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Abstract. This paper, dedicated to controlled generalized batches Petri
nets without discrete nodes, presents a method for computing a control
trajectory for reaching a steady state from a given initial marking. A
steady state is characterized by a state in which the marking and the
firing flow vector are constant. By controlling the firing flow vector of
transitions, the proposed control strategy is an event-based one and relies
on an algorithm solving a linear programming problem. This new control
strategy, called in this paper as maximal flow based ON/OFF control,
exploits the maximal firing flows and reduces the delay of the transient
behavior for reaching the steady state. A practical communication system
is provided to illustrate the relevance of such a control strategy for Cyber-
Physical Systems.

Keywords: Petri nets · hybrid systems · event-driven control · steady
state.

1 Introduction

The prevalence of Cyber-Physical Systems (CPSs) in a wide range of critical ap-
plications requires the development of efficient control and monitoring methods
for such systems. Since the communication between entities of a CPS is carried
out through network and internet, this type of system is vulnerable to attacks
and threats [6]. To deal with the modeling, control and analysis of CPSs, the
use of Discrete Event Systems (DESs) formalisms, such as Automata and Petri
Nets (PNs), has been widely considered [10].

Some important works have been devoted to the control problems of such
models with continuous Petri nets under infinite server semantics, applying
discrete-time control such as ON/OFF controllers [11] or Model Predictive Con-
trol [9]. As studied by [1], the event-driven control strategies provide an alterna-
tive to time-driven ones in hybrid systems where the control action is updated
when an event occurs. In this spirit, [7] have proposed an event-driven control
of timed hybrid Petri nets.

In this work, we consider controlled Generalized Batches Petri Nets (cGBPNs)
[3] with the transition firing flows as control inputs. Such models enrich the class
of hybrid Petri nets [2] by introducing a new kind of nodes, called batch nodes.
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Batch transitions act as continuous ones with finite server semantics while batch
places are hybrid ones defined by three continuous characteristics: a length, a
transfer speed and a maximal density. Based on the concept of batches as mark-
ing, i.e., a group of entities moving through a batch place at a certain speed,
cGBPNs allow variable delays on continuous flows to be represented. cGBPNs
behavior is based on a switching continuous-time and event-driven dynamics.

A control strategy of cGBPNs was presented in our prior work [8] which is
steady flow based ON/OFF control strategy. It assumes that the controlled firing
flow of each transition cannot exceed its steady firing flow. Although the con-
vergence to the steady state using this strategy was proved, the main drawback
of using steady flows rather than the maximal values is the impact on the time
performance. The main contribution of this work is to exploit the maximal firing
flows when it is possible to improve the convergence delay. Since a certain con-
figuration of the moving entities characterized by a steady state density should
be reached, the use of the maximal firing flows is restricted and is only feasible
when some conditions that are developed are satisfied.

The remainder of this paper is structured as follows. In Section 2, some pre-
liminaries on cGBPNs and their steady states are presented. A running example
is introduced and used throughout the paper to illustrate the different notions.
Section 3 formalizes the control problem and the steady flow based ON/OFF
control is recalled. In Section 4, the new proposed control strategy and the
computation of the control trajectory are detailed. A communication system
illustrates the presented approach in Section 5. Finally, some conclusions and
future works are presented in Section 6.

2 Preliminaries

In this section, we introduce some basic definitions on controlled generalized
batches Petri nets (cGBPNs) and identify the steady states.

2.1 Generalized Batches Petri nets

We assume the reader to be familiar with hybrid Petri nets such as defined by
[2]. For more details on batches Petri net formalisms, we refer readers to [3, 5].

Definition 1. A Generalized Batches Petri net (GBPN) is a 6-tuple N =
(P, T,Pre,Post, γ, T ime) where:

– P = PD ∪ PC ∪ PB is finite set of places partitioned into the three classes
of discrete, continuous and batch places.

– T = TD∪TC∪TB is finite set of transitions partitioned into the three classes
of discrete, continuous and batch transitions.

– Pre,Post : (PD × T → N) ∪ ((PC ∪ PB)× T → R≥0) 1 are, respectively, the
pre-incidence and post-incidence matrices, denoting the weight of the arcs
from places to transitions and transitions to places.

