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This paper, dedicated to controlled generalized batches Petri nets without discrete nodes, presents a method for computing a control trajectory for reaching a steady state from a given initial marking. A steady state is characterized by a state in which the marking and the firing flow vector are constant. By controlling the firing flow vector of transitions, the proposed control strategy is an event-based one and relies on an algorithm solving a linear programming problem. This new control strategy, called in this paper as maximal flow based ON/OFF control, exploits the maximal firing flows and reduces the delay of the transient behavior for reaching the steady state. A practical communication system is provided to illustrate the relevance of such a control strategy for Cyber-Physical Systems.

Introduction

The prevalence of Cyber-Physical Systems (CPSs) in a wide range of critical applications requires the development of efficient control and monitoring methods for such systems. Since the communication between entities of a CPS is carried out through network and internet, this type of system is vulnerable to attacks and threats [START_REF] Humayed | Cyber-physical systems security-a survey[END_REF]. To deal with the modeling, control and analysis of CPSs, the use of Discrete Event Systems (DESs) formalisms, such as Automata and Petri Nets (PNs), has been widely considered [START_REF] Rashidinejad | Supervisory control of discrete-event systems under attacks: an overview and outlook[END_REF]. Some important works have been devoted to the control problems of such models with continuous Petri nets under infinite server semantics, applying discrete-time control such as ON/OFF controllers [START_REF] Wang | ON/OFF strategy based minimumtime control of continuous Petri nets[END_REF] or Model Predictive Control [START_REF] Mahulea | Optimal model predictive control of timed continuous Petri nets[END_REF]. As studied by [START_REF] Cassandras | The event-driven paradigm for control, communication and optimization[END_REF], the event-driven control strategies provide an alternative to time-driven ones in hybrid systems where the control action is updated when an event occurs. In this spirit, [START_REF] Júlvez | Event-driven model predictive control of timed hybrid Petri nets[END_REF] have proposed an event-driven control of timed hybrid Petri nets.

In this work, we consider controlled Generalized Batches Petri Nets (cGBPNs) [START_REF] Demongodin | Dynamics and steady state analysis of controlled generalized batches Petri nets[END_REF] with the transition firing flows as control inputs. Such models enrich the class of hybrid Petri nets [START_REF] David | Discrete, continuous, and hybrid Petri nets[END_REF] by introducing a new kind of nodes, called batch nodes.

Batch transitions act as continuous ones with finite server semantics while batch places are hybrid ones defined by three continuous characteristics: a length, a transfer speed and a maximal density. Based on the concept of batches as marking, i.e., a group of entities moving through a batch place at a certain speed, cGBPNs allow variable delays on continuous flows to be represented. cGBPNs behavior is based on a switching continuous-time and event-driven dynamics.

A control strategy of cGBPNs was presented in our prior work [START_REF] Liu | Event-driven control for reaching a steady state in controlled generalized batches Petri nets[END_REF] which is steady flow based ON/OFF control strategy. It assumes that the controlled firing flow of each transition cannot exceed its steady firing flow. Although the convergence to the steady state using this strategy was proved, the main drawback of using steady flows rather than the maximal values is the impact on the time performance. The main contribution of this work is to exploit the maximal firing flows when it is possible to improve the convergence delay. Since a certain configuration of the moving entities characterized by a steady state density should be reached, the use of the maximal firing flows is restricted and is only feasible when some conditions that are developed are satisfied.

The remainder of this paper is structured as follows. In Section 2, some preliminaries on cGBPNs and their steady states are presented. A running example is introduced and used throughout the paper to illustrate the different notions. Section 3 formalizes the control problem and the steady flow based ON/OFF control is recalled. In Section 4, the new proposed control strategy and the computation of the control trajectory are detailed. A communication system illustrates the presented approach in Section 5. Finally, some conclusions and future works are presented in Section 6.

Preliminaries

In this section, we introduce some basic definitions on controlled generalized batches Petri nets (cGBPNs) and identify the steady states.

Generalized Batches Petri nets

We assume the reader to be familiar with hybrid Petri nets such as defined by [START_REF] David | Discrete, continuous, and hybrid Petri nets[END_REF]. For more details on batches Petri net formalisms, we refer readers to [START_REF] Demongodin | Dynamics and steady state analysis of controlled generalized batches Petri nets[END_REF][START_REF] Demongodin | Generalised batches Petri net: hybrid model for high speed systems with variable delays[END_REF]. 1 are, respectively, the pre-incidence and post-incidence matrices, denoting the weight of the arcs from places to transitions and transitions to places.

(P D × T → N) ∪ ((P C ∪ P B ) × T → R ≥0 )
γ : P B → R 3 >0 is the batch place function. It associates to each batch place p i ∈ P B the triple γ(p i ) = (V i , d max i , s i ) that represents, respectively, maximal transfer speed, maximal density and length of p i .

