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Abstract: Stroke-induced cognitive impairments affect the long-term quality of life. High-intensity 
interval training (HIIT) is now considered a promising strategy to enhance cognitive functions. 
This review is designed to examine the role of HIIT in promoting neuroplasticity processes and/or 
cognitive functions after stroke. The various methodological limitations related to the clinical rel-
evance of studies on the exercise recommendations in individuals with stroke are first discussed. 
Then, the relevance of HIIT in improving neurotrophic factors expression, neurogenesis and syn-
aptic plasticity is debated in both stroke and healthy individuals (humans and rodents). Moreover, 
HIIT may have a preventive role on stroke severity, as found in rodents. The potential role of HIIT 
in stroke rehabilitation is reinforced by findings showing its powerful neurogenic effect that might 
potentiate cognitive benefits induced by cognitive tasks. In addition, the clinical role of neuroplas-
ticity observed in each hemisphere needs to be clarified by coupling more frequently to cellu-
lar/molecular measurements and behavioral testing. 

Keywords: stroke rehabilitation; cerebral ischemia; cognition; endurance exercise; neurotrophic 
factors; neurogenesis; angiogenesis; rat and human model 
 

1. Introduction 
Stroke is one of the non-communicable diseases with the greatest number of disa-

bility-adjusted life years reflecting health loss [1]. Cognitive impairments, including 
attention, memory, executive functioning and information processing deficits, frequent-
ly contribute to reduce the quality of life, notably by doubling the risk of developing 
dementia [2–4]. A decline in cognitive skills is also strongly predictive of the inability to 
return to work, thereby contributing to the socioeconomic burden of stroke [5]. Cur-
rently, stroke rehabilitation remains crucial to counteract cognitive impairments. 

Numerous cognitive training strategies are employed in the clinic such as the use of 
diary, prompting devices, computers as well as remedial strategies through virtual real-
ity, gaming and several memory tasks [6,7]. Some of these strategies can reduce atten-
tion deficits just as verbal, prospective and working memory impairments [8]. However, 
the observed improvements in laboratory experiments could not systematically be 
transferable to daily life cognitive tasks [9]. Another limitation of training strategies is 
related to patients inability to preserve long-term cognitive benefits [10]. Moreover, 
some studies failed to find any positive effects on both memory and executive functions 
[8,9]. Therefore, the cognitive rehabilitation guidelines need to be reconsidered after 
stroke [8]. 

Beyond its roles in cardiorespiratory and muscular functions, endurance training 
can also be considered a part of cognitive rehabilitation in individuals with stroke [8]. 
Moderate-intensity continuous training (MICT), the most investigated exercise regimen, 
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could increase attention, information processing speed and implicit memory perfor-
mance in patients with stroke [11–13]. In rodents with cerebral ischemia, endurance 
training might also improve cognitive functions by stimulating synaptic plasticity, neu-
rogenesis and angiogenesis through the upregulation of neurotrophins levels [8,11,14–
18]. However, cognitive improvements are not systematically observed with MICT in 
both stroke patients and rodents with cerebral ischemia (also in healthy individuals), 
although it frequently improves aerobic capacity [12,13,19–23]. 

Exercise regimens with higher intensities, such as high-intensity interval training 
(HIIT), emerge as encouraging alternatives to improve cardiovascular and brain health 
following stroke [24–27]. HIIT, the most popular trend of 2018 [28], involves repeated 
short-to-long bouts of high-intensity exercise interspersed with active or passive recov-
ery periods [29]. HIIT is defined as short (<1 min) or long (1–5 min) series performed 
above the lactate/ventilatory threshold suggesting an accumulation of lactate during 
sessions contrary to MICT [29–31]. HIIT is feasible in individuals with stroke without 
any signs of cardiovascular intolerance or arrhythmias [26,32,33]. Moreover, HIIT is con-
sidered to be enjoyable and a time-efficient strategy to improve wellbeing and cardio-
vascular and muscular functions [28,32–36]. In individuals with stroke, recent evidence 
indicates a potential role of HIIT by measuring circulating molecular markers of neuro-
plasticity that might improve cognition functions [24,25,37,38]. In rodents with cerebral 
ischemia, HIIT, which induced strong improvements in aerobic parameters, also upreg-
ulated neuroplasticity markers in the hippocampus and the cortex when initiated during 
the therapeutic window (the 2 first weeks poststroke) [39–41]. However, the link be-
tween neuroplasticity and cognitive outcomes following HIIT remains to be defined in 
both preclinical and clinical studies, thereby explaining why exercise guidelines for 
brain health remain inexistent in individuals with stroke. 

The purpose of this review is to examine whether HIIT could be suitable for pro-
moting neuroplasticity processes and/or cognitive functions after stroke by discussing 
findings from molecular to behavioral levels in both human and animal studies. The 
various methodological limitations in exercise studies, which could explain controversial 
findings, need to be first considered in this review to clarify both the clinical relevance of 
rodent studies and the impact of clinical studies on the exercise recommendations. Then, 
this review highlights the relevance of HIIT in promoting neuroplasticity and/or cogni-
tive functions from single bout of HIIT protocols to training HIIT protocols in both 
healthy populations (young and older) and individuals with stroke. In addition, the 
preventive role of HIIT on the stroke severity in rodents (by starting HIIT program be-
fore stroke onset) is also discussed. To reinforce the potential role of HIIT in stroke reha-
bilitation, it is important to discuss the relevance of combining HIIT with cognitive tasks 
to potentiate their effects on neuroplasticity and cognitive performances. 

