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SUMMARY
Endogenous viral elements (EVEs) are viral sequences integrated in host genomes. A large number of non-
retroviral EVEs was recently detected in Aedesmosquito genomes, leading to the hypothesis that mosquito
EVEs may control exogenous infections by closely related viruses. Here, we experimentally investigated the
role of an EVE naturally found in Aedes aegypti populations and derived from the widespread insect-specific
virus, cell-fusing agent virus (CFAV). Using CRISPR-Cas9 genome editing, we created an Ae. aegypti line
lacking the CFAV EVE. Absence of the EVE resulted in increased CFAV replication in ovaries, possibly modu-
lating vertical transmission of the virus. Viral replication was controlled by targeting of viral RNA by EVE-
derived P-element-induced wimpy testis-interacting RNAs (piRNAs). Our results provide evidence that anti-
viral piRNAs are produced in the presence of a naturally occurring EVE and its cognate virus, demonstrating a
functional link between non-retroviral EVEs and antiviral immunity in a natural insect-virus interaction.
INTRODUCTION

Host genomes often harbor fragments of viral genomes, referred

to as endogenous viral elements (EVEs), that are inherited as

host alleles [1]. The best-studied EVEs are derived frommamma-

lian retroviruses, which actively integrate their viral DNA into the

host genome during their replication cycle. Retroviral EVEs play

important roles in host physiology and antiviral immunity [2].

Recent bioinformatic surveys also identified non-retroviral

EVEs in a wide range of animal genomes, albeit their function

was only studied in cell lines or protozoa [3–11]. The endogeniza-

tion of non-retroviral sequences is presumably mediated by the

activity of transposable elements (TEs), which are mobile DNA

sequences ubiquitously found in eukaryotic genomes. Non-

retroviral EVEs are often integrated in genomic regions

surrounded by TEs, suggesting that TEs are involved in the inte-

gration and/or expansion of the EVEs [3, 6, 12–14]. The reverse

transcription activity of retrotransposons is the likely mechanism

generating non-retroviral DNA from RNA viruses, which are the

hypothetical precursors of non-retroviral EVEs [15].
Current Biology 30, 3495–3506, Septemb
This is an open access article und
The recent discovery of non-retroviral EVEs in the genomes of

mosquito vectors [6, 13, 16] has stimulated studies to elucidate

their potential function. In particular, the genomes of the main

arthropod-borne virus (arbovirus) vectors Aedes aegypti and

Aedes albopictus harbor hundreds of non-retroviral EVEspredom-

inantly derived from insect-specific viruses of the Flaviviridae and

Rhabdoviridae families [6, 13]. Interest in mosquito EVEs stems

from the hypothesis that theymay serve as the source of immuno-

logical memory against exogenous viruses in insects, as was

recently reviewed in [17]. This hypothesis largely relies on the

observation that EVEs and their flanking genomic regions serve

as templates for P-element-induced wimpy testis (PIWI)-interact-

ing RNAs (piRNAs) [5, 6, 12, 13]. piRNAs are a major class of small

RNAs (sRNAs) andare typicallygenerated fromgenomic loci called

piRNA clusters [18]. The piRNA pathway is considered a widely

conserved TE-silencing system to prevent deleterious effects of

transposition events in eukaryotic genomes, particularly in gonads

[19]. In fact, production of EVE-derived piRNAs is observed across

a wide range of animals, such as mammals, arthropods, and sea

snails [5, 6, 10, 12, 13, 20, 21], in which EVEs are often enriched
er 21, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 3495
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in piRNA clusters [5, 20, 22]. The predominantly antisense orienta-

tion of EVE-derived piRNAs supports the idea that piRNAs could

also mediate antiviral immunity by targeting exogenous viral RNA

with high levels of sequence identity [6, 13, 22].

The biogenesis of piRNAs and their function as a TE-silencing

mechanism to protect genome integrity are well described in the

model insect Drosophila [23]. piRNAs are characterized by their

size of 26–30 nt and distinctive sequence biases. Primary piRNAs

typically display a uridine at the first nucleotide position, referred

to as 1U bias. Secondary piRNAs overlap primary piRNAs over 10

ntat their 50 extremityanddisplayanadenineat their 10th ntposition,

referred to as 10A bias [24, 25]. These characteristics are a conse-

quence of piRNA reciprocal amplification during the ping-pong cy-

cle: (1) primary piRNAs are generated from single-stranded precur-

sor RNA; (2) primary piRNAs guide the cleavage of complementary

RNA sequences; (3) secondary piRNAs are generated from the 30

cleavage products; and (4) secondary piRNAs induce cleavage of

piRNAprecursor transcripts,which are processed into primary piR-

NAs.UnlikeDrosophila, it hasbeenshownthatmosquitoesproduce

virus-derived primary and secondary piRNAs during viral infections

[26–28]. Although most of these observations have been obtained

using theAe.aegypticell lineAag2andarboviruses, suchasdengue

orSindbisviruses, recentstudieshaveshownthatviralpiRNAswere

also found in mosquito cell lines persistently infected with insect-

specific viruses, which are not infectious to vertebrates [29, 30].

Whether EVEs can protect insects, and most importantly their

germline, from viral infection through the piRNA pathway has not

been demonstrated in vivo. In mosquitoes, the antiviral activity of

viral piRNAs is still debated, and a direct link between EVEs and

antiviral activity has yet to be established [31]. One observation

castingdoubt on thishypothesis is thatmostarthropodEVEs iden-

tified so far are unlikely to serve as sources of antiviral piRNAs

because theyare not similar enough tocurrently circulating viruses

[5, 20, 22]. Here, we identified a new EVE in Ae. aegypti sharing

�96% nucleotide identity with a wild-type strain of cell-fusing

agent virus (CFAV) that we previously isolated from Ae. aegypti in

Thailand [32]. CFAV is a widespread insect-specific virus infecting

Ae. aegypti populations around the world [33]. We used this natu-

rally occurring CFAV EVE and the cognate CFAV strain to experi-

mentally investigate the antiviral function of mosquito EVEs in a

natural insect-virus interaction. Analysis of sRNAs showed that

the CFAV EVE produced primary piRNAs in the absence of

CFAV infection.Whenmosquitoeswere infectedwithCFAV,abun-

dantCFAV-derived piRNAswere produced from the viral genomic

regions overlappingwith the CFAV EVE. piRNAs displayed a ping-

pong signature as well as nucleotide biases consistent with

production of EVE-derived primary piRNAs and virus-derived sec-

ondary piRNAs. Excision of the CFAV EVE by CRISPR-Cas9

genome engineering resulted in increased CFAV replication in

ovaries. Our results provide empirical evidence that a non-retro-

viral EVE inAe. aegypti contributes to the control of in vivo replica-

tion of a closely related exogenous virus via the piRNA pathway.

RESULTS

Survey of CFAV-Derived EVEs in Aedes aegypti Genome
Sequences
In order to inventory CFAV-derived EVEs, we used BLAST

search to identify CFAV-like sequences in publicly available
3496 Current Biology 30, 3495–3506, September 21, 2020
Ae. aegypti genome assemblies, RNA sequencing data, and

whole-genome sequencing data. We identified several potential

EVE structures based on samples for which reads aligned only to

segments of the CFAV genome, in addition to samples for which

reads covered the entire CFAV genome, presumably represent-

ing true CFAV infections (Data S1). The predicted structure of

two of these putative EVEs, which we designated CFAV-EVE1

and CFAV-EVE2, was obtained by de novo assembly (Figure 1A).

These two putative EVEs were confirmed in an outbred Ae. ae-

gypti colony derived from awild population in Thailand andmain-

tained in our laboratory since 2013. Using specific primer sets

(Table S1), we detected CFAV-EVE1 and CFAV-EVE2 in 7 out

of 8 and in 3 out of 8 individuals, respectively, in this outbred

mosquito colony (Figure 1B).