-T ime : T → R ≥0 associates a nonnegative number to every transition:

• if t j ∈ T D , then T ime(t j ) = ψ j denotes the firing delay associated with the discrete transition; 1. The marking (i.e., net state) at time τ is a vector m(τ ) = [m 1 (τ ) m 2 (τ ) . . . m n (τ )] T that assigns to each discrete place a nonnegative integer, to each continuous place a nonnegative real number and assigns to each batch place p i , a series of ordered batches, m i (τ ) = β 1 i (τ ), . . . , β r i (τ ) . A batch is a group of discrete entities, characterized by three continuous variables, a length (space unit), a density (number of entites/space unit) and a head position (space unit).

• if t j ∈ T C ∪ T B , then T ime(t j ) = Φ j
Definition 2. A batch β k at time τ is defined by a triple β k (τ ) = (l k (τ ), d k (τ ), x k (τ )), where l k (τ ) ∈ R ≥0 is the length, d k (τ ) ∈ R ≥0 is the density and, x k (τ ) ∈ R ≥0 is the head position.
Note that the initial marking is denoted by m 0 and time τ will be omitted in the rest of paper when there is no ambiguity.

Each batch place p i is characterized by a maximal capacity given by

Q i = s i • d max i
. The output density of a batch place p i , denoted d out i , is the density of the batch β r i (τ ) whose head position is equal to the length of the batch place (i.e., x r i (τ ) = s i ), then d out i (τ ) = d r i (τ ), else d out i (τ ) = 0. The batch β r i (τ ) is called output batch of p i . A batch with a density that equals the maximal density of a batch place, i.e., d r i (τ ) = d max i , is called a dense batch.

Due to the existence of batches inside a batch place, we define the marking quantity as the total quantity of a place. The marking quantity of a continuous or discrete place is equal to its marking while it corresponds for a batch place to the sum of the quantities of all batches contained inside. The marking quantity vector is formally defined as follows: Definition 3. The marking quantity vector q = µ(m) ∈ R n ≥0 associated with a marking m is defined as follows:

q i =    m i if p i ∈ P D ∪ P C , β k i ∈mi l k i • d k i if p i ∈ P B .
Remark 1. µ(m) is an injective mapping which associates a given marking m to a single marking quantity vector q. Its inverse is not, since more than one marking m may correspond to a given marking quantity vector q.

The dynamics of a GBPN, ruled by the firing of enabled transitions and the hybrid dynamics inside batch places, uses the notion of instantaneous firing flow vector (IFF). More precisely, the IFF ϕ j (τ ) ≤ Φ j of a transition t j ∈ T C ∪ T B is used to represent the firing quantity by time unit. The IFF vector at time τ is denoted by ϕ(τ ) ∈ R h C +h B . The input and output flow of a batch or continuous place p i at time τ are the sum of all flows entering and leaving the place, respectively, denoted by:

φ in i (τ ) = Post(p i , •) • ϕ(τ ) and φ out i (τ ) = Pre(p i , •) • ϕ(τ ).
The behavior of a GBPN is based on a timed discrete event dynamics. Between two timed events, the net state is characterized by an invariant behavior state (IB-state) [START_REF] Demongodin | Linear programming techniques for analysis and control of batches Petri nets[END_REF] with linear or constant continuous evolution. Thus, the marking in discrete places, the firing flow of continuous and batch transitions and the output density of batch places are constant within an IB-state. Note that, as ϕ is constant in an IB-state, φ in and φ out are also constants between timed events.

The evolution of a GBPN is characterized by a fundamental equation expressed by: q

(τ ) = q (τ 0 ) + C • z(τ ) (1) 
where C = Post -Pre and z(τ ) ∈ R h ≥0 , called firing quantity vector, denotes the firing count of each transition during time interval [τ 0 , τ ]. Note that z(τ 0 ) = 0.

Example 1. Let us consider the GBPN represented in Fig. 2 composed of two continuous places and two batch places. The characteristics of each batch place (maximal transfer speed, maximal density and length) are depicted on the figure. The initial marking is m 0 = [8 8 ∅ ∅] T which means that both batch places are empty. The maximal capacity of batch places are Q 3 = 8 and Q 4 = 10. Since the only enabled transition is t 1 , the IFF vector is given by ϕ(τ 0 ) = [2 0 0] T at date τ 0 = 0. Consequently, in the batch place p 3 , a new batch is created as

β 1 3 (τ 0 ) = (0 • V 3 , φ in 3 (τ 0 )/V 3 , 0 • V 3 ) = (0, 2, 0). At date τ 1 = 4, this batch becomes an output batch as β 1 3 (τ 1 ) = (4 • V 3 , 2, 4 • V 3 ) = (4, 2, 4
) and a new IFF vector ϕ(τ 1 ) = [2 2 0] T is applied since transition t 2 is also enabled. Thus the time interval [τ 0 , τ 1 ] corresponds to an IB-state. Note that, whatever the evolution, it holds : q 1 + q 3 = 8 and q 2 + q 4 = 8.
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Fig. 2: A cGBPN system with initial marking m 0 .

