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Abstract

Systems on Chips are increasingly involved in critical equipment in the fields of aeronautics, transportations,
and energy. Therefore, monitoring their life cycle is a crucial issue for safety and hazard-prevention. This
paper deals with a data-driven method for online prediction of the Remaining Useful Life (RUL) of the
safety-critical System-on-Chips (SoC). This method is based on the detection and prediction of drifts in their
operating temperatures. The work starts with a description of the formal relationships between temperature
drifts and the degradation process of SoCs to justify the choice of the temperature as an indicator of the level
of the degradation in the system. Then, temperature-based physical health indicators are constructed using
data-driven analytical redundancy. Since temperature varies not just according to the degradation state of
the system, but also according to its various normal operating points, data-driven analytical redundancy
makes it possible to obtain a health indicator that has a well-defined physical meaning, and which is only
sensitive to the SoC degradation process. To predict the remaining useful life of the chip, the trend of the
drift is modeled using an auto-regressive neural (NAR) network. The latter is updated online according to
the evolution of the temperature drift and the state of the system. Finally, forecasts of the remaining useful
life of the SoC are obtained using a combination of temporal projection and threshold data. Simulations
and experimental results highlight the effectiveness and accuracy of the proposed approach.
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1. Introduction

Systems-on-Chips (SoCs) are increasingly embedded in safety-critical systems and undergoing strict
certifications to ensure their reliability. The latter is generally characterized by the Mean Time To Failure
(MTTF) provided by the manufacturers, and calculated in the laboratory testing conditions using data
from a battery of tests [1]. However, the volumes of SoCs that are manufactured, the complexity of the
manufacturing processes, as well as the great variability of the conditions of use, which are difficult to
reproduce in a laboratory setting, require the development of algorithms for the online monitoring of SoCs
used in safety-critical systems.

This work offers a solution to this issue by developing a data-driven method for the failure prognosis of
SoCs, based on detecting and trend-modeling of temperature related drifts. In previous works, Djedidi et
al. [2] built and validated a modeling framework and a simulator that estimates a set of key variables of the
SoC including the temperature of the SoC. These key variables will be used in this work to detect drifts in
the behavior of the system through analytical redundancy. The drift is then modeled in order to estimate
the Remaining Useful Life (RUL).

Fault diagnosis and failure prognosis have been the subject of several research works and reviews [3, 4],
where a classification divided existing approaches into three categories: Model-based, Data-driven [5, 6]
and hybrid approaches [7, 8]. However, in the field of fault diagnosis of embedded systems, SoCs are never
studied independently. The electronic card is studied as a discrete system whose functioning depends on
the proper functioning of all the sub-components [9]. In this area, causal models such as the multi-signal
flow graph [10], information flow models [11], Direct graphs [12], Dependency graphical model [13], are
the ones used the most. A classification and a detailed study of existing online error detection techniques
applied to multicore processor architectures are presented by Gizopoulos et al. [14]. The authors propose
categorized existing methods into four main categories: redundant execution [15, 16, 17], periodic Built-In
Self-Test, BIST [18], dynamic verification [19], and anomaly detection approaches [20]. Löfwenmark and
Nadjm-Tehrani [21] published a review which brought together works on multicore systems in avionics. In
their review, the authors pointed out that the sensitivity of systems to faults is constantly increasing due to
the reduction in the size of the transistors, and have highlighted the areas in which research is still necessary.
[21]. Other research work has been carried out in the field of the failure prognosis of electronic systems, in
particular for the estimation of the RUL, where relatively new techniques for its predictions were explored,
such as particle filters [22, 23], Kalman Filters [24], polynomial models [25], support vector regression [26],
iterative nonlinear degradation Auto-Regressive models [27], and Wiener processes [28].

All the previously mentioned works describe methods which focus on a specific aspect or component of
the embedded system or SoC (reliability, hardware or software components, etc.), and are mostly applicable
offline. This work, on the other hand, deal with the online assessment and modeling of the degradation
process in SoCs. In a first step, we investigate the usability of the temperature as a health indicator in
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the context of failure prognosis by establishing a formal analysis of the physical mechanisms causing the
degradation process in SoCs. The link between these mechanisms and temperature drift is highlighted and
then experimentally confirmed by temperature drift measurements recorded over three years of use of an
SoC under laboratory conditions of use.