CFAV-EVEs Produce piRNAs that Interact with Viral RNA
from a Natural CFAV Infection
Our outbred Ae. aegypti colony from Thailand is naturally in-

fected with a wild-type strain of CFAV, which we previously iso-

lated and named CFAV-KPP [32]. Only a fraction of the mosqui-

toes in this colony are naturally infected, allowing us to

investigate whether the CFAV EVEs produce piRNAs in the pres-

ence or absence of a natural CFAV infection. We sequenced

sRNA libraries from both naturally infected and uninfected mos-

quito pools to examine sRNA production and, specifically, EVE-

derived and virus-derived piRNA production. In uninfected

mosquitoes, the size distribution of the sRNA reads mapping

to the CFAV-KPP genome sequence (Figure 1C) showed pro-

duction of sRNAs of 26–30 nt in size with 1U bias, indicating

that they are primary piRNAs generated mainly from the CFAV-

EVE1 NS2 fragment and, to a lesser extent, from the CFAV-

EVE2 (Figure 1E). The lack of virus-derived 21-nt small interfering

RNAs (siRNAs) confirmed the lack of CFAV infection in these

mosquitoes (Figures 1C and S1A). In contrast, the sRNA size

profile of mosquitoes naturally infected with CFAV-KPP showed

abundant production of virus-derived siRNAs (Figures 1D and

S1B). The CFAV-infected mosquitoes also harbored positive-

stranded (+) CFAV-derived piRNAs, in addition to more abun-

dant negative-stranded (�) primary piRNAs derived from both

EVEs (Figure 1F) relative to the uninfected mosquitoes (Fig-

ure 1E). The presence of the 10A bias in (+) piRNAs and the

10-nt overlap probability between piRNA reads mapping to

opposite strands was consistent with production of secondary

virus-derived (+) piRNAs potentially triggered by EVE-derived

(�) piRNAs, likely resulting in ping-pong amplification (Figure 1F).

Thus, sRNA profiles in our outbred Ae. aegypti colony showed

that the RNA transcribed from CFAV EVEs interacts with the viral

RNA of a natural CFAV infection via the piRNA pathway.

piRNAs from CFAV-EVE1 Interact with Viral RNA during
CFAV Experimental Infection
To experimentally demonstrate the role of EVEs in antiviral immu-

nity, we took advantage of a CFAV-free isofemale line of Ae. ae-

gypti from Thailand maintained in our laboratory since 2010 [34,

35]. We sequenced the whole genome of this isofemale line and

only detected the presence of CFAV-EVE1 in the absence of other

CFAV EVEs. CFAV-EVE1 was fully reconstructed from the newly

obtained genomic data (Figure 2A; Table S2). The structure of

CFAV-EVE1 in the isofemale line was consistent with the structure



Figure 1. CFAV-Derived Endogenous Viral Elements Interact with Natural CFAV Infection through the piRNA Pathway

(A) The schematic represents two potential CFAV EVE structures detected in publicly available Ae. aegypti sequences.

(B) The presence of putative CFAV-EVE1 and CFAV-EVE2 in eight mosquitoes from the same outbred colony was verified by PCR with primers specific to CFAV-

EVE1 (left), CFAV-EVE2 (middle), and rps7 gene control (right).

(C and D) Size distribution of sRNAs mapping to the CFAV genome from naturally CFAV-uninfected (C) and CFAV-infected (D) mosquitoes from the outbred

colony.

(E and F) Analysis of CFAV-derived piRNAs from naturally CFAV-uninfected (E) and CFAV-infected (F) mosquitoes from the outbred colony. Mapping of 26- to 30-

nt sRNAs (top), sequence logos of 26- to 30-nt sRNAs (bottom left), and overlap probability of 26- to 30-nt sRNAs (bottom right) is shown. Sequence logos and

overlap probability for CFAV-EVE1 were restricted to the NS2 region.

In (C)–(F), positive- and negative-sense reads with respect to the reference CFAV genome are shown in yellow and blue, respectively. Uncovered nucleotides are

represented by gray lines. See also Data S1, Figure S1, Table S1, Table S2, and Table S5.
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predicted from our bioinformatic survey (Figure 1A). CFAV-EVE1

consists of four adjacent fragments that correspond to the

following CFAV genomic regions: NS5; NS4B-NS5; NS4A; and

NS2A-NS2B/FIFO (designated as NS2 hereafter for simplicity).

The CFAV-EVE1 sequence contains multiple start and stop co-

dons in all six open reading frames. Moreover, two fragments

(NS2 and NS4A) are inserted in opposite direction relative to the

other EVE fragments, making it unlikely that functional viral pep-

tides are effectively translated. We tested 31 individual mosqui-

toes from the isofemale line and found that 28 (90%; 95% confi-

dence interval 73%–97%) were positive for CFAV-EVE1. As

previously reported for other EVEs [5, 6, 12, 13], CFAV-EVE1

and its flanking regions produced abundant antisense piRNAs

(Figure 2B) when aligned to the isofemale line genome sequence.

This observation indicates that CFAV-EVE1 is likely transcribed as

a part of a longer piRNA precursor.

The CFAV-EVE1 sequence of the isofemale line shared �96%

nucleotide identity with the CFAV-KPP genome, ranging from

94.6% to 98.8% among the different CFAV-EVE1 fragments

(Table S2). To experimentally confirm our observations from natu-

rally infectedmosquitoes (Figure 1), we investigated the interaction

between CFAV-EVE1 and CFAV-KPP in the isofemale line (Figures

2Cand2D). In theabsenceofCFAV infectionandasaconsequence

of the dual orientation of the CFAV-EVE1 fragments, EVE-derived

piRNAs from the NS2 and NS4A regions were in antisense orienta-

tion,whereasEVE-derivedpiRNAs from theNS4BandNS5 regions

were in senseorientation relative to thegenomesequenceofCFAV.

We observed the most pronounced production of 1U biased, anti-

sense primary piRNAs in the NS2 region (black frame in top panel

of Figure 2E). When mosquitoes were intrathoracically inoculated

with CFAV-KPP stock, the sRNA size profile (Figure 2D) showed

abundant production of virus-derived siRNAs (21 nt) and also (+)

CFAV-derived piRNAs corresponding to the CFAV-EVE1 genomic

region of CFAV, in addition to (�) primary piRNAs derived from

the EVE. As the NS2 region is the most abundantly covered by

both sense and antisense piRNAs,we used this region (black frame

in top panel of Figure 2F) to check for 10Abias aswell as ping-pong

signature. The 10-nt overlap of 50 ends was consistent with active

ping-pongamplificationof thepiRNAs in theNS2region. Inaddition,

analysis of the reads that unambiguously mapped to either the

CFAV-KPP genome or to the CFAV-EVE1 sequence revealed that

the vast majority of the piRNA reads derived from the CFAV-KPP

genome were (+) piRNAs (Figure S2A), whereas almost all of the

(�) piRNA reads derived from the CFAV-EVE1 (Figure S2B). It is

worth noting that, despite a similar abundance of EVE-derived pri-

mary piRNAs from the NS2 and NS4B regions in the absence of

infection (Figure2E), there isnoevidence foramplificationofpiRNAs

fromtheNS4Bregionduring infection (Figure2F).Thissuggests that

the CFAV (�) RNA is not accessible or abundant enough for PIWI

proteins loadedwithprimarypiRNAs to initiate theping-pongcycle.