Controlled GBPN and steady state

In our work, we consider the instantaneous firing flow of continuous and batch transitions as control input. This leads to the following definition.

Definition 4. A controlled Generalized Batches Petri net (cGBPN) is a GBPN N for which a control input u(τ ) = ϕ(τ ) is defined with 0 ≤ u(τ ) ≤ Φ.
The following definition, taken from [START_REF] Demongodin | Dynamics and steady state analysis of controlled generalized batches Petri nets[END_REF], gives the definition of a steady state of cGBPN. Definition 5. (Steady state) Let N, m 0 be a cGBPN with

P D = T D = ∅.
The net is in a steady state at time τ s if for τ ≥ τ s the marking m s and the instantaneous firing flow vector ϕ s remain constant. Thus a steady state is defined by a pair (m s , ϕ s ). The marking quantity vector associated with a steady marking m s is denoted as q s = µ(m s ).

For a cGBPN with P D = T D = ∅, with an initial marking quantity vector q 0 and a given steady marking quantity vector q s , we denote by z s the steady firing quantity vector, i.e., the minimum firing quantity vector, that satisfies: z s ≥ 0, and min z s , s.t.

q s = q 0 + C • z s .
In a steady state (m s , ϕ s ) where ϕ s > 0, it has been proved in [START_REF] Demongodin | Dynamics and steady state analysis of controlled generalized batches Petri nets[END_REF] that the marking of a batch place p i has one of the following regular forms:

1. A single batch : m s i = {β o i } with β o i = (s i , d o i , s i ) and density d o i ≤ d max i
. In other terms, the steady state marking of p i is composed by a single (dense or not) output batch whose length is equal to the length of p i .

Two batches : m

s i = {β e i , β o i } with β e i = (l e i , d e i , l e i ), β o i = (l o i , d max i , s i ) and l e i + l o i = s i .
The steady state marking of p i is composed by a dense output batch in contact with one input batch.

In [START_REF] Demongodin | Dynamics and steady state analysis of controlled generalized batches Petri nets[END_REF], (q s , ϕ s ) of a cGBPN without discrete nodes, has been computed by solving a linear programming problem that only considers the net structure and the initial marking (see Proposition 4.5 in [START_REF] Demongodin | Dynamics and steady state analysis of controlled generalized batches Petri nets[END_REF]). From (q s , ϕ s ), the steady state marking m s could be characterized (see Proposition 4.4 in [3]). Note that, in a steady state, the input flow and output flow of place p i are equal and denoted as φ s i . Definition 6. Let N, m 0 be a cGBPN with P D = T D = ∅ and (m s , ϕ s ) a reachable steady state. The event-driven control problem for reaching (m s , ϕ s ) deals with the computation of a timed control trajectory (u 0 , τ 0 ), (u

1 , τ 1 ), • • • , (u i , τ i ), • • • , (u s , τ s ) feasible in the cGBPN from m 0 such that m(τ f ) = m s and u(τ f ) = u s = ϕ s , ∀τ f ≥ τ s .
Note that the controlled firing flow vector u i is applied at date τ i and remains constant until τ i+1 , corresponding to a timed interval of an IB-state. When a cGBPN is without discrete nodes, the fundamental equation Eq.( 1) for the control trajectory (u 0 , τ 0 ), (u

1 , τ 1 ), • • • , (u i , τ i ), • • • , (u s , τ s ) becomes: q(τ s ) = q 0 + C • ( τ1 τ0 u 0 • dρ + • • • + τs τs-1 u s-1 • dρ).
(

) 2 
where τi τi-1 u i-1 • dρ denotes the sum of firing quantity of continuous or batch transitions during time interval

[τ i-1 , τ i ].
Example 2. A reachable steady state for the net presented in Example 1 is given by : 

m s = [4 0 {(4, 1, 4)} {(2, 1, 2), (3, 2, 5)}] T (see
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Fig. 3: The cGBPN of Example in a steady state.

Steady flow based ON/OFF control

The problem addressed in this paper is the control of the transient behavior of a cGBPN. More specifically, the objective is to compute a control trajectory that drives the net from a given initial marking m 0 to a reachable steady state (m s , ϕ s ). Such a control has been proposed in [START_REF] Liu | Event-driven control for reaching a steady state in controlled generalized batches Petri nets[END_REF] denoted as steady flow based ON/OFF control, in this paper. This section aims to present this previous proposed control strategy. In the rest of the paper, we consider the following assumptions already done in [START_REF] Liu | Event-driven control for reaching a steady state in controlled generalized batches Petri nets[END_REF].

A1 No discrete nodes (P D = T D = ∅). A2 The steady firing flow vector is positive (ϕ s > 0). A3 The net is conservative.

