hamed S, et al. Sporosalibacterium faouarense gen. nov.,
252		sp. nov., a moderately halophilic bacterium isolated from oil-contaminated soil. Int J Syst
253		Evol Microbiol. 2011; 61(Pt 1):99-104. doi:10.1099/ijs.0.017715-0.

Figure 2. Phylogenetic tree highlighting the position of *Senegalia massiliensis* strain Marseille-P2130 relative to other close species. Sequences were aligned using CLUSTALW, with default parameters, and phylogenetic inferences were obtained using the maximum likelihood method within the MEGA7 software. Numbers at the nodes are percentages of bootstrap values obtained by repeating the analysis 500 times to generate a majority consensus tree. The scale bar indicates a 2% nucleotide sequence divergence.

A

B

- Figure 3. The morphology of bacterial cells of strain Marseille-P2130:
- 267 A. Gram staining of *Senegalia massiliensis* strain Marseille-P2130.
- 268 B. Transmission electron microscopy of Senegalia massiliensis strain Marseille-P2130 using
- 269 Tecnai G20 electron microscope (FEI Company). The scale bar is equal to 500 nm.

Figure 4. Graphical circular map of the chromosome. From outside to the center: Contigs
(red), COG category of genes on the forward strand (three circles), genes on forward strand
(blue circle), genes on the reverse strand (red circle), COG category on the reverse strand
(three circles), G+C content.

Figure 5. Heatmap generated with OrthoANI values calculated using the OAT software
between *Senegalia massiliensis* and other closely related species with standing in
nomenclature.

Property	Terms
Current Classification	Domain : Bacteria
	Phylum : <i>Firmicutes</i>
	Class : Clostridia
	Order : Clostridiales
	Family : Clostridiaceae
	Genus : Senegalia
	Species : Senegalia massiliensis
	Type: strain Marseille-P2130
Gram stain	Positive
Cell shape	Rod
Motility	Motile
Sporulation	No sporulating
Temperature range	28-45°C
Optimum temperature	37°C
pH range (optimum)	7
Oxygen requirement	Anaerobic
Carbone source	Unknown
Habitat	Human gut
Biotic relationship	Free-living
Pathogenicity	Unknown

279 Table 1. Classification and general features of *Senegalia massiliensis* strain Marseille-P2130.

280

Properties	Senegalia massiliensis	Clostridiisalibacter paucivorans	Alkaliphilus oremlandii	Alkaliphilus transvaalensis	Proteiniborus ethanoligenes	Sporosalibacterium faouarense
Cell diameter (µm)	0.3-0.5	0.5	0.5	0.4–0.7	0.5-0.6	0.5
Oxygen requirement	Aero-anaerobic	Anaerobic	Anaerobic	Anaerobic	Anaerobic	Anaerobic
Shape	bacilli	bacilli	bacilli	bacilli	bacilli	bacilli
Gram stain	+	+	+	+	+	+
Motility	+	-	+	+	-	+
Indole	-	-	NA	+	-	NA
Production of						
Alkaline phosphatase	+	NA	NA	NA	NA	NA
Catalase	+	NA	NA	NA	NA	NA
Oxidase	-	NA	NA	NA	NA	NA
Nitrate reductase	-	NA	-	+	+	NA
Urease	-	NA	NA	NA	NA	NA
ß-galactosidase	+	NA	NA	NA	NA	NA
N-acetyl		NT A	NT A	NT A	NT A	DT 4
glucosamine	-	NA	NA	NA	NA	NA
Acid from						
L-arabinose	-	+	NA	NA	-	+
Ribose	+	-	NA	-	-	-
Mannose	+	-	NA	-	-	-
Mannitol	+	NA	NA	NA	-	+
D-glucose	-	NA	NA	-	-	+
D-fructose	+	-	+	-	-	+
D-maltose	+	NA	NA	-	-	-
D-lactose	+	NA	NA	-	-	-
G+C content (%)	27.4	33.0	36.1	36.4	38.0	37.7
Habitat	Human colon	Wastewater	Environment	Environment	Environment	Soil

Table 2. Differential characteristics of *Senegalia massiliensis* strain Marseille-P2130 (data from this study) compared to other close bacteria

282 Table 3. Cellular fatty acid profiles (%) of Senegalia massiliensis strain Marseille-P2130 compared

283 with other species. 1, Senegalia massiliensis strain Marseille-P2130^T; 2, Clostridiisalibacter

284 paucivorans strain 37HS60^T [38]; 3, Alkaliphilus transvaalensis strain SAGM1^T [39]; 4,

285 *Proteiniborus ethanoligenes* strain GW^T [40]; 5, *Sporosalibacterium faouarense* strain SOL3f37^T [41];