Altogether, these results confirmed that CFAV-EVE1 produces

piRNAs that target viral RNA and engage in a ping-pong cycle

during experimental CFAV infection. The ability to experimentally

infect the mosquito isofemale line carrying only CFAV-EVE1 with

CFAV-KPP allowed us to directly address the role of non-retro-

viral EVEs in antiviral immunity. This system recapitulated, under

laboratory conditions, a unique situation found in nature (i.e.,

mosquitoes carrying an EVE that are infected or uninfected

with a cognate virus).
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Genome Engineering of a CFAV-EVE1 Knockout Line of
Aedes aegypti

To directly test whether the presence of CFAV-EVE1 influences

CFAV replication in Ae. aegypti, we used CRISPR-Cas9 genome

editing to create a CFAV-EVE1 knockout (�/�) line and a homozy-

gous CFAV-EVE1 control (+/+) line derived from our CFAV-free

isofemale line. We designed two single-guide RNAs (sgRNAs) tar-

geting the boundaries of CFAV-EVE1 and another sgRNA in the

middle of CFAV-EVE1 to promote excision (Figure 3A; Table

S3). The sgRNAs were injected together with recombinant Cas9

intomosquito embryos.We obtained a heterozygousmale devoid

of CFAV-EVE1 (Figure 3B) that was outcrossed with wild-type

mosquitoes from the parental isofemale line for two consecutive

generations. The progeny were carefully sorted into purely

CFAV-EVE1 homozygous (+/+) and knockout (�/�) mosquitoes.

Importantly, the CFAV-EVE1 (�/�) mosquitoes only included the

genetically engineered deletion genotype and excluded individ-

uals that could be naturally devoid of CFAV-EVE1.

CFAV-Derived piRNA Production Is Strongly Reduced in
the Absence of CFAV-EVE1
To determine whether the absence of CFAV-EVE1 affected the

production of CFAV-derived piRNAs, we intrathoracically inocu-

lated CFAV-EVE1 (+/+) and CFAV-EVE1 (�/�) mosquitoes with

CFAV-KPP stock. 7 days post-infection, we dissected ovaries

(germline tissue) and heads (somatic tissue) to prepare sRNA li-

braries from both tissues. Ovaries of mock-infected mosquitoes

from the CFAV-EVE1 (+/+) line displayed the same sRNA profile

(Figure S3A) as whole mosquitoes from the parental isofemale

line (Figure 2C), with (�) piRNAs mainly derived from the NS2 re-

gionofCFAV-EVE1anda1Ubias (Figures 2EandS3C). The heads

of mock-infected mosquitoes (Figure S3E) contained few piRNAs

mapping to the CFAV genome (<30 reads), consistent with the

notion that germline tissues are the main producers of piRNAs

[36]. As expected, mock-infected individuals from the CFAV-

EVE1 (�/�) line did not harbor any piRNAs mapping to the CFAV

genome in their ovaries and heads (Figures S3B, S3D, S3F, and

S3H). This result confirmed that genome editing effectively

removed theCFAV-EVE1sequenceandallowedus to testwhether

the absence of the EVE affected the production of virus-derived

piRNAs upon experimental CFAV-KPP infection. Of note, we de-

tected a small number of viral siRNAs mapping to the CFAV

genome in mock-infected heads of the CFAV-EVE1 (+/+) line (86

reads) and theCFAV-EVE1 (�/�) line (15 reads). As these samples

were run in the same flow cell that contained CFAV-infected sam-

ples (Figure 4) producing thousands of viral siRNA reads in head

tissues (31,988 reads in the CFAV-EVE1 (+/+) line and 8,465 reads

in theCFAV-EVE1 (�/�) line), theminute amount of viral siRNAde-

tected in mock conditions is likely due to demultiplexing cross

contamination, a common and recurrent problem in high-

throughput sequencing of multiplexed samples [37].

Following CFAV-KPP inoculation, we detected abundant viral

siRNAs in both CFAV-EVE1 (+/+) and CFAV-EVE1 (�/�) mosqui-

toes (Figures 4A and 4B). In addition, we detected virus-derived

piRNAs and EVE-derived piRNAs with 1U and 10A bias and

ping-pong amplification signature in the ovaries of CFAV-EVE1

(+/+) mosquitoes (Figure 4C). In contrast, (+) piRNAs mapping to

the NS2 region of the CFAV-KPP genome were barely detectable

in the ovaries of CFAV-EVE1 (�/�) mosquitoes (Figure 4D).



Figure 2. CFAV-EVE1 Interacts with Experimental CFAV Infection through the piRNA Pathway

(A) Schematic of the CFAV-EVE1 structure in the CFAV-free isofemale line represented as the alignment of the EVE locus in the Ae. aegypti genome assembly

AaegL3 (top) to the genome of the CFAV-KPP isolate (bottom). CFAV-EVE1 comprises four different regions of the CFAV genome. Yellow and blue colors indicate

forward and reverse strands, respectively, according to the transcription direction in the supercontig.

(B) Production of piRNAs from CFAV-EVE1 in the CFAV-free isofemale line, represented as the size distribution (left) and alignment to the CFAV-EVE-1 locus

(right). Blue color corresponds to negative-sense reads with respect to the mapping reference.

(C and D) Size distribution of sRNAs mapping to the CFAV genome from experimentally CFAV-uninfected (C) and CFAV-infected (D) mosquitoes from the

isofemale line.

(E and F) Analysis of CFAV-derived piRNAs from experimentally CFAV-uninfected (E) andCFAV-infected (F) mosquitoes from the isofemale line. Mapping of 26- to

30-nt sRNAs (top), sequence logos of 26- to 30-nt sRNAs (bottom left), and overlap probability of 26- to 30-nt sRNAs (bottom right) is shown. Sequence logos and

overlap probability were restricted to the NS2 region.

In (C)–(F), positive- and negative-sense reads with respect to the reference CFAV genome are shown in yellow and blue, respectively. Uncovered nucleotides are

represented by gray lines. See also Figure S2 and Table S5.
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Figure 3. CRISPR-Cas9-Mediated Genome

Editing of CFAV-EVE1 in Aedes aegypti

(A) Deletion of the CFAV-EVE1 from the Ae. ae-

gypti genome of the CFAV-free isofemale line us-

ing CRISPR-Cas9. The upper bar represents the

CFAV-EVE1 with the flanking regions, and the

three sgRNA target sites are shown with scissors.

The lower bar represents the merged flanking re-

gions without the CFAV-EVE1, where the short

repeat sequences in the flanking regions (yellow

segments on both bars) are merged into one.

(B) Generation of the CFAV-EVE1 (+/+) and (�/�)

Ae. aegypti lines after CRISPR-Cas9-mediated

genome editing. A single G0 male mosquito het-

erozygous for the CFAV-EVE1 deletion (+/�) was

outcrossed with wild-type females harboring the

CFAV-EVE1. The resulting heterozygous male G1

progeny was outcrossed with wild-type females

harboring the CFAV-EVE1. The G2 heterozygotes

of both sexes were intercrossed to produce a

mixed G3 progeny that was sorted into pure ho-

mozygous CFAV-EVE1 (+/+) and (�/�) lines. The

letter G denotes the generation of mosquitoes

originating from the CFAV-EVE1 heterozygous

male and wild-type females. The letter F denotes

the generation of the CFAV-EVE1 homozygous

lines. The agarose gel picture represents a fraction

of samples genotyped at G3, where the pure ho-

mozygous individuals were selected by PCR

genotyping of a single leg.

See also Table S1 and Table S3.
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Importantly, the detection of reads that unambiguouslymapped to

the virus showed that, even in the absence of the EVE, piRNAs

were still produced from the virus genome upon infection

(Figure S4A).

CFAV-KPP infection in the heads of CFAV-EVE1 (+/+) mosqui-

toes resulted in the production of CFAV-derived siRNAs as well

as piRNAs (Figure 4E). The piRNAs corresponding to the NS2 re-

gion were in both sense and antisense orientation and presented

a 1U-10A bias and 10-nt overlap of 50 ends (Figure 4G). CFAV-

KPP infection in the heads of CFAV-EVE1 (�/�) mosquitoes re-

sulted in abundant CFAV-derived siRNAs (Figure 4F) and only

piRNAs in sense orientation, without a ping-pong amplification

signature, corresponding to primary piRNA production from

the virus genome (Figures 4H and S4B).