Assumption (A1) preserves the restricted class of cGBPNs for which the steady state analysis has been studied [START_REF] Demongodin | Dynamics and steady state analysis of controlled generalized batches Petri nets[END_REF]. Assumption (A2) ensures that the net is consistent, i.e., there exits a positive T-semiflow. Assumption (A3) imposes that each place is contained in the support of a P-semiflow.

The basic idea of steady flow based ON/OFF control is, from the initial marking, to firstly reach the steady marking quantity vector and then to reach the steady state marking. More precisely, enabled transitions that at least one of their input places has less marking quantity than its steady marking quantity, are blocked. For the other enabled transitions, their controlled firing flows are maximized to their steady flows. For any place that reaches its steady marking quantity, an additional constraint imposes that its input flow equals its output flow. This control law is applied until the target steady state marking is reached. One can remark that the firing flow of a transition cannot exceed its steady flow. To illustrate this approach, the introduced example is considered again. 3 is given by (u 0 , 0), (u 1 , 4), (u 2 , 9), (u 3 , 12),

with u 0 = [1 0 0] T , u 1 = [1 1 0] T , u 2 = [1 1 0] T , u 3 = [1 1 1] T .
At the initial marking, only the flow of transition t 1 is maximized to the steady flow since only t 1 is enabled and its input place has greater marking quantity than the steady one. At date τ 1 = 4, batch place p 3 has reached its steady marking quantity and transition t 2 is enabled. The input and output controlled flows of p 3 are imposed to be equal as order to hold the marking quantity of p 3 and to feed place p 4 . At date τ 2 = 9, the batch created in p 4 becomes an output batch, transition t 3 is enabled and blocked since the input place p 4 has still less marking quantity than the steady marking quantity. At date τ 3 = 12, all places reach the steady marking and the steady flow vector is imposed.

The use of the steady firing flow as maximal control value allows to construct the regular marking such as for place p 3 of the example. However, for place p 4 , this limitation causes much more delay to create the accumulated part of the steady marking. Thus the use of the maximal firing flow could reduce the delay for reaching the steady state. From this motivation, the following work is dedicated to developing a new control strategy that exploits the maximal firing flow to improve the time performance. 

Maximal flow based ON/OFF control

In this section, we propose a new method that improves the time performance compared with the steady flow based ON/OFF control strategy. Before introducing the control strategy, some necessary notions are first presented hereafter.

According to the regular forms in steady state marking (see Section 2), the steady marking quantity of a batch place p i could be divided into two components of marking quantities q f,s i and q a,s i defined as follows.

Definition 7. The steady marking quantity of place p i associated with a steady state marking m s could be divided as:

q s i = q f,s i + q a,s
i , where q f,s i and q a,s i represent, respectively, the steady marking quantity of free part and the steady marking quantity of accumulated part. They are defined as follows:

1. If p i is a batch place : (a) if m s i = {β e i , β o i }, q f,s i = l e i • d e i and q a,s i = l o i • d max i . (b) if m s i = {β o i }, -d o i = φ s i /V i , such that q f,s i = s o i • d o i , and q a,s i = 0. -d o i = φ s i /V i , such that q a,s i = s o i • d o i
, and q f,s i = 0. 2. If p i is a continuous place : q f,s i = 0 and q a,s i = q s i . Definition 8. For a cGBPN at marking m, given its steady state marking m s and steady firing quantity vector z s . The minimum remaining quantity that enters into a place p i from an input transition t j for reaching the steady marking quantity vector q s is denoted as q rs i,j (m) and given by q rs i,j (m) = Post(p i , t j )(z s jz j (m)).

Let us remark that when q rs i,j (m) ≤ 0 holds, it is not necessary to fire transition t j to reach the steady marking quantity of place p i at current marking m.

Example 4. Let us consider the cGBPN with the given steady state m s = [4 0 {(4, 1, 4)} {(2, 1, 2), (3, 2, 5)}] T as shown in Fig. 3. The steady flow vector is ϕ s = [1 1 1] T and the steady marking quantity vector is q s = [4 0 4 8] T . For continuous places, q s 1 corresponds to the steady marking quantity of accumulated part q a,s 1 , i.e., q s 1 = q a,s 1 = 4, and q s 2 = q a,s 2 = 0 while q f,s

1 = q f,s 2 = 0. For batch place p 3 , d o 3 = φ s 3 /V 3 = 1 / 1 = 1, thus the steady marking quantity of free part is q f,s 3 = l o 3 • d o 3 = 4 • 1 = 4
and the steady marking quantity of accumulated part is q a,s 3 = 0. For batch place p 4 , the steady marking quantity of free part is q f,s 4 = l e 4 • d e 4 = 2, and q a,s 4 = l o 4 • d o 4 = 6 for the accumulated part. For the minimum remaining quantity, the steady firing quantity vector to reach q s at marking m 0 is z s = [12 8 0], thus, for batch place p 3 and its input transition t 1 , q rs 3,1 = Post(p 3 , t 1 )(z s 1 -z 1 (m 0 )) = 1 • (12 -0) = 12 corresponds to the remaining quantity entering into p 3 for reaching steady marking quantity. Similarly, q rs 4,2 = 8, q rs 2,3 = 0 and q rs 2,1 = 8 which means that transition t 3 does not need to be fired to reach q s as already specified by z s .