2. Methodological Considerations for Endurance Exercise Studies 
In both rodent and human studies, several methodological limitations keep us from 

finding optimal endurance programs to recover both cognitive and sensorimotor func-
tions in individuals with stroke. These limitations are related to the heterogeneity of 
studied populations, the small number of patients, the variability of exercise types 
(over-ground, treadmill and cycling in humans and treadmill, running wheel and 
swimming in rodents) [42], the timing of rehabilitation [43] and the lack of determina-
tion of accurate aerobic exercise parameters, also named the FITT principle, i.e., fre-
quency, intensity, time and type [44]. Additionally, a recent meta-analysis indicated that 
very few clinical studies have investigated more than one type of exercise [21] limiting 
our ability to ensure suitable exercise doses for cognitive benefits. 

2.1. Definition of Exercise Intensity 
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The intensity of repeated bouts of HIIT is above the lactate threshold (or at 85–90% 
of maximal speed or HRmax) separated by active (i.e., 30–50% of maximal speed or HRmax) 
or passive recovery periods [26,29,45]. However, the exercise intensity can strongly dif-
fer from these recommendations/guidelines in previous studies [14,32,40,46,47]. Indeed, 
high intensity is referred to maximum-tolerated treadmill speed in some clinical studies 
[32]. However, the physiological status of subjects (blood lactate concentration, % of 
VO2max, % of maximal heart rate or HRmax) during training sessions is not mentioned, 
despite the fact that it indicates the intensity level reached by patients. In other studies, 
“vigorous exercise” is defined as an exercise intensity sufficient to produce sweat [46,48], 
whereas sweating depends on many factors such as exercise duration, environmental 
temperature, psychological state, genetic factors and fitness levels. 

In preclinical rodent studies using swimming, maximal effort is related to the in-
tensity at which rats with cerebral ischemia began to drown [14,47]. Additionally, the 
duration of exercise is used to determine intensity (short duration for low intensity and 
longer duration for high intensity) increasing confusion between training protocols 
[14,47]. For instance, it was shown that early submaximal (10 min) swimming is more 
effective than low (5 min) or maximal “duration-intensity” (20 min) to reduce the escape 
latency during Morris water maze (MWM) and to increase both vascular endothelial 
growth factor (VEGF), brain-derived neurotrophic factor (BDNF) levels and antioxidant 
activity (superoxide dismutase) [14,47]. It has been recently suggested that rodent train-
ing protocols should include a physiological indicator of exercise intensity to be extrap-
olated to humans [49,50]. Yet, empirical running speeds are still frequently used in ro-
dent models, despite the fact that it cannot be applied to clinical studies [14,51,52]. Em-
pirical intensities lead us to consider running speed between 10 and 13 m/min as intense 
for rats with cerebral ischemia [53], while others postulated that 8 m/min can be consid-
ered as slow-to-moderate treadmill training and ~20 m/min as high intensity [54,55]. 

However, when exercise physiological parameters are used to separate the low- 
and high-intensity running, moderate running speeds are observed around 17 m/min 
and the high intensities around 25 m/min in rats with cerebral ischemia [40]. The use of 
maximal parameters such as VO2peak or maximal speed is practical and can reveal the 
safe upper limit of subjects. However, stroke-induced physical limitations hamper the 
capacity of reaching maximal aerobic capacities [2]. To overcome these limitations, a 
submaximal physiological parameter, the speed associated with the lactate threshold 
(SLT), has recently been used because most individuals with stroke, and all rodents with 
cerebral ischemia can reach it during an incremental exercise test [2,39,40]. Furthermore, 
SLT is known to accurately distinguish between high and moderate running speeds, i.e., 
below SLT for low intensity and above for high intensity [56–58]. Considering that, as 
subjects did not display similar level of aerobic capacity most of the time, intensity 
needed to be individualized to ensure suitable intensity area. 

When comparing various endurance regimens, the session workload is rarely indi-
vidualized and standardized (work-matched exercise regimens) in both clinical and ro-
dent studies, while it is strongly preconized in stroke exercise guidelines [45,59]. All 
these parameters are of primary importance to compare exercise doses both to increase 
the translational relevance of rodent studies and improve the physical exercise recom-
mendations in regard to the time course of brain changes [45,49,60]. 

2.2. Timing of Endurance Training after Stroke 
Numerous studies advocated that endurance exercise should be initiated during the 

acute and subacute phases (first weeks or months) to promote a more effective 
long-term functional recovery [26,60,61]. Risks of arrhythmia or intracerebral hemor-
rhage, myocardial injury, systolic dysfunction, unstable angina and uncontrolled hyper-
tension might limit the use of HIIT during the first months (between 1–6 months) in in-
dividuals with stroke [12,60]. Nevertheless, individuals with stroke should achieve an 
incremental exercise test (on treadmill or cycle ergometer) with electrocardiogram mon-
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itoring before starting to ensure their safety during training [26,32,33]. Two studies have 
shown improvements in walking speed when HIIT is performed within the first month 
[62] or between 3–9 months after stroke onset [34], without measuring its effects on cog-
nitive performance during this period. Despite these encouraging observations, safety of 
HIIT needed to be confirmed by larger randomized trials involving a wider stroke pop-
ulation panel especially for acute and subacute stroke patients. 

When HIIT starts from 6 to >24 months after stroke, no cognitive changes are found, 
although aerobic capacity and neuroplasticity are improved [35]. In rodents with cere-
bral ischemia, early HIIT (from day 2 after cerebral ischemia) promotes neuroplasticity, 
improves functional recovery and reduces depression, thereby suggesting that the acute 
and subacute phases are suitable in rodents [39,40]. 