Altogether, these results showed that the production of CFAV-

derived piRNAs is profoundly modified in the absence of CFAV-

EVE1. Production of primary piRNAs from CFAV-EVE1 is

necessary to trigger the production of secondary virus-derived

piRNAs from the virus genome. This observation suggests that

piRNAs could have an antiviral activity in the joint presence of

an EVE and its cognate virus.

Increased CFAVReplication in Ovaries in the Absence of
CFAV-EVE1
To assess the antiviral effect of piRNAs derived from the interac-

tion between the EVE and the virus, we compared CFAV replica-

tion in CFAV-EVE1 (�/�) and CFAV-EVE1 (+/+) mosquitoes. To
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do so, we measured viral RNA levels in the heads and ovaries

of females 4 and 7 days after CFAV inoculation. We performed

six separate experiments using the same infectious dose and

readout. The total amount of CFAV RNA produced by infected

ovaries was significantly lower than the viral RNA produced in

the heads (Figure 5). There was no consistent difference be-

tween mosquito lines across experiments for the CFAV RNA

loads in heads collected on day 4 post-inoculation (Figure 5A;

Table S4). Accounting for the inter-experiment variation, there

was a significant difference of CFAV RNA loads in ovaries on

day 4 post-inoculation, with CFAV replicating to higher levels in

absence of the CFAV-EVE1 (Figure 5A; Table S4). On day 7

post-inoculation, CFAV RNA loads were significantly higher in

mosquito heads (Figure 5B; Table S4) and even more so in

mosquito ovaries (Figure 5B; Table S4) in the absence of the

CFAV-EVE1. Together, these experiments showed that CFAV

replicated to higher levels in the absence of CFAV-EVE1, most

prominently in ovaries. These results demonstrate the antiviral

activity of an EVE against its cognate virus.

DISCUSSION

It is well established that retroviral EVEs can play a role in host

immunity (reviewed in [2]), most often as restriction factors [38–

42] but also occasionally as cellular co-factors [43]. Whether

this is the case for non-retroviral EVEs is still debated. Several

studies attempted to prove that non-retroviral EVEs contribute



Figure 4. Ablation of CFAV-EVE1 Prevents CFAV-Derived piRNA Amplification

(A, B, E, and F) Size distribution of sRNAsmapping to the CFAV genome in ovaries (A and B) and heads (E and F) from experimentally infected CFAV-EVE1 (+/+) (A

and E) and CFAV-EVE1 (�/�) (B and F) mosquitoes 7 days post-injection.

(C, D, G, and H) Analysis of CFAV-derived piRNAs in ovaries (C and D) and heads (G and H) from experimentally infected CFAV-EVE1 (+/+) (C and G) and CFAV-

EVE1 (�/�) (D and H) mosquitoes 7 days post-injection. Mapping of 26- to 30-nt sRNAs (top), sequence logos of 26- to 30-nt sRNAs (bottom left), and overlap

probability of 26- to 30-nt sRNAs (bottom right) is shown. Sequence logos and overlap probability were restricted to the NS2 region. In all panels, positive- and

negative-sense reads with respect to the reference CFAV genome are shown in yellow and blue, respectively. Uncovered nucleotides are represented by gray

lines.

See also Figures S3, S4 and Table S5.
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Figure 5. CFAV-EVE1 Ablation Results in Increased CFAV RNA

Levels upon Viral Infection

Relative CFAV RNA levels (normalized by the rp49 housekeeping gene) in

heads and ovaries of the CFAV-EVE1 (+/+) (black boxplot) and CFAV-EVE1

(�/�) (white boxplot) Ae. aegypti lines on day 4 (A) and day 7 (B) post-CFAV-

inoculation. Data are shown for six separate experiments represented by co-

lor- and symbol-coded data points. Relative viral RNA loads are represented

by boxplots in which the box denotes the median and interquartile range (IQR)

and the whiskers extend to the highest and lowest outliers within 1.5 times the

IQR from the upper and lower quartiles, respectively. Multivariate analysis of

variance (MANOVA) was performed for each time point and tissue separately,

accounting for the experiment, mosquito line, and interaction effects. Stars

indicate statistical significance of the mosquito line main effect accounting for

the experiment effect (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant).

The full MANOVA results are provided in Table S4. See also Table S1.
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to the immune antiviral response. Perhaps the best example is

Borna disease virus (BDV) and its endogenous bornavirus-like

element, which affects BDV polymerase activity and inhibits vi-

rus replication in a mammalian cell line when incorporated into

the viral ribonucleoprotein [11]. Tassetto et al. observed that

mosquito cells carrying an EVE related to CFAV were partially

protected against a recombinant Sindbis virus engineered to

contain the EVE sequence [44]. These in vitro experiments sug-

gested that non-retroviral EVEs integrated in the host genome

may provide antiviral protection against exogenous cognate vi-

ruses, but direct evidence from a natural system in vivo had

not been provided until now.

The hypothesis that non-retroviral EVEs participate in antiviral

immunity stems largely from accumulating evidence that they

produce primary piRNAs [5, 6, 10, 12, 13, 20, 21]. The piRNA

pathway is often referred to as the guardian of genome integrity

because its canonical function is to silence TEs in the germline

[45]. piRNA precursors are transcribed from genomic loci

harboring transposon fragments that provide a genetic memory

of past transposition invasion. The widespread occurrence of

non-retroviral EVEs in Aedes mosquito genomes [6, 13] could

reflect a similar mechanism whereby the function of EVEs would

be to silence exogenous viruses with complementary sequences

[17]. Amajor challenge to prove this hypothesis is that the viruses
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currently circulating generally do not share a high-nucleotide

identity with the corresponding EVE sequences, preventing a

possible match between EVE-derived piRNAs and the target

viral RNA. In the present study, we overcame this obstacle by

identifying a new EVE in Ae. aegypti mosquitoes from Thailand

that is highly similar (�96%nucleotide identity) to a contempora-

neous CFAV strain. We used this naturally occurring insect-virus

interaction to test the hypothesis that a non-retroviral EVE can

inhibit virus replication via the piRNA pathway in vivo.

Our results revealed that, during both natural infection (mosqui-

toes carrying the CFAV EVE and naturally infectedwith CFAV) and

controlled infection (mosquitoes carrying the CFAV EVE and

experimentally inoculated with CFAV), the RNAs from the EVE

and the virus interact through the piRNA pathway, resulting in in-

hibition of virus replication (Figure 6). Evidence of this interaction is

provided by the abundant secondary piRNAs produced via the

ping-pong amplification mechanism. Only when viral RNA is in

presence of EVE-derived primary piRNAs does the piRNA

pathway acquire its antiviral activity. Viral piRNAs alone are insuf-

ficient to induce this effect. Although viral piRNAs are commonly

detected in mosquitoes [46], their antiviral function has remained

equivocal [17]. Our study provides a clear demonstration that the

piRNA pathway is involved in the mosquito antiviral response.

We observed that the piRNA-mediated antiviral effect of the

CFAV EVE was strongest in the ovaries. Although recent research

on arthropods suggests that protecting the germline was not

necessarily its ancestral role [47], our results are consistent with

a specialized role of non-retroviral, EVE-mediated antiviral immu-

nity in germcells. Presently, little is known about the pathogenicity

of insect-specific viruses in mosquitoes in nature. However,

because they are thought to be primarily transmitted vertically

from mother to offspring, it is likely that insect-specific viruses

reduce fecundity and/or fertility of their host. We speculate that

the EVE-piRNApathway combinationmay haveevolved to control

the replication of vertically transmitted viruses in the germline and

maintain high fecundity and fertility. In fact, minimizing the detri-

mental effects of viral infection in the germline benefits both the

host and the virus because the fitness of vertically transmitted vi-

ruses isdirectly linked to their host’s reproductivesuccess [48–50].