1 We denote R≥0 (resp., R>0) the set of nonnegative (resp., positive) real numbers
and N the set of natural numbers.
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– γ : PB → R3
>0 is the batch place function. It associates to each batch place

pi ∈ PB the triple γ(pi) = (Vi, d
max
i , si) that represents, respectively, maxi-

mal transfer speed, maximal density and length of pi.
– Time : T → R≥0 associates a nonnegative number to every transition:
• if tj ∈ TD, then Time(tj) = ψj denotes the firing delay associated with
the discrete transition;

• if tj ∈ TC ∪ TB, then Time(tj) = Φj denotes the maximal firing flow
associated with the continuous or batch transition. �

: discrete place

: continuous place

: batch place 
{𝑉𝑖 , 𝑑𝑖

𝑚𝑎𝑥, 𝑠𝑖}

𝑑𝑗 : discrete transition

Φ𝑗 : continuous transition

: batch transitionΦ𝑗

Fig. 1: Nodes of a GBPN.

The cardinality of the sets of places and transitions is denoted as nY = |PY |
and hY = |TY |, respectively, with Y ∈ {D,C,B}. Note that n and h are re-
spectively the total number of places and transitions. Each node of a GBPN
has a graphic representation, as shown in Fig. 1. The marking (i.e., net state)
at time τ is a vector m(τ) = [m1(τ) m2(τ) . . .mn(τ)]

T that assigns to each
discrete place a nonnegative integer, to each continuous place a nonnegative
real number and assigns to each batch place pi, a series of ordered batches,
mi(τ) =

{
β1
i (τ), . . . , β

r
i (τ)

}
. A batch is a group of discrete entities, character-

ized by three continuous variables, a length (space unit), a density (number of
entites/space unit) and a head position (space unit).

Definition 2. A batch βk at time τ is defined by a triple βk(τ) = (lk(τ), dk(τ),
xk(τ)), where lk(τ) ∈ R≥0 is the length, dk(τ) ∈ R≥0 is the density and, xk(τ) ∈
R≥0 is the head position. �

Note that the initial marking is denoted by m0 and time τ will be omitted
in the rest of paper when there is no ambiguity.

Each batch place pi is characterized by a maximal capacity given by Qi =
si · dmax

i . The output density of a batch place pi, denoted douti , is the density of
the batch βri (τ) whose head position is equal to the length of the batch place (i.e.,
xri (τ) = si), then douti (τ) = dri (τ), else douti (τ) = 0. The batch βri (τ) is called
output batch of pi. A batch with a density that equals the maximal density of a
batch place, i.e., dri (τ) = dmaxi , is called a dense batch.
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Due to the existence of batches inside a batch place, we define the marking
quantity as the total quantity of a place. The marking quantity of a continuous
or discrete place is equal to its marking while it corresponds for a batch place to
the sum of the quantities of all batches contained inside. The marking quantity
vector is formally defined as follows:

Definition 3. The marking quantity vector q = µ(m) ∈ Rn≥0 associated with a
marking m is defined as follows:

qi =

mi if pi ∈ PD ∪ PC ,∑
βk
i ∈mi

lki · dki if pi ∈ PB .

�

Remark 1. µ(m) is an injective mapping which associates a given marking
m to a single marking quantity vector q. Its inverse is not, since more than one
marking m may correspond to a given marking quantity vector q.

The dynamics of a GBPN, ruled by the firing of enabled transitions and the
hybrid dynamics inside batch places, uses the notion of instantaneous firing flow
vector (IFF). More precisely, the IFF ϕj(τ) ≤ Φj of a transition tj ∈ TC ∪ TB
is used to represent the firing quantity by time unit. The IFF vector at time
τ is denoted by ϕ(τ) ∈ RhC+hB

. The input and output flow of a batch or
continuous place pi at time τ are the sum of all flows entering and leaving
the place, respectively, denoted by: φini (τ) = Post(pi, ·) · ϕ(τ) and φouti (τ) =
Pre(pi, ·) ·ϕ(τ).