In contrast, a high dose of mobilization (mainly out-of-bed activity) very soon after 
stroke onset (<24 h) negatively impacts recovery as reported by a large controlled ran-
domized trial [63], which is reinforced by rodent studies [64–66]. Accordingly, it is un-
likely to be relevant to start HIIT program during this very acute period. Given that both 
very early or late interventions (<24 h or >24 months after stroke) might mitigate cogni-
tion recovery, it is postulated that initiating HIIT within the first months poststroke, i.e., 
the subacute phase might be more suitable to enhance both sensorimotor and cognitive 
functions, provided that HIIT should be safe and feasible for individuals with stroke at 
this period. It also seems important to indicate that the frequency (number of sessions 
per week) of such exercise types remains understudied. 

2.3. Blood Measurement of Neurotrophins after Training 
In addition, physiological measurements related to neuroplasticity and cognition 

are also limited in exercise studies. Indeed, for ethical and technical reasons, the most 
common source for sampling BDNF in humans is peripheral blood [67]. However, cir-
culating BDNF is mainly stored in platelets [68] and comes from many sources such as 
endothelial cells [69,70], monocytes, B cells, T cells [71] and/or brain [72,73]. BDNF levels 
in the brain may not be reflected by the amount of BDNF associated with platelets. 
Hence, it is not surprising that circulating BDNF levels do not mirror brain levels in 
healthy rats [74]. It explains why interpretation of peripheral BDNF levels is challenging, 
although the brain is a major origin of the circulating BDNF (70–80% of circulating 
BDNF) [73]. It, thus, seems that serum BDNF measurement should be combined with 
complementary measurements (behavioral assessment and/or brain imaging) to better 
understand the meaning of serum neurotrophic factor levels in exercise protocols. For 
instance, previous authors have reported that the increased hippocampal volume is cor-
related with greater serum levels of BDNF and cognitive performance in older individu-
als [75]. However, cognitive tests are not systematically combined with neuroplasticity 
measurements in studies on HIIT, thereby limiting evidence on the role of neuroplastic-
ity processes in cognitive improvements after training [21,76–78]. 

Interestingly, a preclinical study has proposed a new method to quantify in vivo the 
brain BDNF in freely moving mice by collecting microdialysate of cerebrospinal fluid 
during behavioral tasks or stress condition [79]. This strategy might be used in a specific 
brain target area throughout a HIIT program in rodents, allowing us to follow the BDNF 
kinetic on the same animal. However, potential clinical application of such technology in 
exercise condition still remains difficult to imagine in the short term, although cerebral 
microdialysis are already performed for monitoring biochemical changes during neuro-
intensive care in humans [80]. 

3. How Can HIIT Promote Neuroplasticity and Cognitive Benefits in Individuals with 
Stroke? 

Several potential molecular factors might mediate the effects of HIIT on neuroplas-
ticity processes and/or cognitive improvements. First, skeletal muscles are able to com-
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municate with other organs such as the brain through many released substances during 
exercise [81]. Among other substances, lactate is released by active muscles during a 
HIIT session, which is achieved by healthy people and individuals with stroke [30,37]. 
An increase in blood lactate concentrations is frequently correlated with upregulation in 
serum BDNF levels, motor cortex excitability and motor learning in healthy humans [82–
84]. It is found in mice that lactate originating from active muscles could enter into neu-
rons through its receptor (MCT2) to stimulate BDNF by promoting SIRT1 pathway [85]. 
The upregulation of hippocampal and cortical BDNF expression and its high-affinity re-
ceptor tropomyosin receptor kinase B (TrkB) are well known to promote neurogenesis, 
neuronal survival and synaptic plasticity and to induce long-term potentiation (LTP) 
[72,86]. An increase in hippocampal LTP is frequently associated with memory im-
provements [87]. In the same way, higher BDNF and/or VEGF (neurogenesis and angio-
genesis) expression could improve memory performances in healthy rodents after re-
peated lactate injections to mimic high-intensity exercises [85,88]. Moreover, a blockade 
of the MCT expression in in vitro experiments reduces the transfer of lactate to astro-
cytes and neurons and impairs long-term memory in rats [89]. Additionally, lactate infu-
sion at rest could increase circulating BDNF in humans [90]. 

Moreover, recent evidence suggests a potential role in neuroplasticity after HIIT in 
both humans and rodents of the endurance exercise-induced myokine, the fibronectin 
type III domain-containing 5 (FNDC5) [50,91–93]. Indeed, Bostrom et al. [92] have ob-
served an upregulation of Fndc5 gene expression in skeletal muscle and an increase in 
serum of its secreted form, irisin, after prolonged endurance exercise in mice and hu-
mans. It is postulated that irisin itself might be able to cross the blood–brain barrier 
(BBB) to induce these gene expression changes, or irisin might induce a factor x that can. 
When hippocampal Fndc5 is upregulated during training, Bdnf and other neuroprotec-
tive genes are also activated in the mice hippocampus [93]. Exercise-induced adult hip-
pocampal neurogenesis was associated with increases in both Fndc5 and Bdnf genes, 
thus improving cognition in a mouse model of Alzheimer’s disease [94]. 

Then, stroke is associated with a strong neuroinflammation that affects neuroplas-
ticity processes within the core of lesion, the penumbra and the remote areas such as the 
spinal cord [95–98]. HIIT might be suitable to reduce pro-inflammatory cytokines in 
parallel with an activation of microglia (M2 phenotype) in rodents with cerebral ische-
mia as well as the neurotrophil-to-lymphocyte ratio in patients with multiple sclerosis 
[40,99]. 