However, as the temperature is a dynamic variable that varies in a system, to distinguish temperature
drifts caused by degradation from functional variations, a health indicator is constructed by comparing the
system’s temperature to those generated by a reference model. Once the drift is identified, its trends are
modeled using a nonlinear Auto-Regressive model. The main contribution of this work lies in the periodic
online updating of the trend model, thus adapting it to take account of changes in the conditions of use of
the SoC or changes in the profile of the drift. The update is conditioned by the quadratic error observed in
the estimate of the health indicator. The drift is then projected in time to obtain a prediction of the RUL.
The value of the latter is reassessed at each model update.

The remainder of this paper is organized into 7 sections. In Section 2, we describe the studied SoC.
After this, the usability of the temperature drift as a health indicator is investigated in Section 3. Then, an
overview of the approach proposed in this study is detailed in Section 4. Temperature modeling in embedded
SoCs is presented in Section 5, followed by the construction of the Health indicator. In the last two sections,
The process of introducing the degradation to the system then modeling its trend are detailed, culminating
with the prediction of the RUL. Finally, concluding remarks are given at the end of the paper.

2. Case Study

2.1. System description
The considered case study is the Freescale i.XM6 SoloX development board [29]. This system is generally

used for the design of multimedia content execution and display systems, especially for vehicles, as it is
certified for use in safety critical systems.

The board works under Linux and is also compatible with Android 6.0.1. It has an ARM Cortex processor
with 1 GB of RAM [29]. This system is also connected to a touch screen. The relevant characteristics of the
board are summarized in Table 1.

Table 1: The main features of the Freescale development board i.MX6 SoloX [29].

OS Android 6.0.1 (Marshmallow)

SoC MCIMX6SX
• CPU i.MX 6SoloX processor

• 1 core ARM Cortex-A9 (1 GHz)
• 1 core ARM Cortex-M4 (0.2 GHz)

• GPU 3D : Vivante GC400T et 2D : Vivante GC320
• RAM 1 GB

Communication —

I/O Touchscreen : HD LCD

Power source continuously powered

2.2. Measurements and setup
The focus of the present study is to model the effect of the temperature on the RUL of the SoC, which

requires both the measurement and the modeling of the said temperature. Modern SoCs are all equipped
with temperature sensors to monitor their thermal state and control the frequency of the processors. Indeed,
the development board is equipped with a temperature sensing module (called TempMon). This module
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delivers the temperature of the neighboring region in the SoC, as well as the temperature of the surrounding
room. However, as it is the case for all electronic temperature sensors, its accuracy is hindered by its greater
measurement error relative to more accurate instruments like thermocouples.

Nevertheless, since the module provides the measurement on which the CPU relies to control its thermal
regulation, its readings are also going to be used for the validation of the temperature model and the
prediction of the RUL, thus requiring no external sensors or intrusion. Additionally, by comparing the
readings from the temperature sensing module and measurements from an external thermocouple, we found
a mean deviation between the two equal to 0.6 °C (TempMon measures in increments of 1 °C whereas the
thermocouple has a sensitivity of 0.2 °C), and standard deviation σ ≈ 1°C comparable to the results reported
by the manufacturer. Hence the accuracy of the sensor module is sufficient for the use case in hand.

In addition to temperature values, several other readings are necessary to model the thermal behavior
of the SoC. These variables are the frequencies of the CPU cores, the occupied RAM, and the power con-
sumption. The correlation between the thermal output of the SoC and these variables has been thoroughly
studied in the literature. Furthermore, in the previous works that paved the way for this study [30, 31], this
relationship was exploited to monitor the operating state of the SoC and its software workload, and detect
faults caused by the environment or over-solicitation of the system.

The values of the frequencies and the RAM are obtained through system traces and are read every
20 ms, the minimum period at which the frequencies are reevaluated by the Frequency Governor. Since the
frequency is the fastest-changing variable, it also dictates the sampling time of the readings and the model.
Thus, Ts = 20ms. Finally, the power consumption is measured by an external multimeter at the same rate
as the other variables.

All the measurements are transferred via a TCP/IP protocol to a supervising PC where they are pro-
cessed. Figure 1 is a schematic representation of the experimental setup used in this study. A more detailed
description of this setup can be found in previous works [30, 31].