The behavior of a GBPN is based on a timed discrete event dynamics. Be-
tween two timed events, the net state is characterized by an invariant behavior
state (IB-state) [4] with linear or constant continuous evolution. Thus, the mark-
ing in discrete places, the firing flow of continuous and batch transitions and the
output density of batch places are constant within an IB-state. Note that, as ϕ
is constant in an IB-state, φin and φout are also constants between timed events.

The evolution of a GBPN is characterized by a fundamental equation ex-
pressed by:

q(τ) = q (τ0) +C · z(τ) (1)

where C = Post−Pre and z(τ) ∈ Rh≥0, called firing quantity vector, denotes
the firing count of each transition during time interval [τ0, τ ]. Note that z(τ0) =
0.

Example 1. Let us consider the GBPN represented in Fig. 2 composed of two
continuous places and two batch places. The characteristics of each batch place
(maximal transfer speed, maximal density and length) are depicted on the figure.
The initial marking is m0 = [8 8 ∅ ∅]T which means that both batch places are
empty. The maximal capacity of batch places are Q3 = 8 and Q4 = 10. Since
the only enabled transition is t1, the IFF vector is given by ϕ(τ0) = [2 0 0]T

at date τ0 = 0. Consequently, in the batch place p3, a new batch is created as
β1
3(τ0) = (0 ·V3, φin3 (τ0)/V3, 0 ·V3) = (0, 2, 0). At date τ1 = 4, this batch becomes
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an output batch as β1
3(τ1) = (4 · V3, 2, 4 · V3) = (4, 2, 4) and a new IFF vector

ϕ(τ1) = [2 2 0]T is applied since transition t2 is also enabled. Thus the time
interval [τ0, τ1] corresponds to an IB-state. Note that, whatever the evolution, it
holds : q1 + q3 = 8 and q2 + q4 = 8.
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Fig. 2: A cGBPN system with initial marking m0.

2.2 Controlled GBPN and steady state

In our work, we consider the instantaneous firing flow of continuous and batch
transitions as control input. This leads to the following definition.

Definition 4. A controlled Generalized Batches Petri net (cGBPN) is a GBPN
N for which a control input u(τ) = ϕ(τ) is defined with 0 ≤ u(τ) ≤ Φ. �

The following definition, taken from [3], gives the definition of a steady state
of cGBPN.

Definition 5. (Steady state) Let 〈N,m0〉 be a cGBPN with PD = TD = ∅.
The net is in a steady state at time τs if for τ ≥ τs the marking ms and
the instantaneous firing flow vector ϕs remain constant. Thus a steady state is
defined by a pair (ms,ϕs). The marking quantity vector associated with a steady
marking ms is denoted as qs = µ(ms). �

For a cGBPN with PD = TD = ∅, with an initial marking quantity vector q0
and a given steady marking quantity vector qs, we denote by zs the steady firing
quantity vector, i.e., the minimum firing quantity vector, that satisfies: zs ≥ 0,
and min zs, s.t. qs = q0 +C · zs.

In a steady state (ms,ϕs) where ϕs > 0, it has been proved in [3] that the
marking of a batch place pi has one of the following regular forms:

1. A single batch : ms
i = {βoi } with βoi = (si, d

o
i , si) and density doi ≤ dmax

i . In
other terms, the steady state marking of pi is composed by a single (dense
or not) output batch whose length is equal to the length of pi.

2. Two batches : ms
i = {βei , βoi } with βei = (lei , d

e
i , l

e
i ), βoi = (loi , d

max
i , si) and

lei + loi = si. The steady state marking of pi is composed by a dense output
batch in contact with one input batch.
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In [3], (qs, ϕs) of a cGBPN without discrete nodes, has been computed by
solving a linear programming problem that only considers the net structure and
the initial marking (see Proposition 4.5 in [3]). From (qs, ϕs), the steady state
marking ms could be characterized (see Proposition 4.4 in [3]). Note that, in a
steady state, the input flow and output flow of place pi are equal and denoted
as φsi .