Finally, it is found that genes associated with the inhibitory neurotransmitter gam-
ma-aminobutyric acid (GABA), which regulate the subgranular zone (SGZ) niche of the 
stem cells by maintaining their quiescent state, were downregulated in rodents exposed 
to a 28-day running wheel [100]. The decline in GABA function might elevate BDNF 
levels that mediates neurogenesis during exercise [101–103]. In line with previous re-
sults, transcranial magnetic stimulation (TMS) in human studies indicates a decrease in 
synaptic GABA functions in parallel with improvements in motor memory consolidation 
after HIIT [104]. In addition, the training-induced synaptic plasticity (GABA) can be in-
vestigated through the expression of the potassium–chloride cotransporter (KCC2, a 
neuronal chloride extruder) and sodium–potassium–chloride cotransporter type 1 
(NKCC1, a ubiquitously chloride importer) that are disturbed after cerebral ischemia 
and lead to alteration in the excitation/inhibition balance in brain [105–107]. Evidence 
has suggested that exercise or mechanical stimulation can alleviate spasticity and neu-
ropathic pain in animal models, likely due to the upregulation of KCC2 expression via 
the BDNF-TrkB pathway [108]. The molecular processes by which exercise and/or envi-
ronmental enrichment increase KCC2 levels are still unknown, but endurance training is 
recognized to upregulate BDNF expression, which is a major determinant of KCC2 up-
regulation [109]. Similarly, an upregulation of insulin-like growth factor-1 (IGF-1) could 
decrease the ratio between the expression of NKCC1 and KCC2, promoting the devel-
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opmental switch of GABA polarity from excitation to inhibition [110]. However, very 
few studies have assessed the direct effect of HIIT on KCC2 expression after stroke [40]. 

4. Do HIIT Promote Neuroplasticity and Cognitive Benefits in Healthy Individuals 
and Rodents? Comparison with MICT 

Overall, the impact of endurance training on cognitive benefits and cerebral plastic-
ity was often investigated using MICT in healthy individuals [111]. However, discrep-
ancies remain between studies regarding its effectiveness, and the suitable dose (fre-
quency, duration, intensity) of aerobic training is still subject to debate [111–113]. In this 
context, HIIT is frequently compared to MICT to highlight their respective impact on 
neuroplasticity and/or cognition, but divergent findings remain. 

4.1. In Humans 
In healthy children, a 4-week HIIT program enhances working memory, as ob-

served with the digit span forward and the Tower of Hanoi test performance without 
modifying other cognitive tasks [114]. Otherwise, most studies have used a single ses-
sion of HIIT protocols to detect the respective effects of HIIT on neuroplasticity and cog-
nition. Indeed, Winter and colleagues [115] found that a single bout of HIIT speeds vo-
cabulary learning up by 20% contrary to a moderate intensity exercise in healthy sport 
students. Moreover, serum BDNF, dopamine and epinephrine seem to be important 
mediators by which HIIT is able to improve retention of the novel vocabulary in this 
study. Interestingly, when healthy individuals perform two distinct 30-minute sessions 
(20% below the ventilatory threshold or VT and at 10% above VT), serum BDNF concen-
trations only increase for the exercise performed above VT (with blood lactate accumu-
lation), while cognitive function scores for the Stroop tests are improved after the two 
exercise regimens [83]. However, these cognitive improvements are observed without 
being correlated with BDNF changes in disagreement with the Winter et al. study 
[83,115]. Similarly, after an acute sprint interval exercise, the shortened response times 
for both the Stroop task and Trail making test are not correlated with the higher serum 
BDNF concentrations [116]. 

An acute bout of high-intensity exercise is able to modulate complex motor behav-
ior by improving motor skill acquisition and memorization in parallel with an increase 
in some biomarker concentrations (VEGF, IGF-1, BDNF and lactate) [117]. For instance, a 
HIIT session is effective in increasing long-term retention of the motor skill, serum 
BDNF concentrations (3.4 fold increase) and LTP-like neuroplasticity when performed 
immediately after achieving a motor task [118,119]. Additionally, a session with higher 
intensity, performed immediately before or after practicing a motor task, is more effec-
tive than a single session of MICT for increasing long-term retention of motor skill at 
both 1 and 7 days following learning [120]. 

Other authors found opposite conclusions by showing higher benefits of an acute 
MICT session on memory performance than HIIT [121]. A meta-analysis by Chang et al. 
(2012) showed that lower intensities would better improve cognitive performance im-
mediately after an acute exercise completion (until 1 min) [122]. However, the perfor-
mance of a cognitive task could be higher than MICT when this task is performed be-
tween 11 to 20 min following a single bout of high-intensity exercise. A longer delay 
would blur positive outcomes on cognitive performance [122]. It, thus, remains difficult 
to define which type of exercise is the most suitable for cognitive functions. Figure 1 il-
lustrates the effects of HIIT on neuroplasticity processes and cognitive functions in 
healthy individuals. 
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Figure 1. Overview of the influence of high-intensity interval training (HIIT) on neuroplasticity and learning/memory 
performance in healthy humans and individuals with stroke. HIIT enhances circulating biomarker expression of neuro-
plasticity processes in individuals with stroke. The HIIT effects on cognitive functions remain to be defined despite some 
authors finding benefits in cognitive performance in healthy individuals. 