Developpement board

SoC
Cortex-A
Cortex-M

Multimeter

D
isp

lay
Supervisor (PC)

Processors
•Temperature model

•HI modeling and prediction
•RUL forecasting

TCP/IPR
A
M

Storage
(Further processing)

D
is

p
la

y

TCP/IP

Figure 1: The development board alongside the multimeter and the monitoring PC.

3. Wear-out mechanisms and temperature drift

Under continuous usage, SoC in embedded systems suffer from diverse effects—both internal and exter-
nal—that causes their reliability to be compromised and causes them to fail. In this section, the formal
relationships between the degradation mechanisms and the temperature drift are given and discussed [32, 33].

3.1. Backend Time-Dependent Dielectric Breakdown (BTDDB)
The characteristic lifetime η, which is the time at which 63% of the population have failed [34], is clearly

a function of temperature. For the dielectric segment of microprocessors associated with a linespace Si, η is
equal to:

η = AL
−1/βi

i e

−γEm−
Ea
kT


(1)
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where A is a constant depending on the properties dielectric material, Li and βi are the vulnerable length
and the shape parameter associated with the linespace Si. γ is the field acceleration factor. E which equals
to:

E =
V

Si
(2)

represents the electric field. m is a constant that depends on the model. Ea is the activation energy. k is
the Boltzmann constant, and T is the temperature [33]. Hence, for a working processor where the geometry
is fixed, η is characterized by the voltage and the temperature.

3.2. Electromigration (EM)
In microelectronic chips, EM causes an increase in the resistance of the material. Once the resistance

reaches a certain threshold, the system fails. Equation 3 describes the characteristic lifetime under EM for
a line [34].

η =
h

δs

kTLvia
eZ∗ρj Ds

(3)

h is the thickness of the line. δs represents the thickness of the surface. k is the Boltzmann constant. Lvia
is the size of the via. e is the electron charge. Z∗ is the effective charge. j is is the current density. ρ is the
resistivity of the metal. This equation clearly shows how EM is temperature-dependent [33].

3.3. Stress Induced Voiding (SIV)
As it was seen with the previous two mechanisms, SIV is also temperature-dependent [35, 36]. Under

SIV, the characteristic lifetime for an interconnect is written as:

η = AW−M (T0 − T )
−N

e(
Ea
kT ) (4)

In this equation, A is a constant, W is the line width, M depends on the stress component, T0 is the
stress-free temperature, and N is the thermal stress component.

3.4. Bias Temperature Instability (BTI) and Hot Carrier Injection (HCI)
Negative BTI affects PMOS transistors, while PBTI affects NMOS. These mechanisms lead into an

irrecoverable increase in the value of the threshold voltage of the transistor |Vth| [37]. The value of |Vth| is a
direct function of both the supply voltage Vdd and the temperature [36]. The threshold voltage temperature-
dependence is described by the Arrhenius relationship

(
e

−Ea
kT

)
[32].

In a similar fashion to NBTI and PBTI, this mechanism leads to an increase in |Vth|. HCI depends on
the frequency f , Vdd, and the temperature T which is also described by the Arrhenius relationship [38].

3.5. Thermal cycling
As the name suggests, this mechanism is the is directly temperature dependent. The number of cycles

of thermal fatigues to cause a failure is described by the Coffin-Manson equation [39].

Ncyc =
∑ (∆Tref )

−m

(∆T )
−m (5)

In equation 5, ∆T is the is the thermal swing that the die goes through. ∆Tref is the thermal swing that
it is designed to withstand, whereas m is the Coffine-Manson exponent.

The degradation mechanisms mentioned above highlight the phenomenon of the SoC temperature in-
creasing with and wear out. This deduction is reinforced by an experimental result obtained on the board
used in this work, where after three years of experimentation, temperature drift has been recorded as shown
in Figure 2, under the same conditions of use. This increase in temperature appears more clearly on the
average of the signal which further evidences that it is a progressive drift.
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Figure 2: Average temperature increase over a period of three years for the same workload and operating conditions (f =
996MHz, Tamb = 25 °C, 180 s after power on).

4. Overview of the proposed approach

RUL prediction is a problem that has been approached with several methods. Most of them are data-
driven, such as run-to-failure [40], lifetime data [41, 42], and the method we use in this work—Threshold
data [43]. This approach relies on generating and studying a Health Indicator (HI). As the system ages or
is stressed, this HI evolves until it reaches a point of no return—a threshold where it fails or can no longer
function properly or be operated safely [43].