Proposed control strategy

Due to the existence of batches in a batch place, a steady state marking is reached by guaranteeing both the steady marking quantity and the regular forms of batches in a batch place. Hence, the use of the maximal flows of transitions as the threshold to feed places improves the time performance to reach q s but more time will be needed to generate regular forms given by m s . Therefore, a condition on the minimum remaining quantity is introduced to switch the threshold from the maximal flow into the steady flow for getting the steady marking quantity and creating the regular forms as follows:

q rs i,j (m) ≤ q f,s i , (3) 
where q rs i,j (m) = Post(p i , t j )(z s j -z j (m)) is the minimum remaining quantity given by Definition 8. This quantity is thus compared with the free part quantity of place p i .

The basic idea of the proposed control strategy is to limit the firing flow of an enabled transition to its steady value when the condition given by ( 3) is satisfied. For any enabled transition that does not satisfy this condition, its flow is maximized to its maximum flow value. Finally, the flow of an enabled transition is set to zero when the condition given by Eq. ( 3) is satisfied but at least one of its input places has less quantity than steady marking quantity. At a given marking m(τ ), the proposed control strategy could be summarized as follows2 :

-ON ss : maximize u j (τ ) to ϕ s j if t j is enabled with ∃ p k ∈ t • j : q rs k,j (m) ≤ q f,s k . -ON max : maximize u j (τ ) to Φ j if t j is enabled with p k ∈ t • j : q rs k,j (m) ≤ q f,s k . -OFF: u j (τ ) = 0 if t j is not enabled or if t j is enabled with ∃ p i ∈ • t j : q i (τ ) < q s i and ∃ p k ∈ t • j : q rs k,j (m) ≤ q f,s k .

The controlled flow values are maintained during an IB-state and updated when a particular event (or possibly several events at the same time) occurs. Compared with our previous work in [START_REF] Liu | Event-driven control for reaching a steady state in controlled generalized batches Petri nets[END_REF], three more events are considered. One is that the remaining marking quantity satisfies q rs i,j (m) = q f,s i . The two other considered events are: a continuous place becomes empty and batch place becomes full where the control actions are updated to ensure the nonnegativity of marking quantity and avoid increasing the marking quantity, respectively. All the events considered by the controller are the following:

-The marking quantity of place p i reaches its steady quantity q s i ; -The remaining marking quantity q rs i,j (m) becomes equal to q f,s i ; -A continuous place becomes empty; -A batch place becomes full; -The value of batch place output density changes.

Computation of the timed control trajectory

Before we present the algorithm that allows one to compute a control trajectory, several sets must be defined at any marking m.

-P ∅ (m) = {p i ∈ P C | m i = 0} be the subset of empty continuous places.

-P F (m) = {p i ∈ P B | q i = Q i } be the subset of full batch places.

-S L (m) = {p i ∈ P | q i < q s i } be the subset of places whose marking quantities are lower than their steady state values.

-S E (m) = {p i ∈ P | q i = q s i } be the subset of places whose marking quantities are equal to their steady state values.

-T L (m) = {t j ∈ T | ∃p i ∈ {S L (m) ∩ • t j }} be the subset of transitions with at least one of its input places belonging to S L (m). -T N (m) be the subset of transitions that are not enabled at m.

-T Z (m) = {t j ∈ T | ∃ p i ∈ t • j : q rs i,j ( 
m) ≤ q f,s i } be the subset of transitions with a remaining firing quantity greater or equal than the free part steady marking quantity of one of their output place.

-T ZL (m) = T Z (m) ∩ T L (m) be the subset of transitions that belongs to T Z (m) and at least one of their input places belongs to S L (m).

-S ZE (m) = {p i ∈ S E (m) | ∀ t j ∈ { • p i ∪ p • i } such that t j ∈ T Z (m)
} be the subset of places whose marking quantities are equal to their steady state values and the firing quantities of all their input and output transitions satisfy T Z (m).