4.2. In Rodents 
On the one hand, an upregulation of TrkB, VEGF and peroxisome proliferator acti-

vator receptor γ coactivator-1α (PGC-1α) levels has been recently found following an 
8-week HIIT in the rat hippocampus contrary to work-matched MICT. A positive corre-
lation is also observed between the upregulation of triceps brachii FNDC5 (fast-twitch 
muscle fibers) and hippocampal TrkB after HIIT, but not after MICT, in accordance with 
other authors who have demonstrated a link between myokines and neurotrophins ex-
pression [93]. However, Constans et al. failed to detect any effect of HIIT on working 
and spatial memory [50]. In unpublished results, we have also observed an upregulation 
of FNDC5 levels in cerebral cortex from 15 days of HIIT as well as higher levels of pTrkB 
and Pan-neurotrophin receptor p75 (p75NTR). Similarly, higher levels of hippocampal 
BDNF and glial cell-line-derived neurotrophic factor (GDNF) expression are promoted 
by HIIT compared to MICT [123]. In line with these results, an 8-week endurance train-
ing above the lactate threshold (without using HIIT) effectively elicits adult hippocam-
pal neurogenesis in mice by showing an increase in the doublecortin (DCX) and PGC-1α 
protein expression [124]. Additionally, these authors found a reduction in CCL11 levels, 
a neurogenesis inhibitory marker, at the end of training reinforcing the potential role of 
HIIT in hippocampal neurogenesis. It has also been demonstrated that three sessions of 
HIIT induce an increase in cell proliferation in the hippocampus (minichromosome 
maintenance complex component 2 or MCM2), immature neuron content (doublecortin 
or DCX), BDNF and mitochondrial content (voltage-dependent anion-selective channel 
protein 2, VDAC) [125]. Additionally, a 7-week HIIT induces an increase in both cortical 
and hippocampal VEGF expression associated with a higher density of blood capillaries, 
but unfortunately, cognitive outcomes have not been measured [88]. Interestingly, cere-
bral blood flow is well known to influence cognitive functions in both humans and ro-
dents [126]. 

A single session of HIIT improves antioxidant mechanisms reducing lipid peroxi-
dation in the hippocampus [127]. Similarly, 6 weeks of HIIT enhance superoxide dis-
mutase concomitantly with an enhanced hippocampal BDNF levels and reduce hippo-
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campal oxidative stress by decreasing lipoperoxidation and cytokine content (TNFα, 
IL-6, IL-1β and IL-10) [128]. However, these authors failed to find a significant effect on 
the working memory performance, although HIIT improves cerebellar antioxidant ca-
pacity, known to be involved in the higher order behaviors [129]. 

On the other hand, some authors demonstrated higher effectiveness of MICT to 
stimulate hippocampal BDNF, IGF-1, VEGF as well as the mitochondrial marker, pro-
hibitin, than a more fatiguing endurance training [76]. Interestingly, although both 
training paradigms could promote neuronal proliferation and migration in the adult 
dentate gyrus (DG), moderate but not high-intensity exercise enhanced behavioral spa-
tial discrimination. However, exercise intensity should be considered with caution in 
this study because both moderate and intense running speeds increase the blood lactate 
concentration, while MICT should not induce it as mentioned above [30]. Moreover, the 
intense exercise is an incremental exercise on the treadmill (not an HIIT), which is 
known to have no effect on the plasma BDNF concentration in young healthy men [130]. 
Nokia et al. have reported a very modest effect of a 6- to 8-week HIIT on adult hippo-
campal neurogenesis by showing that the highest number of DCX positive hippocampal 
cells was observed in rats that ran on a wheel (considered as moderate intensity exer-
cise) [131]. It is noteworthy that the increase in DCX expression at the end of training in 
the Nokia et al. study [1,2] might not reflect the effect of the entire training period, be-
cause its expression needs several weeks to be detected in the hippocampus [132]. 

5. HIIT Could Contribute to Neuroplasticity and Cognitive Recovery after Stroke 
5.1. Clinical Studies 

Figure 1 also illustrates the effects of HIIT on neuroplasticity processes and cogni-
tive functions after stroke. A single bout of HIIT just as a 4-week HIIT program increases 
serum VEGF and IGF1 levels as well as BDNF levels that are correlated with higher 
blood lactate concentrations compared to MICT, without a concomitant cortisol stress 
response (known to limit neuroplasticity processes) [24,35,37,133,134]. In the ipsilesional 
hemisphere, HIIT induces higher deoxyhemoglobin concentrations compared to MICT, 
reflecting greater improvements in systemic and cerebral O2 consumption, but no cogni-
tive recovery is found [35]. Interestingly, when neuroblastic rat cells in culture are treat-
ed with the serum from individuals with stroke achieving HIIT, it results in a higher in-
crease in dendritic growth and mitochondria redistribution along these new dendrites 
[35]. Other authors also found very low effects of long-term “high-intensity training” 
(not HIIT in this study) on short-term memory without altering working memory and 
executive functions [23,27]. Indeed, Tang et al. showed no effect on working memory, 
attention and conflict resolution when exercise intensity progressively increased from 40 
to 80% of HR reserve over 3 months of training by using the Verbal Digit Span Test, 
Color–Word Stroop Test and Trail-Making Test Part B [23] (Table 1). 

Table 1. Summary of aerobic training protocols and their effects on cognition in stroke patient. 

Studies Participants 
Aerobic Training 

Results 
Intensity Duration 

Tang et al., 
2016 

n = 25 
Age: 66 (62–71) years 

Timing after stroke: 3.5 
(2.2–6.7) years 

From 40 to 80% HRR 
60 min/session 

3 sessions/week 
for 6 months 

� Short-term memory 
⟺ Working memory, set shifting, 

conflict resolution 

Boyne et 
al., 2019 

n = 16 
Age: 57.4 (37.7–72.1) 

years 
Timing after stroke: 6.5 

(0.5–16.11) years  

Treadmill HIIT: 
maximum tolerated speed 

30 sec HI and 60 to 30 sec LI 
Seated Stepper HIIT: maximal 
cadence with 50% of maximal 

25 min/session 
1 session of 

each 
1 week between 

sessions 

� serum BDNF 
Lower � in serum BDNF after 

MICT 
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resistance MICT: 45 ± 5% HRR 

Boyne et 
al., 2020 

n = 16 
Age: 57.4 (37.7–72.1) 

years 
Timing after stroke: 6.5 

(0.5–16.11) years 

Treadmill HIIT: 
maximum tolerated speed 

30 sec HI and 60 to 30 sec LI 
Seated Stepper HIIT: maximal 
cadence with 50% of maximal 
resistance MICT: 45 ± 5% HRR 