Another open question is the degree of nucleotide identity

required between the EVE and the virus for the antiviral activity

to take place. Sequence mismatches reduce piRNA binding to

its target sequences, and it was shown that more than three mis-

matches can effectively abolish piRNA recognition of the target

sequence in Drosophila [51]. Even single mismatches in the

seed sequence strongly reduce piRNA silencing efficiency in

Ae. aegypti [52]. Therefore, viruses could escape EVE-mediated

immunity by acquiring mutations, resulting in a possible coevo-

lutionary arms race. Predicting the tempo and mode of such

coevolutionary dynamics is difficult, even when the fitness cost

of individual mutations is known [53]. Interestingly, in our study,

the NS2 region of the CFAV EVE was most tightly involved in the

interaction with the virus. This region corresponds to fifo, an

open-reading frame (ORF) resulting from a ribosomal frameshift

exclusively found in insect-specific flaviviruses [54]. The exis-

tence of two overlapping ORFs in this region (main frame and

�1 frame) thus constrains sequence evolution. We speculate

that this region may have been specifically retained as an EVE

in the Ae. aegypti genome because the high level of purifying



Figure 6. Model for the Antiviral Role of

Non-retroviral EVEs in Mosquitoes

Both a naturally occurring EVE (left panel) and

exogenous viral infection (middle panel) produce

primary piRNAs in antisense and sense orienta-

tion, respectively. Only when EVE and virus are

present in the same mosquito do piRNAs acquire

antiviral activity (right panel) through EVE-derived

piRNAs targeting the viral genome. Under this

model, integration of non-retroviral sequences

into the host genome, their transcription into

piRNA precursors, and their processing into anti-

viral piRNAs are mechanisms by which EVEs

confer heritable, sequence-specific host immu-

nity.

ll
OPEN ACCESSArticle
selection in the fifo region may prevent CFAV from escaping the

antiviral mechanism by sequence divergence.

We observed that antiviral piRNAs against CFAV are produced

in a similar manner in both naturally infected and virus-inoculated

mosquitoes. Therefore, it is likely that EVEs represent a natural

antiviral mechanism against vertically transmitted insect-spe-

cific viruses. Conversely, whether EVEs could contribute to sup-

press arbovirus transmission by mosquito vectors in nature is

unlikely. Not only are arbovirus infections not prevalent (and

rarely transmitted vertically) in natural mosquito populations,

but they typically do not incur a fitness cost, presumably result-

ing in a lack of selective pressure for antiviral mechanisms

against arboviruses [55]. This may help to explain why arbo-

virus-derived EVEs are uncommon in mosquito genomes [13].

Nevertheless, further exploration of the virome and genomes of

wild mosquito populations, as well as additional experimental

evidence in natural systems, are necessary to refine our under-

standing of the role of EVEs in mosquito antiviral immunity.

In view of our results and the increasing body of evidence from

the literature [56], we conclude that EVEs constitute a universal

system of heritable, sequence-specific antiviral immunity in eu-

karyotes, analogous to CRISPR-Cas immunity in prokaryotes.

In the particular case of mosquitoes, integration of non-retroviral

sequences into the host genome, their transcription within

piRNA clusters, and their processing into antiviral sRNAs consti-

tutes a mechanism by which these acquired viral sequences are

co-opted to serve host immunity.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

CFAV-KPP https://doi.org/10.1128/JVI.00705-19 ENA: LR596014

Chemicals, Peptides, and Recombinant Proteins

RNase A/T1 Thermo Scientific Cat# EN0551

DreamTaq Green DNA Polymerase Thermo Scientific Cat# EP0714

DNAzol DIRECT Molecular Research Center, Inc. Cat# DN131

NucleoSpin DNA Insect Kit Machery-Nagel Cat# 740470.50

NucleoSpin Tissue Kit Machery-Nagel Cat# 740952.50

MEGAscript T7 in vitro transcription kit Thermo Scientific/Ambion Cat# AM1333

Cas9 Nuclease, S. pyogenes New England Biolabs Cat# M0646

TRIzol Reagent Thermo Scientific Cat# 15596026

M-MLV Reverse Transcriptase Thermo Scientific Cat# 28025013

RNaseOUT Recombinant Ribonuclease

Inhibitor

Thermo Scientific Cat# 10777019

GoTaq qPCR Master Mix Promega Cat# A6002;Cat# TM318

TruSeq DNA PCR-free library preparation

kit

Illumina Cat# FC-121-3001

NEBNext Multiplex Small RNA Library Prep

Set for Illumina (Set 1)

New England Biolabs Cat# E7300

Universal miRNA Cloning Linker New England Biolabs Cat# S1315S

Critical Commercial Assays

Qubit dsDNA HS (High Sensitivity) Assay Kit Thermo Scientific Cat# Q32851

Agilent Small RNA Kit Agilent Cat# 5067-1548

Deposited Data

Outbred Thai Aedes aegypti with CFAV-

EVE1 (+/?) and CFAV-EVE2 (+/?), full body,

naturally infected with CFAV. sRNA.

This paper HGW27BGXX, SRA: SAMN13244317

Outbred Thai Aedes aegypti with CFAV-

EVE1 (+/?) and CFAV-EVE2 (+/?), full body,

uninfected with CFAV. sRNA.

This paper HG7CHBGXX, SRA: SAMN13244318

Thai Aedes aegypti isofemale line with

CFAV-EVE1 (+/?), full body, CFAV IT

injected, replicate 1. sRNA.

This paper HVV5HBGXX, SRA: SAMN13244306

Thai Aedes aegypti isofemale line with

CFAV-EVE1 (+/?), full body, CFAV IT

injected, replicate 2. sRNA.

This paper HVV5HBGXX, SRA: SAMN13244307

Thai Aedes aegypti isofemale line with

CFAV-EVE1 (+/?), full body, CFAV IT

injected, replicate 3. sRNA.

This paper HVV5HBGXX, SRA: SAMN13244308

Thai Aedes aegypti isofemale line with

CFAV-EVE1 (+/?), full body, mock IT

injected, replicate 1. sRNA.

This paper HVV5HBGXX, SRA: SAMN13244303

Thai Aedes aegypti isofemale line with

CFAV-EVE1 (+/?), full body, mock IT

injected, replicate 2. sRNA.

This paper HVV5HBGXX, SRA: SAMN13244304

Thai Aedes aegypti isofemale line with

CFAV-EVE1 (+/?), full body, mock IT

injected, replicate 3. sRNA.

This paper HVV5HBGXX, SRA: SAMN13244305
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REAGENT or RESOURCE SOURCE IDENTIFIER

Isofemale line derived knockout line with

CFAV-EVE1 (�/�), head, CFAV IT injected.

sRNA.

This paper HJ5CNBGX9, SRA: SAMN13244315

Isofemale line derived knockout sister line

with CFAV-EVE1 (+/+), head, CFAV IT

injected. sRNA.

This paper HJ5CNBGX9, SRA: SAMN13244313

Isofemale line derived knockout line with

CFAV-EVE1 (�/�), ovary, CFAV IT injected.

sRNA.

This paper HJ5CNBGX9, SRA: SAMN13244316

Isofemale line derived knockout sister line

with CFAV-EVE1 (+/+), ovary, CFAV IT

injected. sRNA.

This paper HJ5CNBGX9, SRA: SAMN13244314

Isofemale line derived knockout line with

CFAV-EVE1 (�/�), head, mock IT injected.

sRNA.

This paper HJ5CNBGX9, SRA: SAMN13244311

Isofemale line derived knockout sister line

with CFAV-EVE1 (+/+), head, mock IT

injected. sRNA.

This paper HJ5CNBGX9, SRA: SAMN13244309

Isofemale line derived knockout line with

CFAV-EVE1 (�/�), ovary, mock IT injected.

sRNA.

This paper HJ5CNBGX9, SRA: SAMN13244312

Isofemale line derived knockout sister line

with CFAV-EVE1 (+/+), ovary, mock IT

injected. sRNA.

This paper HJ5CNBGX9, SRA: SAMN13244310

Thai Aedes aegypti isofemale line with

CFAV-EVE1 (+/?). WGS.