Accordingly, the effectiveness of the threshold data approach depends on the choice of HI and the models
used to forecast its future values. Nevertheless, it offers two main advantages that have favored its use in
this particular work. Firstly, it allows for the exploitation of data verified and supplied by the manufacturer
to choose the value of the threshold and the initial value of the RUL. Secondly, the prediction of the RUL
using the threshold data is a function of the actual operating state and condition of the system, contrary
to how the Mean Time To Failure and the run-to-failure are determined. Both of these methods, the SoC
runs at the highest settings [44], hence focusing only on one operating scenario. Furthermore, in this work,
the predictions are further improved by the online updating of the HI model according to current operating
settings, and the latest incoming data.

Data acquisition

HI construction
4
4

System Supervisor

Measurement 
sampling

Reference 
temperature

HI trend
modeling

RUL prediction

Update

HI model 
verification

Figure 3: General overview of the RUL prediction approach. HI : Health Index.
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In this work, HI is constructed by comparing the real state of the system—temperature measured
online—to a reference one estimated by a model of normal operation. Reference values are indicative of the
state of the board without faults and before wear. The values measured online, on the other hand, reflect
the state of the system under actual working conditions and during the process of degradation. Hence, as
the board is subjected to stress, the measured temperature of the SoC would continuously drift from its
reference values, thus raising the values of HI. Figure 3 shows a diagram of the proposed approach, in which
the SoC sends temperature measurements to a supervisor. In the latter, reference temperature values are
generated online, allowing for the construction of HI, and the building of a prediction model. Finally, the
HI model is verified and updated by comparing its prediction with the constructed values.

This approach accounts for the two cases that can arise in practice:

• If the data describing the degradation profile are available beforehand, the model can be trained offline
and then updated online to the specific use case of the SoC, and generate RUL estimations accordingly.

• If no data is available, the proposed model can be trained online and updated to follow the real
degradation drift, and generate RUL prediction online.

Figure 4 details the process of the construction of the health indicator, the building for its trend
model—and its subsequent updates, and finally the prediction of the RUL.

There are mainly two types of health indicators; physical and virtual ones [45]. HI in this study is a
physical one. It is the result of the calculation of the residuals. Firstly, the estimation residuals—hereafter
called raw HI (HIr). As information about the drifts is contained in the average value of the signal [2],
HIr is then filtered using the moving mean to obtain the final HI. This approach of using residuals as
health indicators have been previously used to detect drifts in characteristics of embedded systems, and
the identification and isolation of both internal and external faults in these systems with great results [30],
hence encouraging their further use in the diagnosis and prognosis of SoCs.

The RUL is predicted by the temporal projection of the degradation evolution (HI) until it reaches the
predefined End Of Life (EOL) threshold, which represents the maximum drift of the SoC temperature from
its nominal value. In this work, it is derived from the certified maximum operating temperature set by the
system’s constructor [44]. The temporal projection, on the other hand, is done through the building of a
trend model and using it to forecast ĤI.

To further fit the predictions of the RUL to the use case of SoC, the trend model is updated online
when the predicted values of ĤI deviates from the measured one (HI), this update criterion is determined
according to the values of the tolerated error thHI .

Yes

HI construction

𝜀 𝑘𝐻𝐼 𝑘 + Δ𝑘

𝑇 𝑘

System

Reference 
Model

𝑢 𝑘 𝑇 𝑘

−

+

Degradation

𝐻𝐼 𝑘

−

+
RUL

prediction

Update

Trend Model 
(Pre-trained)

𝑅𝑈𝐿

Moving
average

𝜀 𝑘 > 𝑡ℎ𝐻𝐼

Figure 4: Overview of the RUL prediction approach.
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5. Temperature modeling and estimation

5.1. Temperature Modeling
Temperature dynamics in SoC depend on a wide variety of factors such as the impedance of the circuit

[46], the power leakage [47], and the workload [30, 48]. Thus, a theoretical temperature model would have to
account for these factors. Nevertheless, since the objective of this paper is to observe temperature evolution
through the lifetime of the board, a model that is capable of generating temperature estimations according
to operating conditions is largely sufficient. Hence, we opted for an Auto-Regressive-Moving-Average with
eXogenous Input model (ARMAX).