Algorithm 1 computes a timed control trajectory from an initial state to a given reachable steady state. It starts at initial marking m 0 with a control firing flow vector u 0 initialized to 0 at line 2. Each timed event that refers to an execution of the while-end structure (lines 3 -8), a new marking m i is built and compared with the steady marking m s . Line 4 determines the necessary constraint sets to solve the LPP which maximizes the controlled firing flow vector at each timed event. Constraints (a) are used to maximize the flow approaching the maximal firing value. Constraints (b) show that the maximal flow of each transition t j cannot exceed the steady firing flow ϕ s j when the remaining marking quantity associated with one of its output places p k is less than or equal to the free part steady marking quantity i.e., ∃ p k ∈ t • j : q rs k,j (m) ≤ q f,s k . Constraints (c) block transition t j when it is not enabled or when belongs to T ZL (m). Constraints (d) require that the marking quantity cannot increase when the batch place is full. Constraints (e) claim that the marking cannot decrease when the continuous place is empty. Constraints (f) hold the marking quantity to the steady marking quantity when place p i belongs to S ZE (m). Constraints (g) ensure that the input flow of a batch place should be less than or equal to the maximal flow that can be accepted by its transfer element. Constraints (h) require that the output flow of a batch place should be lower than or equal to the flow out-coming from the place. Lines 6-7 determine the nearest event and update the new marking. The procedure is repeated until the steady marking is reached. When the marking m i reaches the steady state value m s , the controlled

Algorithm 1: Computation of control trajectory

Input: A cGBPN N, m0 , a reachable steady state (m s , ϕ s ) and the steady firing quantity vector z s 1 . Output: Control trajectory (u 0 , τ0), (u 1 , τ1), • • • 2 Initialize : q 0 = µ(m0), m 0 = m0, u 0 = 0, z 0 = 0, τ0 = 0, i = 0 ;

3 while m i = m s do 4 Determine TN (m i ), TL(m i ), TZ (m i ), TZL(m i ), P ∅ (m i ), PF (m i ) SL(m i ), SE(m i ), SZE(m i ) ; 5 Solve the following LPP: max 1 T • u i s.t.                        (a) 0 ≤ u i j ≤ Φj ∀tj ∈ T (b) 0 ≤ u i j ≤ ϕ s j ∀tj ∈ TZ (m i ) (c) u i j = 0 ∀tj ∈ TN (m i ) ∪ TZL(m i ) (d) C (p k , •) • u i ≤ 0 ∀p k ∈ PF (m i ) (e) C (p k , •) • u i ≥ 0 ∀p k ∈ P ∅ (m i ) (f) C (p k , •) • u i = 0 ∀p k ∈ SZE(m i ) (g) Post (p k , •) • u i ≤ V k • d max k ∀p k ∈ P B (h) Pre (p k , •) • u i ≤ V k • d out k ∀p k ∈ P B 6
Determine all the next timed events, select the nearest in time and deduce time τi+1 ;

7

Determine the new marking m i+1 , the marking quantity vector q i+1 and the current firing quantity vector z i+1 ;

8 i = i + 1; 9 u i = ϕ s ; 10 Return (u 0 , τ0), • • • , (u i , τi)
firing flow vector is set to its steady firing flow vector ϕ s as shown in line 9. The complexity of this algorithm is polynomial since it is obtained by solving a LPP at each timed step.

Remark 2. When transitions are in structural conflicts that are effective ones, the proportional policy is used to solve these conflicts by adding the following constraints :

u i a • ϕ s b = u i b • ϕ s a if ∀t a , t b ∈ T, • t a ∩ • t b = ∅ and t a , t b / ∈ T N ∪ T ZL .

Transient behavior of the controlled net

In this part, we focus on the convergence of the proposed algorithm for reaching a give steady state from an initial one. Different from the previous work that all the places converge and maintain the steady marking quantities, here we consider all the transitions should be included in the set of T Z , then this set will hold on until the steady state marking is reached.

Lemma 1. Consider a cGBPN N, m 0 that satisfies assumptions (A1) -(A3). By Algorithm 1, a transition included in T Z remains in T Z whatever the net evolution.

Proof. A transition t j is included in T Z if ∃ p i ∈ t • j : q rs i,j (m) ≤ q f,s i , which is equivalent to ∃ p i ∈ t • j : z j (m) ≥ z s j -q f,s i /Post(p i , t j ). Since z s j -q f,s i /Post(p i , t j ) is a constant value and the firing quantity z j is monotonically increasing, any new reachable marking m will satisfy z j (m ) ≥ z j (m) ≥ z s j -q f,s i /Post(p i , t j ) for place p i which means that t j will remain in T Z . ♦ Lemma 2. Consider a cGBPN N, m 0 that satisfies assumptions (A1) -(A3). By Algorithm 1, all the transitions in the net N will be included in T Z in finite time.

Proof. Based on Lemma 1, the transitions that are already included in T Z at m 0 remain in T Z . In case that transition t j is not initially included in T Z at m 0 , which means ∀p i ∈ t • j : q rs i,j (m 0 ) > q f,s i , let us assume that this transition will never be included in T Z and show that this leads to a contradiction.

The transition t j cannot be included in T Z in finite time means that it is blocked before satisfying the condition ∃p i ∈ t • j : q rs i,j (m 0 ) ≤ q f,s i and remains blocked whatever the net evolution. According to Algorithm 1, a transition that does not belong to T Z is blocked only when it is not enabled. More precisely, one of input places p k of transition t j should be empty. Due to assumption (A3), the empty place p k must belong to a conservative component. This means that there must exist at least one upstream place p l that has a marking quantity which is greater than its steady one. By Algorithm 1, the output transition of place p l cannot be blocked for infinite time. Thus, place p k cannot remain empty which contradicts the initial assumption. Consequently, transition t j can be included in T Z in finite time.