This paper SRA: SRR01437595

SRA accessions and BLAST search output

of SRA search for CFAV related sequences

This paper, https://github.com/

artembaidaliuk/SRA_search_CFAV_

EVE_sequences/

N/A

Experimental Models: Cell Lines

Aedes albopictus C6/36 ATCC Cat# CRL-1660

Experimental Models: Organisms/Strains

Aedes aegypti outbred colony https://doi.org/10.1371/journal.pgen.

1006111

N/A

Aedes aegypti isofemale line https://doi.org/10.1371/journal.pgen.

1006111

Line D

https://doi.org/10.1371/journal.pgen.

1003621

Isofemale line derived knockout line with

CFAV-EVE1 (�/�)

This paper N/A

Isofemale line derived knockout sister line

with CFAV-EVE1 (+/+)

This paper N/A

Oligonucleotides

All primer sequences are listed in Table S1 [57] N/A

Repair template sequence is listed in Table

S3

N/A

Software and Algorithms

BLAST [60] N/A

SRA Toolkit v2.9.6 https://doi.org/10.1093/nar/gkq1019

https://github.com/ncbi/sra-tools

N/A

metaSPAdes v3.11.0 https://doi.org/10.1101/gr.213959.116 N/A

R v3.5.2 http://www.r-project.org/ N/A

Trimmomatic v0.36 https://doi.org/10.1093/bioinformatics/

btu170

N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bowtie2 v2.3.4.3 https://doi.org/10.1038/nmeth.1923 N/A

Cutadapt v1.18 https://doi.org/10.14806/ej.17.1.200 N/A

Ray v2.3.1-mpi https://doi.org/10.1089/cmb.2009.0238 N/A

Geneious v10.2.3 https://www.geneious.com N/A

bedtools v2.25.0 https://doi.org/10.1093/bioinformatics/

btq033

N/A

LoFreq v2.1.3.1 https://doi.org/10.1093/nar/gks918 N/A

CRISPOR http://crispor.tefor.net/ N/A

FastQC v0.10.1 http://www.bioinformatics.babraham.ac.

uk/projects/fastqc/

N/A

Bowtie1 v1.1.2 https://doi.org/10.1186/gb-2009-10-3-r25 N/A

Galaxy https://doi.org/10.1093/nar/gky379 N/A

WebLogo 3 https://doi.org/10.1101/gr.849004 N/A

Graphpad Prism 6 https://www.graphpad.com/

scientific-software/prism/

N/A

tidyverse v1.3.0 (R package) https://doi.org/10.21105/joss.01686 [58] N/A

viridis v0.5.1 (R package) https://CRAN.R-project.org/

package=viridis

N/A

parsedate v1.2.0 (R package) https://CRAN.R-project.org/

package=parsedate

N/A

Rsamtools v1.20.4 (R package) https://doi.org/10.18129/B9.bioc.

Rsamtools

N/A

ShortRead v1.26.0 (R package) https://doi.org/10.18129/B9.bioc.

ShortRead [59]

Other

Mississippi, Galaxy https://mississippi.snv.jussieu.fr/ N/A

SRA_blast.sh This paper, https://github.com/

artembaidaliuk/SRA_search_CFAV_

EVE_sequences/

N/A

script-SRA_prefetch_into_

custom_dir.sh

This paper, https://github.com/

artembaidaliuk/

SRA_search_CFAV_EVE_sequences/

N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Maria-

Carla Saleh (carla.saleh@pasteur.fr)

Material Availability
Research materials generated in this study are available upon request.

Data and Code Availability Statement
The genome sequence of the Aedes aegypti isofemale line is available at Sequence Read Archive (SRA): SRR01437595. All sRNA

sequencing data are available at SRA: PRJNA588447. The code and data of the SRA survey were deposited to a public repository

(https://github.com/artembaidaliuk/SRA_search_CFAV_EVE_sequences).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mosquito origin and maintenance
An outbred laboratory colony of Ae. aegypti mosquitoes originally sampled in 2013 from a wild population in Thep Na Korn Village,

Kamphaeng Phet Province, Thailand [35] was found to be infected with CFAV [32] and was used in this study for CFAV-EVE1 and
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CFAV-EVE2 detection by gDNA PCR and sRNA sequencing of naturally infected and uninfectedmosquitoes. An isofemale line of Ae.

aegypti originating from Kamphaeng Phet Province, Thailand was used for experimental infections in vivo. The isofemale line was

created in 2010 as the progeny of a single-pair mating between a wild male from Mae Na Ree village and a wild female from Nhong

Ping Kai village [34, 35]. The inability to isolate CFAV from mosquito homogenates on C6/36 (Ae. albopictus) cells (ATCC CRL-1660)

and to detect CFAV by RT-PCR directly on mosquito RNA confirmed that the isofemale line was CFAV-free. Mosquitoes were main-

tained under standard insectary conditions (27�C, 70% relative humidity and 12h:12h light:dark cycle). Larvae were reared in plastic

trays filled with 1.5 L of dechlorinated tap water at a density of 200 larvae per tray and provided with 200 mg of TetraMin fish food

(Tetra) on days 0 and 2 and 400 mg on day 4. After emergence, adult mosquitoes were housed in plastic cages under standard in-

sectary conditions (27�C, 70% relative humidity and 12h:12h light:dark cycle) and provided with 10% sucrose solution ad libitum.

METHOD DETAILS

Ethics statement
Genetic modification of Ae. aegypti was performed under authorization number 4018 (bis) from the French Ministry of Higher Edu-

cation, Research and Innovation.

Survey of CFAV-related EVEs in public sequencing data of Aedes aegypti

The accession numbers for the Ae. aegypti sequencing data were selected using the web platform of the SRA database [61]. We used

BLAST (megablast) search [60] implemented in the SRAToolkit [61] to search for CFAV-like sequences in the preselected SRAdata. The

BLAST search resulted in 796 RNA-seq and 709WGS runs tested, released before January 30 and February 6, 2020, respectively. Full-

genome CFAV sequences from Thailand CFAV-Bangkok (European Nucleotide Archive (ENA): LR694074) [62] and CFAV-KPP (ENA:

LR596014) [32]wereusedasqueries.Visualizationofpositivehitswasperformed inRv3.6.1 (http://www.r-project.org/).Using theonline

BLAST tool (megablast), the CFAV-EVE1 sequence was detected in the supercontig 1.109 of the AaegL3 genome assembly (GenBank:

GCA_000004015.3) but absent from the AaegL5 genome assembly (GenBank: GCA_002204515.1). The CFAV-EVE1 sequencewas re-

constructed fromapublishedWGSdataset (SRA:SRR5562867) usingmetaSPAdesv3.11.0 [63].Reads from theWGSdatasetwerefirst

quality trimmed with Trimmomatic v0.36 [64] and aligned against the AaegL5 genome assembly with Bowtie2 v2.3.4.3 (–end-to-end–

very-fast) [65] to filter out all non-EVE reads. The CFAV-EVE2 sequence was reconstructed from SRA: SAMN04480331,

SAMN04480332, SAMN04480333. Reads were trimmed with Cutadapt v1.18 [66]. Relaxed local Bowtie2 v2.3.4.3 alignment (–local

-D 20 -R 3 -L 11 -N 1–gbar 1–mp 3) was used in order to preselect CFAV-derived reads, which were then used for de novo assembly

with Ray v2.3.1-mpi tool [67]. The contigs obtained from all three SRA samples were combined into a single sequence of CFAV-EVE2

using Geneious v10.2.3 software (https://www.geneious.com). The sequence was then verified by Bowtie2 alignment (–local) of the

reads, coverage and single nucleotide variant calculation by bedtools v2.25.0 and LoFreq v2.1.3.1, respectively [68, 69]. Both CFAV-

EVE1 and CFAV-EVE2 sequences with annotations are available in Table S2.