ARMAX models are linear models that estimate or predict the output of a system according to its inputs
and the history of its outputs and inputs. Equation 6 is the difference equation that represents a discrete
multiple inputs single output ARMAX model.

y(k) = a1y(k − 1) + · · ·+ ana
y(k − na)

+ b1,1u1(k − du) + · · ·+ bm,nb
um(k − du − nb)

+ e(k) + c1e(k − 1) + · · ·+ cnc
e(t− nc) (6)

whereas y(k) is the output, u(k) is the input, and e(k) is the moving average. The parameters : [a1, · · · , ana ],
[b1,1, · · · , b1,nb

], · · · , [bm,1, · · · , bm,nb
] and [c1, · · · , cnc

] are the regression, the input, and the moving average
coefficients, respectively. na, nb and nc are the orders of the model, τ is the input delay and m is the number
of inputs in the input vector u(k).

In our case, the output is the temperature of the SoC, and the vector input is:

u(k) = [f1(k), ..., fn(k), fGPU (k),MOR(k), PSoC(k)] (7)

5.2. Parameters identification and model validation
For data gathering, the device is set to run through a scenario of various workloads to simulate different

types of usages [49]. At average, each run results in a set of 2 × 105 samples. Once the data is gathered,
it is divided into two sets; a training set (70%) and a validation set (30%). The training set is used to
compute the regression, input and mean average parameters. While the validation set is used to measure
the accuracy of the model.

Table 2: The accuracy of the ARMAX model according to its orders.

Orders of the model MAPE (%)
na nb nc

2 2 2 11.1853

3 3 3 7.9672

4 4 2 1.1658

4 4 4 1.3757

5 5 2 0.7215

6 6 2 1.3667

The identification of the set of orders that generate the best accuracy in the offline tests is done iteratively
with sets varying from [2, 2, 2] to [9, 9, 9]. Table 2 shows the accuracy of the model in terms of Mean Absolute
Percentage Error (MAPE) for each configuration. It also shows the time needed by the supervising equipment
to gather the data and generate estimations. Amongst these results, the set [na = 4, nb = 4, nc = 2] has one
of lowest MAPE (0.8377%), with an average sampling time (Table 3) that allows for sampling the frequency
without any loss of information (Ts = 20 ms) [2, 50]. Hence, it is the chosen set.
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Then, we proceeded to the test of the model online by directly comparing its estimations to the mea-
surement from the board. Table 2 highlights the accuracy of the model during an online test. Figure 5 show
how the estimations generated by the model fit the measurements from the system, during both heating and
cooling phases whereas Figure 6 show how low the estimation errors are on average. The ARMAX model is
thus validated.

Table 3: A comparison between the accuracy in terms of the Mean Absolute Error (MAE) and the Mean Absolute Percentage
Error (MAPE) and time needed to generate estimations during the online and the offline tests of the ARMAX model.

Test MAE (°C) MAPE (%) Average Sampling
time (s)

Offline test 0.52 1.1658 ∼ 1× 10−3

Online test 0.56 1.3757 18× 10−3
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Figure 5: The ARMAX model temperature estimation against device measurements.
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Figure 6: The estimation errors of the ARMAX temperature model : ε(k) = Tmeas(k)− Testm(k).
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6. Health Indicator construction

To construct a health indicator sensitive only to degradation, we use analytical redundancy, which consists
of comparing the measured behavior of a system with a reference one describing its normal operation. This
reference behavior can be accomplished by a model; either physical or data-driven. Accordingly, in this
study, the HI is constructed by comparing the measured temperature with the reference ones estimated by
the model of normal operation presented in the previous section. In the first step, the raw health indicator
(HIr) is computed by the following equation:

HIr(k) =
Tmeas(k)− Testm(k)

Testm(k)
(8)

However, the raw form of HI contains also information related to the noise of the signal and estimation
errors. Since the drift trend information is contained in the health indicator average and in order to reduce
the noise from the estimation errors, the raw HIr is processed by extracting its moving average yielding
HI, and is expressed as follows:

HI(k) =
1

n

k∑
i=k−(n−1)

HIr(i) (9)

whereas n is the length of the observation window used for the calculation of the moving average.
Figure 7 shows how HI filters the noise from the raw HIr. It also highlights the suitability of HI to

detect a progressive deviation of the temperature drift from its reference value, thus supporting our choice
of this physical health indicator.