25 min/session 
1 session of 

each 
1 week between 

sessions 

� VEGF, IGF-1 after HIIT 
� Serum BDNF is correlated to � 

blood lactate after HIIT 

Hsu et al., 
2020 

n = 28 
Age: HIIT: 58.5 (49.8–

67.2) years 
MICT: 53.1 (46.2–60.0) 

years 
Timing after stroke: 38.5 

(19.1–57.9) months 

Bicycle ergometer HIIT: 3 min 
at 80% VO2Peak separated by 3 

min at 40% VO2Peak 
Bicycle ergometer MICT: 60% 

VO2Peak 

0 min/session 
Isocaloric 

2 to 3/week 
36 sessions 

� VO2peak after HIIT > MICT 
� peak cardiac output 

� △[HHB] and △[THB] after HIIT 
in lesioned hemisphere 

� Serum BDNF after HIIT 
� Dendritic growth with patient 

serum after HIIT 
� indicate an increase; �  indicate an increase; ⟺ indicate a maintenance; BDNF: brain-derived neurotrophic factor; 
VEGF: vascular endothelial growth factor; IGF-1: insulin-like growth factor 1; HRR: heart rate reserve; HI: high-intensity; 
LI; low-intensity; HIIT: high-intensity interval training; MICT: moderate-intensity. 

5.2. In Rodents with Cerebral Ischemia 
Figure 2 illustrates the effects of HIIT on neuroplasticity processes and cognitive 

functions after cerebral ischemia. HIIT upregulates the ipsilesional BDNF expression 
and its high-affinity receptor TrkB in both cortex and hippocampus [39,135]. Indeed, 
some studies observed higher effects of HIIT on the mBDNF/pro-BDNF ratio compared 
with work-matched MICT in the ipsilesional CA1, CA3 and DG of the hippocampus. 
This ratio is closely related to a decline in depression, as shown by using the sucrose 
preference test [39]. In addition, both aerobic regimens reduced pro-BDNF levels in CA3 
and DG regions, which preferentially binds with p75NTR, triggering proapoptotic and 
synaptic withdrawal [39,136]. Using the same protocol based on SLT, HIIT could decrease 
neuronal death in the DG by reducing the expression of the TLR4/NF-kB/NLRP3 path-
way and the depression [137]. Earlier poststroke HIIT also downregulates pro- and an-
ti-inflammatory cytokine expression and activates microglia in the ipsilesional hemi-
sphere [40]. 
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Figure 2. Overview of the influence of high-intensity interval training (HIIT) and cognitive training on neuroplasticity 
and learning/memory performance in rodents with cerebral ischemia. HIIT enhances neurotrophin expression, neuro-
genesis and synaptic plasticity. However, the effects on cognition remain unclear but seem to be very modest. It is un-
known if the combination between HIIT and cognitive training (enriched environment) can increase benefits of an en-
riched environment on cognitive functions. 

However, most studies focused on the ipsilesional side, whereas the contralesional 
cerebral cortex and hippocampus are also strongly involved in recovery, suggesting that 
the contralesional side should be considered when assessing treatments [138]. Indeed, 
inhibiting the contralesional hemisphere with lidocaine after a large ischemic lesion 
would increase motor deficits of the paretic limb [97,138]. Moreover, higher activity of 
the contralesional cortex contributes to improve motor activity by reinnervating the spi-
nal cord in mice [97]. Pin-Barre et al. found that HIIT could restore the stroke-induced 
increase in NKCC1/KCC2 ratio in the contralesional hemisphere in contrast with what is 
observed in the ipsilesional hemisphere [40]. Additionally, an upregulation of neuro-
plasticity markers such as TrkB, FNDC5, VEGF and p75NTR is observed in both the con-
tralesional cortex and hippocampus after work-matched short- and long-interval HIIT 
without significant changes in the ipsilesional side and without gains in cognitive func-
tions [40,41]. Strong improvements in grip strength of the affected forelimb and aerobic 
parameters are only observed when neuroplasticity markers are increased in the con-
tralesional hemisphere. When no training is performed, insufficient contralesional plas-
ticity occurs together with incomplete functional recovery. The latter study highlights 
that both long and short HIIT regimens might be used depending on the aerobic abilities 
and exercise preference of each individual with stroke. For instance, for those who are 
not able to withstand longer intervals, an individualized HIIT with short intervals can be 
used without reducing the effectiveness of rehabilitation [26]. Interestingly, it has also 
been recently found in individuals with stroke that HIIT with short and long intervals is 
of clinical relevance [139] (Table 2). Unfortunately, no study using HIIT focused on cog-
nitive functions in rodents with cerebral ischemia. 

Table 2. Summary of aerobic training protocols and their effects on cognition in poststroke rats. 
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Studies Participants 
Aerobic training 

Results 
Intensity Duration 

Pin-Barre 
et al., 
2017 

Sprague-Dawley 
N = 70 

Age: 2–3 months 
Method: tMCAO (120 

min) 
Timing after stroke: 24–48 

h 

HIIT: 4 × (4 + 3 min active 
rest) 

80% of Smax-SLT (week 1) 
95% of Smax-SLT (2) 

MICT: 80% SLT 

28 min/session 
Isocaloric 

5/week for 2 
weeks 

� Endurance performance after 
HIIT 

� Inflammation mainly in the 
lesioned hemisphere 

Restored NKCC1/KCC2 ratio in 
the contralesional hemisphere 

Luo et 
al., 2018 

Wistar 
n = 55 

Age: 2–3 months 
Method: tMCAO (90 min) 

Timing after stroke: 28 
days 

HIIT: 4 × (4 + 3 min rest) 
SLT + 60–70% (Smax-SLT) 