Live Aedes aegypti mosquitoes
Whole-genome sequencing of the isofemale line

The whole genome of the Ae. aegypti isofemale line was sequenced at the 20th generation of colonization. The DNAwas extracted from

a total of 144 virgin females following a published method [70]. Six pools of 4 mosquitoes were homogenized in 240 mL of the following

buffer: 0.1 M NaCl, 0.2 M sucrose, 0.1 M Tris buffer, 0.05 M EDTA, 0.5% SDS, pH adjusted to 9.2 with NaOH. The homogenates were

incubated at 65�C for at least 35 min and 34 mL of 8 M KAc were added to the heated homogenates and cooled on ice for 30 min. Su-

pernatants were transferred to new tubes, mixed with an equal volume of 100% ethanol and incubated for 5 min at room temperature

(20-25�C). The DNA was pelleted by 15-min centrifugation at 21,100g and washed with 75% ethanol. The pellet was resuspended in

100 mL of PCR-grade water. This procedure was repeated 6 times and DNA elutes from all pools were gathered in a single tube and

precipitated by adding 1/10 of 3MNaAc and 2.5x of cold 100% ethanol, followed by a washing step with 75% ethanol. The final elution

was done in 400 mL of PCR-grade water. The genomic DNA was treated with RNase A/T1 (Thermo Scientific) for 30 min at 37�C and

precipitated with NaAc again. The quality of the resulting DNAwas assessed by Nanodrop (Thermo Scientific), Qubit HSDNA Assay Kit

(Invitrogen), and 1% agarose gel migration. The DNA sequencing was performed commercially by Macrogen Europe (http://www.

macrogen.com). A TruSeq PCR-free DNA shotgun library (550-bp inserts) was sequenced on an Illumina HiSeq 4000 platform (2 3

100 bp). The genome sequence of the isofemale line was deposited to SRA: SRR01437595.

DNA extraction and CFAV-EVE1-specific and CFAV-EVE2-specific PCRs

To verify the presence and prevalence of the CFAV-EVE1 in the Ae. aegypti isofemale line and outbred colony, DNAwas extracted by

two different methods. Genomic DNA was extracted from single legs of individual mosquitoes or whole individual mosquitoes using

NucleoSpin DNA Insect Kit (Machery-Nagel) or NucleoSpin Tissue Kit (Macherey-Nagel) following the manufacturers’ instructions.

Final elution was performed with 20 mL of the elution buffer. The DNA was used as a template for CFAV-EVE1-specific qualitative

PCR with DreamTaq Green DNA Polymerase (Thermo Scientific) following the manufacturer’s recommendations, and using S7,

EVE-GT-external, EVE-GTlong-external and/or EVE-GT-internal primers (Table S1). The CFAV-EVE2 sequence was detected with

the CFAV-EVE2 primer set (Table S1).

Alternatively, DNAzol DIRECT (Molecular Research Center, Inc.) was used following manufacturer’s instructions, where DNA was

extracted from single legs by placing a leg in 200 mL of DNAzol DIRECT in a 1.5-mL screw-cap tube partially filled with glass beads
e4 Current Biology 30, 3495–3506.e1–e6, September 21, 2020
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and homogenized. The lysate was centrifuged 15-30 s at 21,100g and incubated at room temperature (20-25�C) for at least 20 min.

Subsequently, 0.5-1 mL of lysate was used directly into a 20-ml PCR reaction. The same DNAzol DIRECT extraction procedure was

used for whole mosquitoes, but the lysate was diluted 1:50 in PCR-grade water and 0.5-1 mL of the dilution was used in a 20 mL PCR

reaction as described above.

CRISPR/Cas9-mediated genome engineering
SgRNA design and synthesis

The Ae. aegypti isofemale line containing the CFAV-EVE1 was used to produce pure homozygous CFAV-EVE1 (+/+) and (�/�) lines

using CRISPR/Cas9 as previously described for Ae. aegypti [71]. The single-guide RNAs (sgRNAs) were designed using CRISPOR

(http://crispor.tefor.net/) by searching for 20-bp sgRNAs with the NGG protospacer-adjacent-motif (PAM). In order to reduce chances

of off-target mutations, only sgRNAs with off-target sites which contained three or more mismatches were selected. Two sgRNAs with

cut-sites proximal to the boundaries of the CFAV-EVE1 were chosen in order to delete the full CFAV-EVE1 sequence. A third sgRNA in

the middle of the EVE sequence was added to facilitate deletion of the CFAV-EVE1 sequence. sgRNA sequences with their most prob-

able off-target sites are represented in Table S3. SgRNAswereproducedas previously described [71]. Double-strandedDNA templates

for each sgRNA were produced by template-free PCR with two partially overlapping oligos (PAGE-purified, Sigma-Aldrich). Where

necessary, one or two guanines were added to the 50 end of the guide sequence within the primer to ensure the format ‘‘50-GG(N18-

20)-30’’ in order to facilitate in vitro transcriptionwithMEGAscript T7 in vitro transcription kit (Ambion). Transcribed sgRNAswere purified

with MEGAclear kit (Invitrogen). Quality of sgRNAs were assessed with Bioanalyzer, Agilent 2100 Small RNA kit (Agilent).

Repair template design

We designed a 110-nt repair template with homology arms (HA) to the upstream and downstream flanking regions of the CFAV-EVE1 and

extending to the sgRNAcut-sites (3bpupstreamof thePAM). Theannotatedsequenceof the repair template isprovided inTableS3.Due to

the 50 sgRNA having a cut-site inside the CFAV-EVE1 sequence, mismatches were artificially incorporated into to the 50 HA of the repair

template to ensure disruption of the CFAV-EVE1 sequence while maintaining enough homology to facilitate homologous recombination

anddeletionofCFAV-EVE1.An sgRNAsequence (withPAM)exogenous to theAe. aegyptigenomewasalso included in the repair template

inanattempt to incorporate thisguidesequence for furtherCRISPR/Cas9-mediatedmutagenesisof thissite.However, thisand themodified

CFAV-EVE1 sequences ultimately failed to get incorporated in CFAV-EVE1 (�/�) line genome. This could be explained by the presence of

the 50-TAAAAGTGGCGACGAG-30 sequence contained in each flanking region of theCFAV-EVE1 thatmight havemediated the homology-

dependent double-strandbreak repair independently of the repair template or that one homology armacted as a truncated repair template.

Egg microinjection

The final microinjection mix contained 322 ng/mL spCas9 protein (New England Biolabs) with 40 ng/mL of each sgRNA and 127 ng/mL

of the ssDNA repair template. The microinjection of Ae. aegypti embryos was performed according to standard protocols [72]. Ae.

aegypti females were engorged with commercial rabbit blood (BCL) via an artificial membrane feeding system (Hemotek). At least

3 days post blood meal, females were transferred into egg-laying vials and oviposition was induced by placing mosquitoes into

dark conditions. Embryos were injected 30-60 min post oviposition. Embryos were hatched by being placed in water at least

3 days post injection and reared to adult stage as described above under mosquito maintenance. The generation 0 (G0) virgin adult

mosquitoes were genotyped using a single leg DNA by PCR with EVE-GTlong-external primers (Table S1). The deletion in the CFAV-

EVE1 heterozygous PCR products was confirmed by Sanger sequencing.

Generation of the CFAV-EVE1 (+/+) and (–/–) lines

A single male mosquito (G0) with a verified CFAV-EVE1 heterozygous genotype was mated with 20 wild-type females. The progeny

(G1) were genotyped and 7 heterozygous males were mated with 35 wild-type females. G2 progeny were genotyped and 14 hetero-

zygous males were mated with 22 heterozygous females. G3 progeny were genotyped and pure CFAV-EVE1 (+/+) and CFAV-EVE1

(�/�) lines were created by pooling homozygous positive (11males and 31 females) and negative (11males and 18 females) mosqui-

toes, respectively. The progeny of these crosses (F1) were verified by the PCR with CFAV-EVE1 external primers in 3 pools of 20

mosquitoes from each line. The lines were reared according to the standard rearing procedures described above. Further line geno-

type verification was performed at F3, F4, and F5. The F4 generation of mosquitoes was used for sRNA sequencing, which confirmed

the almost complete absence of sRNAs complementary to CFAV in the CFAV-EVE1 (�/�) line, hence, the purity of the CFAV-EVE1

deletion and the absence of any other CFAV-related EVE that could have produced sRNAs.