Proposition 1. Given a cGBPN N, m 0 that satisfies assumptions (A1) -(A3) and a given reachable steady state (m s , ϕ s ). The control trajectory computed by Algorithm 1 drives the system from its initial state to the given steady state in finite time.

Proof. According to Lemmas 1 and 2, all the transitions of the net will be included in T Z in finite time. When T Z = T , the controlled firing flows are maximized to the steady ones by constraint (b) in Algorithm 1 and the sets T ZL and S ZE will satisfy T ZL = T L and S ZE = S E . In this case, the algorithm is equivalent to the one presented in our previous work in [START_REF] Liu | Event-driven control for reaching a steady state in controlled generalized batches Petri nets[END_REF] where the convergence of the marking to the steady state marking has been proved (see Proposition 12 in [START_REF] Liu | Event-driven control for reaching a steady state in controlled generalized batches Petri nets[END_REF]). ♦ T . The steady marking quantity vector is q s = [4 0 4 8] T , and the steady firing quantity vector is z s = [12 8 0] T . Under the proposed strategy, a control trajectory that drives the net from its initial state to the steady state is obtained as follows.

-At τ 0 = 0, T N (m 0 ) = {t 2 , t 3 }. As q 0 = [8 8 0 0] T , the subsets of places are: S E (m 0 ) = ∅, S L (m 0 ) = {p 3 , p 4 }, P F (m 0 ) = ∅ and, T L (m 0 ) = {t 2 , t 3 }.

The firing quantity vector is z(m 0 ) = [0 0 0 0], by checking the condition q rs i,j (m 0 ) ≤ q f,s i , T Z (m 0 ) = {t 3 }, T ZL (m 0 ) = {t 3 } and, S ZE (m 0 ) = ∅. Consequently, transition t 1 is enabled and ON max since it is not in T Z (m 0 ) while transitions t 2 and t 3 are not enabled, thus u By continuing the Algorithm execution, the resulting control trajectory is given by (u 0 , 0), (u 1 , 2), (u 2 , 4), (u 3 , 6), (u 4 , 7), (u 5 , 8), (u 6 , 9), (u 7 , 10) with

u 0 = [2 0 0] T , u 1 = [2 0 0] T , u 2 = [0 2 0] T , u 3 = [1 2 0] T , u 4 = [1 0 0] T , u 5 = [1 1 0] T , u 6 = [1 1 0] T , u 7 = [1 1 1] T .
One can remark that the delay τ s = 10 for reaching the steady state is improved compared with the steady flow based ON/OFF control τ s = 12 obtained in Example 3 although the number of steps is greater (7 generated events with the proposed strategy and 3 events using the steady flow strategy). The time improvement is due to the use of the maximal firing flow (vectors u 0 , u 1 , u 2 , and, u 3 ).

Study case

The considered system depicted in Fig. 4 is a communication system composed of three buffers and four routers. Its corresponding cGBPN model is represented in Fig. 5(a) where three buffers are respectively modeled by three batch places p 4 , p 5 , p 6 with γ(p 4 ) = (V 4 , d max 4 , s 4 ) = (8, 4, 4), γ(p 5 ) = (2, 3, 5), γ(p 6 ) = [START_REF] David | Discrete, continuous, and hybrid Petri nets[END_REF][START_REF] Demongodin | Linear programming techniques for analysis and control of batches Petri nets[END_REF][START_REF] Demongodin | Linear programming techniques for analysis and control of batches Petri nets[END_REF], and the routers are modeled with five controlled transitions such that the processing rates of the routers are controllable variables. The maximal flow of the transitions are given by: Φ 1 = Φ 2 = Φ 4 = Φ 5 = 4, Φ 3 = 8. Data arrived in buffer B 1 from router R 1 are processed by the router R 2 which allows to direct the data flows throughout two different channels represented by (B 2 , R 3 ) and (B 3 , R 4 ). The desired (nominal) behavior of the system is represented by the steady state showed in Fig. 5 T . It means that only buffer B 3 has an accumulation while data in buffers B 1 and B 2 are processed as soon as they are received by the routers. The steady marking quantity vector is q s = [10 0 0 2 5 10] T .

Let us consider that some faults or cyber-attack causes a deviation from the normal behavior which leads the system to the state represented in Fig. 5 The proposed control strategy is used to compute a control trajectory that drives the net from its abnormal state given by m 0 to the steady state m s . By applying Algorithm 1, the following control trajectory is obtained (u 0 , 0), (u 1 , 0.625), (u 2 , 1), (u 3 , 1.5), (u 4 , 2), (u 5 , 2. Consequently, 5 events are generated and the delay for reaching the steady state with the maximal flow based ON/OFF strategy is τ s = 2.5.