MICT: 80–90% SLT 

28 min/session 
Isocaloric 

5/week for 4 
weeks 

� BDNF in ipsilesional CA1, CA3 
and DG after HIIT 

� mBDNF/proBDNF ratio in 
hippocampus after HIIT 

� TrkB and NR2A expression after 
HIIT 

� p75NTR and NR2B after HIIT 

Li et al., 
2020 

C57BL/6J mice 
n = 5/group 

Age: 8–10 weeks 
Method: tMCAO (90 min) 

Timing after stroke: 28 
days 

HIIT: 4 × 4 (4 + 3 min rest) 
SLT + 60–70% (Smax-SLT) 

MICT: 80% SLT 

28 min/session 
Isocaloric 

HIIT: 5/week 
MICT: 7/week 

for 4 weeks 

� Neuronal death in DG after HIIT 
� Neuroprotection through � 

PTEN activity after HIIT 
� Depression-like behavior after 

HIIT 

Pin-Barre 
et al., 
2021 

Sprague-Dawley 
n= 42 

Age: 2–3 months 
Method: tMCAO (120 

min) 
Timing after stroke: 24–48 

h 

HIIT: 4 x (4 + 3 min active 
rest) 

HIIT1: 1 + 1 min active rest 
80% of Smax – SLT (1st week) 
95% of Smax – SLT (2nd week) 

28 min/session 
Isocaloric 

5/week for 2 
weeks 

Both HIIT does not reduce 
stroke-induced gliogenesis in the 

ipsilesional hesmisphere 
Both HIIT � pTrkB in the 

contralesional hippocampus while 
HIIT4 only � pTrkB in the 

contralesional cortex 
Both HIIT � FNDC5 and Cyt C in 

the contralesional cortex 
� indicate an increase; �  indicate an increase; BDNF: brain-derived neurotrophic factor; proBDNF: precursor 
brain-derived neurotrophic factor; mBDNF: mature brain-derived neurotrophic factor; VEGF: vascular endothelial 
growth factor; IGF-1: insulin-like growth factor 1; NKCC1: Na+–K+–2Cl− cotransporter; KCC2: K+–Cl− cotransporter; HRR: 
heart rate reserve; HI: high-intensity; LI; low-intensity; HIIT: high-intensity interval training; MICT: moderate-intensity 
continue training; HHb: deoxyhemoglobin; THb: total hemoglobin; SLT: speed at lactate threshold; Smax: maximal speed; 
tMCAO: transient middle cerebral artery occlusion; DG: dentate gyrus; TrkB: Tropomyosin receptor kinase B; p75NTR: p75 
neurotrophin receptor; NR2A: N-methyl-D-aspartate subtype glutamate receptor leading to LTP; NR2B: 
N-methyl-D-aspartate subtype glutamate receptor producing LTD, pTrkB: phosphorylated form of tropomyosin recep-
tor kinase B; FNDC5: fibronectin type III domain-containing protein 5; Cyt C: Cytochrome C. 

6. Perspectives 
6.1. Is the Combination between HIIT and Cognitive Tasks Effective to Improve Cognitive 
Performance during the Stroke Rehabilitation? 

Both intense and moderate endurance exercises seem to have a modest effect on 
cognitive recovery [20,23,140]. Nevertheless, it is considered that endurance training 
might act as a powerful neurogenic stimulus potentiating the effectiveness of cognitive 
tasks on memory [141]. Indeed, greater cognitive improvements and serum neu-
rotrophic factor upregulation have been reported when endurance training was com-
bined with cognitive tasks such as computerized dual-n-back training [140,142]. In hu-
mans, very few studies have examined the combined effects of HIIT and cognitive 
training. It has been reported that individuals with greater fitness improvements fol-
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lowing 6 weeks of combined HIIT and memory training (a computerized version of the 
concentration memory task) exhibit better high-interference memory performances and 
greater increases in the serum BDNF and IGF-1 compared with HIIT alone [143]. A com-
bination of various HIIT programs, including cognitive exercises, is effective in young 
adults for facilitating improvements in aerobic/muscular fitness outcomes and executive 
functions by using the trail making test (TMT) [144]. Additionally, a single bout of HIIT 
combined with motor practice could increase skill retention, suggesting a potential im-
pact of HIIT to accelerate motor learning in individuals with stroke [38]. Moreover, 
priming HIIT through transcranial direct current stimulation enriched with a paretic an-
kle skill acquisition task could reduce poststroke cortical excitability asymmetry, known 
to be associated with less functional impairments [145–149], which is not observed when 
HIIT is performed alone [38] (Table 3). 

No study in rodents has combined HIIT with cognitive training. However, it is al-
ready postulated that the increase in survival of newborn cells within the DG induced 
by a memory training [150] can be completed by the increased newborn cell proliferation 
induced by physical exercise training [151]. Indeed, in neurogenesis-ablated mice, the 
combination of environmental enrichment and exercise partially rescues neurogenesis 
and restores memory [152]. 
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Table 3. Summary of HIIT/intense protocols combination and their effects on cognition in healthy people. 

Studies Participants 
Aerobic Training 

Combination Results 
Intensity Duration 

Madhavan 
et al., 2016 

n = 11 
Age: 58 

Timing after 
stroke: 9 years 

Incremental walking 
speed until 80% of the 

age-predicted HR 
(220-age) 

40 min/session 
1 session 

tDCS enhanced with a 
paretic ankle skill 

acquisition task (15 
min) 