0 1 2 3 4 5 6

107

0

0.2

0.4

0.6

0.8

1

1.2

Figure 7: Progression of the noisy raw health indicator (HIr), and the subsequent health indicator (HI) over the life on the
SoC.

7. Introduction of degradation process

In addition to the experimental dataset including a degradation process of the considered SoC in the
case study, a simulator was validated experimentally and detailed in [49]. It was used to simulate degra-
dation processes in the SoC and generate representative profiles of the latter [30], and utilized in this work
in the learning step. Since the simulator is open and extensible, it offers the possibility of introducing
degradation in its subsystems. Thus, a progressive degradation is introduced in the system for a period

10



of 1.576 × 106h (equivalent to 3 years of continuous functioning) with a sampling time of 20 ms, resulting
in 4.730 × 109 samples. The workload used during these simulations—as described by the frequency and
the MOR—corresponds to stress loads inspired by the use of benchmarks such as AnTuTu Benchmark [51],
3DMark [52], to simulate an accelerated wear out scenario.

Figure 8 shows the how averaged temperatures drifts slowly from the reference values due to the degra-
dation. These temperature are computed using the moving average on a duration of a simulated week
(n ≈ 3 × 107 samples). The temperature drift continues its increase until it reaches and surpasses the
maximum temperature at which the device can no longer function according to its manufacturer, in this
case the Maximum Tolerated Temperature (MTT ) equals 105 °C [53]. In the considered application, the
Maximum Reference Temperature (MRT ) under stress loads is equal to 95°C. Hence, the failure threshold
can be set to:

HImax =
MTT −MRT

MTT
= 0.1052 (10)
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Figure 8: Measured temperature compared to the estimated one.

8. Trend modeling and RUL prediction

After defining the failure threshold, the prediction of the RUL is carried out by modeling the trend of
the degradation process, and then by the temporal projection of the HI trend up to the failure threshold
(HImax), which corresponds to the duration that HI take to reach HImax, as illustrated in Figure 9. We
define this duration as the RUL|HImax

.
In the rest of this section, we first describe the HI trend model. Then, this model is validated offline

using heavy use scenarios representative of accelerated wear. Finally, it is used and validated online against
a scenario representative of all different types of usages to showcase how it is adapted.

8.1. Description of the HI trend model
At time t = 0, the RUL is considered equal to the MTTF announced by the manufacturer of the SoC

and obtained thanks to reliability tests in laboratory conditions. Then, the RUL value is predicted and
updated according to the evolution of the degradation state. In this work, we rely on machine learning-
based times series prediction to achieve this task, by the use of a Nonlinear Auto-Regressive (NAR) neural
network. These networks are commonly used to predict the evolution of timestamped variables making them
an optimal choice for our use case. NAR neural networks are recurrent networks of which the output is a
function of the history of the outputs :

y(k) = ϕ [y(k − 1), · · · , y(k − n)] (11)
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Figure 9: Prediction of the RUL|HImax
by the temporal projection of HI.

where y(k) is the output to be predicted at the time step k, ϕ is the characteristic function of the network,
and n is the order of time delays for the output (also called input and output memory). The NAR model
hereby used, is composed of a hidden layer with sigmoids (ς) as activation functions and an output layer
containing a single neuron with a linear transfer function (Figure 10).
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Figure 10: General structure of the NAR HI trend model.

The data including degradation processes generated using the simulator are obtained using heavy work-
loads scenario. These extreme workloads are used to train and validate the NAR model offline. Then,
these pre-trained models will be used to predict HI values on a real degradation profile online. During

12



this process, the models will also be adapted online according to the profile of the degradation to generate
accurate predictions. The prediction model is updated each time the absolute value of the HI estimation
error exceeds a predefined threshold thHI . This process is described in the flowchart in Figure 11.
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Figure 11: Process of the forecasting and updating of HI, and the prediction of RUL|HImax
.

8.2. NAR model offline validation
After subjecting the system to the accelerated wear process described in Section 7, the collected values of

HI are then used as targets for the training and the validation of the NAR model. HI(k) is then randomly
divided into three sets : a training set (50%), a validation set (25%), and test set (25%). The models is
built with 5 output delays (n = 5), and 12 neurons in the hidden layer (m = 12), and is trained with the
Mean Squared Errors (MSE) as performance criterion.