Under the steady flow based ON/OFF control strategy, a control trajectory that drives the net from its initial state to the steady state is (u 0 , 0), (u 1 , 0.625), (u 2 , 2), (u 3 , 2.5), (u 4 , 3), (u Although the number of generated events is equal (5 events), the delay for reaching the steady state is τ s = 5 and is much higher compared with the maximal flow based ON/OFF control strategy.

From the results above, one can conclude that the proposed control method that considers the maximal firing flow of transition improves the time performance.

Conclusions

An algorithm that incrementally computes a control trajectory for reaching the steady state from an initial one has been proposed. The main advantage of this algorithm is to exploit the maximal firing flow of transitions compared with the previous one developed in [START_REF] Liu | Event-driven control for reaching a steady state in controlled generalized batches Petri nets[END_REF]. The convergence of the algorithm has been proved and the proposed method is applied to recover a communication systems from its abnormal state to its nominal steady state. In future work, we plan to compare the two methods to quantify the improvement. We will focus on the optimality to address the minimum-time control problem.
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 1 A Generalized Batches Petri net (GBPN) is a 6-tuple N = (P, T, Pre, Post, γ, T ime) where:-P = P D ∪ P C ∪ P B isfinite set of places partitioned into the three classes of discrete, continuous and batch places. -T = T D ∪T C ∪T B is finite set of transitions partitioned into the three classes of discrete, continuous and batch transitions. -Pre, Post :
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 1 Fig. 1: Nodes of a GBPN.
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 3 and ϕ s = [1 1 1] T . Batch place p 3 is in the first regular form with only one batch inside β o 3 (τ ≥ τ s ) = (4, 1, 4) while batch place p 4 has two batches: a dense output batch β o 4 (τ ≥ τ s ) = (3, 2, 5) in contact with an input batch β e 4 (τ ≥ τ s ) = (2, 1, 2). The marking remains constant since the input and output flow of each place are equal.

Example 3 .

 3 Let us consider again the cGBPN depicted in Fig. 2 with initial marking m 0 = [8 8 ∅ ∅}] T . The control trajectory, obtained by the steady flow based ON/OFF approach, to reach the steady state m s = [4 0 {(4, 1, 4)} {(2, 1, 2), (3, 2, 5)}] T showed in Fig.
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Example 5 .

 5 Let us consider again the cGBPN with an initial marking m 0 = [8 8 ∅ ∅}] T in Fig.2and the reachable steady state (m s , ϕ s ) with m s = [4 0 {(4, 1, 4)} {(2, 1, 2), (3, 2, 5)}] T as shown in Fig.3, and ϕ s = [11 1] 
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 3 = 0. Algorithm 1 returns the controlled firing flow vector u 0 = [2 0 0] T .-At τ 1 = 2, places p 1 and p 3 reach steady marking quantities soS E (m 1 ) = {p 1 , p 3 } where m 1 = [4 8 {(2, 2, 2)} ∅] T and q(τ 1 ) = [4 8 4 0] T . This implies T N (m 1 ) = {t 2 , t 3 }, P F (m 1 ) = ∅, S L (m 1 ) = {p 4 } and T L (m 1 ) = {t 3 }. The firing quantity vector is z(m 1 ) = [4 0 0], T Z (m 1 ) = {t 3 }, T ZL (m 1 ) = {t 3 },and S ZE (m 1 ) = ∅. Consequently, transition t 1 is enabled and ON max since it is not in T Z (m 1 ). Transitions t 2 and t 3 are not enabled, thus u 1 2 = u 1 3 = 0. The obtained controlled firing flow vector is u 1 = [2 0 0] T .

  (a) and characterized by (m s , ϕ s ) with m s = [10 0 0 {(4, 0.5, 4)} {(5, 1, 5)} {(2, 1, 2), (2, 4, 4)}] T and ϕ s = [4 2 2 2 2]
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 4 Fig. 4: The considered communication system.

Fig. 5 :

 5 Fig. 5: A cGBPN of study case.
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 5 with u 0 = [0 2 8 2 0] T , u 1 = [0 2 8 2 0] T , u 2 = [4 2 2 2 0] T , u 3 = [4 2 2 2 0] T , u 4 = [4 2 2 2 2] T , u 5 = [4 2 2 2 2] T .
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 55 with u 0 = [0 2 2 2 0] T , u 1 = [0 2 2 2 0] T , u 2 = [0 2 2 2 0] T , u 3 = [4 2 2 2 0] T , u 4 = [4 2 2 2 0] T , u 5 = [4 2 2 2 2] T .

We denote R ≥0 (resp., R>0) the set of nonnegative (resp., positive) real numbers and N the set of natural numbers.

For t ∈ T, • t = {p ∈ P | Pre(p, t) > 0}, and t • = {p ∈ P | Post(p, t) > 0}.