CFAV experimental infections in vivo

CFAV isolate and injection conditions

Awild-type CFAV strain (CFAV-KPP; ENA: LR596014) previously isolated from the Ae. aegypti outbred laboratory colony [32] was used

for experimental infections of the CFAV-free Ae. aegypti isofemale line and the genetically modified lines 3-7 days post emergence. To

prepare CFAV-KPP stocks, the cell-culture supernatant of infected C6/36 Aedes albopictus cells was harvested after 7 days of virus

amplificationandstoredat�80�Caspreviouslydescribed [32]. Initially,CFAV-KPPstockswereobtaineddirectly frommosquitohomog-

enates inoculated onto C6/36 cells followed by three amplification passages. Later CFAV-KPP stocks were obtained by genomic RNA

transfectionofC6/36cells followedbytwoamplificationpassagesaspreviouslydescribed [32].The infectious titerof thevirusstockswas

measured by 50% tissue-culture infectious dose (TCID50) assay as previously described [32]. The estimated titers of the CFAV-KPP

stocks from mosquito homogenates and from the genomic RNA template were 1.14 3 107 TCID50 units/ml and 7.91 3 105 TCID50

units/ml, respectively. The first intrathoracic injection of theAe. aegypti isofemale line harboring theCFAV-EVE1was donewith the initial
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CFAV-KPPstockmade frommosquitohomogenates. Femalemosquitoeswereeach injectedwith786TCID50units eachusingNanoject

II Auto-Nanoliter Injector (Drummond), thensacrificedonday7post injection andpooledRNA from10wholebodieswasused for the first

sRNA library preparation and sequencing. Mock injections were performed with naive C6/36 cell-culture supernatant. Experimental in-

fections of CFAV-EVE1 (+/+) and (�/�) lines (referred to as experiments 1-6) were performedwith CFAV-KPP stocks produced from the

genomicRNA template. Femalemosquitoeswere each intrathoracically injectedwith 50 TCID50 units in experiments 1-6 usingNanoject

III ProgrammableNanoliter Injector (Drummond). Inexperiment5,mock injectionwasdonewith thenaiveC6/36cell-culturesupernatant.

RNA fromthepoolsofheadsandovariesof injected femalesdissectedonday4 (experiments1-5) oronday7 (experiments4-6)wasused

for the RT-qPCRwith CFAV-specific primers and additionally for sRNA sequencing (experiment 5, day 7). In experiment 1, RNAwas ex-

tracted from 5 pools of 4 tissues (pairs of ovaries or heads in all 6 experiments) per condition (mosquito line). In experiment 2, RNA was

extracted from 6 pools of 5 tissues per condition (mosquito line). In experiment 3, RNAwas extracted from 8 pools of 4 tissues per con-

dition (mosquito line). In experiment4,RNAwasextracted from6-8pools of 4 tissuesper condition (mosquito lineanddaypost injection).

In experiment 5,RNAwasextracted from5pools of 9 tissuesper condition (mosquito lineanddaypost injection). Finally, in experiment6,

RNAwas extracted from5pools of 5 tissues per condition (mosquito line).Mosquitoeswere fromgeneration F3 in experiments 1-4, gen-

eration F4 in experiment 5, and generation F6 in experiment 6.

CFAV RNA quantification

Total RNA was extracted and purified from mosquito tissues using TRIzol Reagent (Invitrogen) following manufacturer’s instructions

with RNA elution in 30 mL of PCR-grade water. cDNA synthesis was performed using M-MLV reverse transcriptase (Invitrogen) by

mixing 10 mL of eluted RNAwith 100 ng of random primers (Roche), 10 nmol of each dNTP, 2 mL of DTT, 4 mL of 5X First-Strand Buffer,

0.5 mL of PCR-grade water, 20 units of RNaseOUT recombinant ribonuclease inhibitor (Invitrogen), and 200 units of M-MLV reverse

transcriptase in a final reaction volume of 20 mL. Reactions were incubated for 10 min at 25�C, 50 min at 37�C, 15 min at 70�C, and
held at 4�C until further use or stored at �20�C. cDNA was diluted 1:5 before quantitative analysis by qPCR was done using GoTaq

qPCR Master Mix (Promega) following manufacturer’s recommendations. Primer sequences are provided in Table S1. CFAV qPCR

values were normalized by the housekeeping gene rp49 qPCR values.

Small-RNA sequencing
sRNA library preparation and sequencing

Total RNA from pools of 5 to 10 mosquitoes was subjected to acrylamide gel (15% acrylamide/bisacrylamie, 37.5:1, and 7M urea)

electrophoresis to purify sRNAs of 19-33 nt in length. Purified sRNAs were used for library preparation with NEBNext Multiplex Small

RNA Library Prep Set for Illumina (New England Biolabs) with 30 adaptor, Universal miRNA Cloning Linker – S1315S (New England

Biolabs) and in-house designed indexed primers. Libraries were diluted to 4 nM and sequenced on a NextSeq 500 sequencer (Illu-

mina) with a NextSeq 500 High-Output Kit v2 (Illumina) (52 cycles).

Analyses of small-RNA sequencing data

The quality of the fastq files was assessedwith FastQC software (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Low-

quality bases and adaptors were trimmed from each read using Cutadapt. Only reads with an acceptable quality (Phred score > 20)

and the adaptor sequence at the 50 end were retained. A second set of graphics was generated by the FastQC software using the

fastq files trimmed using Cutadapt. Reads were mapped to target sequences using Bowtie1 [73] (one mismatch allowed between

the read and its target for initial mapping or nomismatch allowed for target-specific mapping) or the Bowtie2 tool with default options

for the sRNA or DNA library, respectively. The Bowtie1 tool (sRNA library) and the Bowtie2 tool (DNA library) generate results in

sequence alignment/map (SAM) format. All SAM files were analyzed by the SAMtools package to produce bam indexed files. Home-

made R scripts with Rsamtools and Shortreads in Bioconductor software were used for analysis of the bam files. For the analysis of

sequence logos and sRNA overlaps, sRNA reads aligned to the CFAV-EVE1 sequence or to the CFAV genomic RNAwere processed

in Galaxy [74]. To generate sequence logos, reads of 26-30 nt in length were filtered and separated according to their genomic orien-

tation. The selected reads were converted into FastA format, trimmed at the 30 end to 20 nt and converted to RNA letters using the

corresponding FastA/FastQ tools. The processed readswere used as input for theWeblogo tool available in theGalaxy toolshed [75].

For the analysis of ping-pong signatures, aligned reads were loaded into the Mississippi instance of Galaxy (https://mississippi.snv.

jussieu.fr/). SAM files containing the reads of 26-30 nt in length were used as input for the Small RNA signatures tool. The Z-scores of

the calculated overlap probabilities were plotted with Graphpad Prism. All sRNA sequencing library sizes with the number of CFAV-

mapped reads are reported in Table S5. All data are available at SRA: PRJNA588447.

QUANTIFICATION AND STATISTICAL ANALYSIS

To compare CFAV relative RNA levels between CFAV-EVE1 (+/+) and (�/�) mosquito lines, pools of mosquito tissues were consid-

ered as biological units of replication. Normalized CFAV RNA levels were log10-transformed. Type III multivariate analysis of variance

(MANOVA) was performed separately for each time point (day 4 and day 7 post injection) and each tissue type (heads and ovaries).

The linear model included experiment, mosquito line, and their interaction as covariates. The interaction term was removed from the

model when its effect was statistically non-significant (p > 0.05), and type II MANOVA was performed instead. Statistical analyses

were performed in R v3.5.2 (http://www.r-project.org/).
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