Once the model is trained and validated, its performances are firstly evaluated with the test set. Then,
to evaluate its prediction capabilities, it is fed with 3 months of known horizon data, and then left to predict
ĤI(k) until its values reach HImax. The obtained results are summarized in Table 4.

The results of the online HI estimation are given in Figure 12, which shows that the values of HI
estimated by the NAR Model follow the values measured with a low estimation error with a maximum
prediction error of 1.5% and a mean absolute error MAE = 0.0931.

8.3. Online adapting and validation of the trend model
After validating the trend model in the scenario use by the manufacturer to compute the MTTF. In this

paragraph, the NAR model is validated online on a scenario corresponding to actual use case of the SoC
with frequency scaling.

The long-term prediction of the HI evolution and the updating of the prediction are shown in Figure 13.
This figure highlights the effect of the update on the correction of the trajectory of ĤI which makes it
possible to update the RUL prediction online. In fact, the degradation process is a function of changes in
the usage of the system , commonly called Condition Monitoring, and the RUL changes accordingly. The
result of Figure 13, shows the capacity of the proposed method to adapt online the different trends of the
degradation process.

The final results of the online HI prediction are shown in Figure 14, where the predicted ĤI is put in
an envelope of ±3σ of the prediction error ε = HI − ĤI. The narrowness of this envelope highlights the
accuracy of the ĤI predictions online, as it contains 99.54% of the errors, which is also confirmed by a
MAPE = 2.67%.
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Table 4: ĤI(k) NAR model performance.

Set Results ĤI(k)

Test set

MAE 2.3993× 10−4

µε −1.6744× 10−6

σε 4.2155× 10−4

max(ε) 0.0051
MSE 1.7599× 10−7

SSE 0.0250
R 1

Prediction

MAE 9.3164× 10−4

µε 2.7813× 10−4

σε .15178× 10−4

max(ε) 0.01605
MSE 0.0023
SSE 1.8031
R 0.9994
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Figure 12: NAR model predictions (ĤI(k)) against constructed values HI(k).

8.4. RUL prediction and performance evaluation
In order to evaluate the accuracy and the performance of the proposed method, the Prognosis Horizon

(PH) and the Relative Accuracy metrics are used [54, 55]. The PH determines if the prediction performance
meets the desired specifications, and it is calculated using the following as shown in Equation 12.

PH (i) = EOP − i (12)

It represents the difference between the actual time index (i) and the end of prediction time index (EOP ).
The latter is obtained when the prediction crosses the failure threshold.

To give the user an easily interpretable measurement tool of the confidence that can be given to the PH
metric, another metric is proposed in Saxena et al. [54], where the accuracy is quantified according to the
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real RUL. This metric is called Relative Accuracy (RA) and expressed as follows:

RA (k) = 1−

∣∣∣RUL (k)− ˆRUL (k)
∣∣∣

RUL (k)
(13)

whereas ˆRUL is the predicted RUL. The value of RA ranges between [0, 1], with the best score being closest
to 1 (100%).

The results of evaluation the RUL of the SoC using these metrics, are given in the Figure 15 and Figure 16.
Figure 15 displays both the measured RUL and the predicted ˆRUL. It also shows that by setting α = 0.1,
the PH is maximum since it is equal to the whole interval between the start of the prediction and the failure
time. This high level of performance is confirmed by the calculation of the RA metric, which is close to
100% on most of the PH. The decrease in RA performance at the end of the prediction can be explained
by the analysis of RA expression given in Equation 13, which shows that when we approach the total failure
time, the values of RUL and ˆRUL become small. So, the division by RUL increases the sensitivity of the
metric to uncertainties.
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9. Conclusion

In this paper, a method for predicting the failure of onboard SoCs is proposed to meet the practical need
linked to the reliability of these systems, which are increasingly used in safety-critical equipment.

After a formal demonstration of the cause and effect link between the degradation process of SoC and
their heating, the temperature drift is examined in this work as a health indicator. The trend of the drift
of SoC temperature is then modeled by a NAR model updated when the estimation error of the real drift
exceeds a predefined threshold. This online update makes it possible to adapt the prediction of the RUL to
changes in the conditions of use of the SoC, and therefore guarantees a low prediction error.

The results obtained thanks to learning on simulation data and validation of the approach on an exper-
imental profile, show the effectiveness of the proposed method. Hence, the use of temperature drift as a
health indicator allows the deployment of this method on a wide range of SoC.
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