� CME of the paretic 
tibialis anterior after HIIT 

alone  
� CME of the paretic 

tibialis anterior after the 
combination  

� RPE after combination 

Nepveu et 
al., 2017 

n = 22 
Age: 64,9 

Timing after 
stroke: chronic 
stroke patients 

HIIT: 3 × 3 min at 100% 
peak workload GXT 

interspersed with 2 × 2 
min at 25% 

15 min/session 
session 

Time-on-target motor 
task ending 10 min 

before HIIT initiation 
Retention test 24 h after 

HIIT session 

� Tendency of SICI 
measured by TMS 

� Skill retention after HIIT 

Madhavan 
et al., 2020 

n = 81 
Age: 58.8 

Timing after 
stroke: 5.5 

years 

Speed increment over 2 
min to reach the 

maximal speed for 10 s 
Warm-up HR during 

recovery initiate a new 
interval 

40 min/day 
3 days/week for 

4 weeks 

tDCS enhanced with a 
paretic ankle skill 

acquisition task (15 
min) 

CME with the 
combination 

Patients with � CME 
increased walking speed 

more than others 

�  indicate an increase; �  indicate an increase; HR: heart rate; HIIT: high-intensity interval training; RPE: rate of per-
ceived exertion, GXT: graded exercise test; tDCS: transcranial direct current stimulation; TMS: transcranial magnetic 
stimulation; CME: corticomotor excitability; SICI: short-interval intracortical inhibition. 

6.2. Pre-Conditioning HIIT Might Reduce Poststroke Brain Damage 
Two large prospective studies conducted on more than 20,000 men have shown a 

decreased risk of stroke incidence when training is considered as vigorous [46,48]. For 
instance, it is reported that there is a 21% lower risk of stroke when such a session is 
performed once per week [153], although “vigorous exercise” needs to be taken with 
caution, as mentioned in methodological considerations. Thus, exercise preconditioning 
decreases the risk of stroke incidence but can HIIT limit poststroke deleterious outcomes 
by improving brain ischemic tolerance. 

There is little information on pre-stroke (or pre-conditioning) HIIT-induced func-
tional and cognitive changes in rodents with cerebral ischemia. Rezaei et al. are the first 
to show that an 8-week HIIT can protect BBB integrity, decreasing inflammatory cells in-
filtration, thereby reducing cortical and total cerebral infarction volumes compared to 
MICT [154]. Moreover, HIIT promotes higher striatal VEGF-R2 levels (main receptor of 
VEGF-A) and cortical VEGF-A levels than MICT [154]. To reinforce these findings, high-
er levels of endothelial nitric oxide synthase (eNOS) and 5’ adenosine monophos-
phate-activated protein kinase (AMPK) in both brain and cerebral vessels are found after 
HIIT resulting in a rise in cerebral blood flow and improvements in stroke outcomes by 
using Bederson score and beam walk tests [51]. 

Preconditioning HIIT also improves neurological score in rodents by preventing 
motor deficits and enhancing their recovery [51,155]. This reduction in poststroke defi-
cits might be associated with the rise in BDNF expression in both plasma and brain 
hemispheres through PGC1α/ERRα (estrogen receptor-related receptor alpha) pathway, 
known to be involved in both mitochondrial biogenesis and neurotrophin expression 
[93,155]. In line with these studies, pre-conditioning high-intensity exercise (not HIIT in 
this study) also reduces infarct edema size at days 1 and 3 poststroke and enhances 
neuroprotection by decreasing neuronal apoptosis through Heat shock protein 70 
(HSP70)/extracellular signal-regulated kinases 1 and 2 (ERK1/2) cascade, when the lesion 
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occurs within the 24 h after the last training session [52]. Interestingly, different out-
comes were found according to the delay between the last HIIT session and stroke onset. 
The more the delay increases, the more the infarct and edema sizes increase with wors-
ened functional outcomes [51]. The preventive role of HIIT, thus, seems to be a promis-
ing research area in the context of stroke. 

6.3. Is the HIIT Effectiveness on Neuroplasticity/Cognition Observed in Other Neurologic 
Disorders? 

Recent studies have reported promising effects of HIIT on cognitive functions in 
neurodegenerative diseases. In patients with middle cognitive impairments, HIIT com-
bined to a ketogenic diet and memory training may reverse early stage memory loss 
[156]. Moreover, HIIT decreases depression in people with severe mental illness [157]. 
Depressive symptoms are reduced after an 8-week HIIT in healthy women [158]. Fur-
thermore, HIIT is effective in alleviating cognitive decline in Alzheimer’s disease mice 
through improvements in hippocampal mitochondrial morphology together with the 
reduction in mitochondrial fragmentation and hippocampal β-Amyloid burden [159]. In 
line with previous results, HIIT protects rats from post-traumatic stress disorder 
memory decline by decreasing oxidative stress, anxiety levels and by improving antiox-
idant capacity, therefore reducing neuronal damage [160]. In patients with multiple 
sclerosis, HIIT reduces inflammation and enhances in parallel executive functions as 
well as verbal memory. Nevertheless, no significant cognitive nor quality-of-life im-
provements are observed in people with Parkinson’s disease after HIIT, while it is effec-
tive in improving serum BDNF and other functional outcomes [161–163]. 

7. Conclusions 
It seems that HIIT should be included in stroke rehabilitation for its beneficial ef-

fects on neuroplasticity processes. The clinical role of neuroplasticity observed in each 
hemisphere needs to be clarified by coupling more frequently cellular/molecular meas-
urements and behavioral testing. Despite these results, HIIT induces very modest cogni-
tive effects when performed alone in both healthy people and individuals with stroke. 
However, its powerful neurogenic effect might help to accentuate benefits induced by 
cognitive tasks. Based on these considerations, it is recommended to continue investi-
gating the different modalities of HIIT on brain plasticity in terms of duration and/or in-
tensity of both high-intensity intervals and recovery phases along with the type of re-
covery between series (active or passive) and the mode of HIIT exercise (cycling, run-
ning, swimming, rowing, etc.). It is noteworthy that this review is not designed to 
demonstrate a useless/ineffective role of MICT after stroke. In contrast, we believe that 
both low- and high-intensity training regimens might be complementary for brain 
health. 
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