286 TR, trace amounts < 1%. -, not detected;

Fatty acids	Names	1	2	3	4	5
12:00	Dodecanoic acid	1.2	-	-	-	-
13:00	Tridecanoic acid	TR	-	2.3	-	4.4
14:00	Tetradecanoic acid	9.2	14.3	1.7	15.58	21.6
15:0 anteiso	12-methyl-tetradecanoic acid	1.0	1.5	2.8	-	3.9
15:0 iso	13-methyl-tetradecanoic acid	11.9	6.6	51.6	4.30	41
16:00	Hexadecanoic acid	32.6	7.6	3.9	25.40	1.2
16:1n5	11-Hexadecanoic acid	TR	-	1.9	6.18	-
17:00	Heptadecanoic acid	TR	-	-	-	0.6
17:1n7	10-Heptadecenoic acid	TR	19.3	12.2	9.49	-
18:00	Octadecanoic acid	4.7	-	7.2	12.03	1.3
18:1n7	11-Octadecenoic acid	1.7	-	2.0	-	-
18:1n9	9-Octadecenoic acid	21.6	-	1.1	11.20	-

287	Table 4. Distribut	ion of functional	classes of p	predicted genes	according to the	e clusters of orthologous
-----	--------------------	-------------------	--------------	-----------------	------------------	---------------------------

288 groups (COG) of proteins of *Senegalia massiliensis* strain Marseille-P2130.

Code	Value	Description
[J]	244	Translation, ribosomal structure and biogenesis
[A]	0	RNA processing and modification
[K]	225	Transcription
[L]	114	Replication, recombination and repair
[B]	1	Chromatin structure and dynamics
[D]	52	Cell cycle control, cell division, chromosome partitioning
[Y]	0	Nuclear structure
[V]	80	Defense mechanisms
[T]	181	Signal transduction mechanisms
[M]	148	Cell wall/membrane/envelope biogenesis
[N]	71	Cell motility
[Z]	0	Cytoskeleton
[W]	11	Extracellular structures
[U]	28	Intracellular trafficking, secretion, and vesicular transport
[0]	116	Posttanslational modification, protein turnover, chaperones
[X]	26	Mobilome: prophages, transposons
[C]	173	Energy production and conversion
[G]	144	Carbohydrate transport and metabolism
[E]	202	Amino acid transport and metabolism
[F]	92	Nucleotide transport and metabolism
[H]	124	Coenzyme transport and metabolism
[I]	89	Lipid transport and metabolism
[P]	145	Inorganic ion transport and metabolism
[Q]	34	Secondary metabolites biosynthesis, transport and catabolism
[R]	255	General function prediction only
[S]	203	Function unknown
_	563	Hypothetical protein

290

291 Table 5. Pairwise comparison of Senegalia massiliensis strain Marseille-P2130 with other species using GGDC formula 2 (DDH estimates based on identities

292 / HSP length)*.

	Senegalia massiliensis	Alkaliphilus metalliredigens	Alkaliphilus oremlandii	Alkaliphilus transvaalensis	Alkaliphilus peptidifermentans	Proteiniborus ethanoligenes	Clostridiisalibacter paucivorans	Paramaledivibacter caminithermalis	Caldisalinibacter kiritimatiensis
Caldisalinibacter	19.7±2.4	37.2±5	34±4.9	17.5±4.4	18±4.5	18.9±4.6	16.9±4.4	23.6±4.7	100%
kiritimatiensis									
Paramaledivibacter caminithermalis	r15.2±4.3	28.4±4.9	26.4±4.8	16±4.3	19.5±4.6	19±4.5	23.6±4.7	100%	
Clostridiisalibacter paucivorans	17.5±4.5	25±4.8	16.7±4.4	31±4.9	17.8±5.4	18.6±5.5	100%		
Proteiniborus ethanoligenes	17.3±4.1	19.9±4.6	19.8±4.6	18.7±4.6	16.2±4.3	100%			
Alkaliphilus peptidifermentans	17.2±4.4	25.5±5.2	24.8±4.8	19.9±4.7	100%				
Alkaliphilus transvaalensis	27.4±4.8	23.5±4.8	22.2±4.7	100%					
Alkaliphilus oremlandii	29.9±4.9	26.8±4.9	100%						
Alkaliphilus metalliredigens	33.9±4.9	100%							
Senegalia massiliensis	100%								

293 *The confidence intervals indicate the inherent uncertainty in estimating DDH values from intergenomic distances based on models derived from empirical

294 test data sets (which are always limited in size) These results are in accordance with the 16S rRNA and phylogenomic analyses as well as the GGDC results