Definition 6. Let 〈N,m0〉 be a cGBPN with PD = TD = ∅ and (ms,ϕs) a
reachable steady state. The event-driven control problem for reaching (ms,ϕs)
deals with the computation of a timed control trajectory (u0, τ0), (u

1, τ1), · · · ,
(ui, τi), · · · , (us, τs) feasible in the cGBPN from m0 such that m(τf ) =m

s and
u(τf ) = u

s = ϕs,∀τf ≥ τs. �

Note that the controlled firing flow vector ui is applied at date τi and remains
constant until τi+1, corresponding to a timed interval of an IB-state. When
a cGBPN is without discrete nodes, the fundamental equation Eq.(1) for the
control trajectory (u0, τ0), (u

1, τ1), · · · , (ui, τi), · · · , (us, τs) becomes:

q(τs) = q
0 +C · (

∫ τ1

τ0

u0 · dρ+ · · ·+
∫ τs

τs−1

us−1 · dρ). (2)

where
∫ τi
τi−1

ui−1 · dρ denotes the sum of firing quantity of continuous or batch
transitions during time interval [τi−1, τi].

Example 2. A reachable steady state for the net presented in Example 1 is given
by : ms = [4 0 {(4, 1, 4)} {(2, 1, 2), (3, 2, 5)}]T (see Fig. 3) and ϕs = [1 1 1]T .
Batch place p3 is in the first regular form with only one batch inside βo3(τ ≥
τs) = (4, 1, 4) while batch place p4 has two batches: a dense output batch βo4(τ ≥
τs) = (3, 2, 5) in contact with an input batch βe4(τ ≥ τs) = (2, 1, 2). The marking
remains constant since the input and output flow of each place are equal.
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Fig. 3: The cGBPN of Example in a steady state.

3 Steady flow based ON/OFF control

The problem addressed in this paper is the control of the transient behavior
of a cGBPN. More specifically, the objective is to compute a control trajec-
tory that drives the net from a given initial marking m0 to a reachable steady
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state (ms,ϕs). Such a control has been proposed in [8] denoted as steady flow
based ON/OFF control, in this paper. This section aims to present this previous
proposed control strategy. In the rest of the paper, we consider the following
assumptions already done in [8].

A1 No discrete nodes (PD = TD = ∅).
A2 The steady firing flow vector is positive (ϕs > 0).
A3 The net is conservative.

Assumption (A1) preserves the restricted class of cGBPNs for which the
steady state analysis has been studied [3]. Assumption (A2) ensures that the net
is consistent, i.e., there exits a positive T-semiflow. Assumption (A3) imposes
that each place is contained in the support of a P-semiflow.

The basic idea of steady flow based ON/OFF control is, from the initial
marking, to firstly reach the steady marking quantity vector and then to reach
the steady state marking. More precisely, enabled transitions that at least one
of their input places has less marking quantity than its steady marking quantity,
are blocked. For the other enabled transitions, their controlled firing flows are
maximized to their steady flows. For any place that reaches its steady marking
quantity, an additional constraint imposes that its input flow equals its output
flow. This control law is applied until the target steady state marking is reached.
One can remark that the firing flow of a transition cannot exceed its steady flow.
To illustrate this approach, the introduced example is considered again.

Example 3. Let us consider again the cGBPN depicted in Fig. 2 with initial
marking m0 = [8 8 ∅ ∅}]T . The control trajectory, obtained by the steady
flow based ON/OFF approach, to reach the steady state ms = [4 0 {(4, 1, 4)}
{(2, 1, 2), (3, 2, 5)}]T showed in Fig. 3 is given by (u0, 0), (u1, 4), (u2, 9), (u3, 12),
with u0 = [1 0 0]T , u1 = [1 1 0]T , u2 = [1 1 0]T , u3 = [1 1 1]T . At the initial
marking, only the flow of transition t1 is maximized to the steady flow since only
t1 is enabled and its input place has greater marking quantity than the steady
one. At date τ1 = 4, batch place p3 has reached its steady marking quantity and
transition t2 is enabled. The input and output controlled flows of p3 are imposed
to be equal as order to hold the marking quantity of p3 and to feed place p4.
At date τ2 = 9, the batch created in p4 becomes an output batch, transition t3
is enabled and blocked since the input place p4 has still less marking quantity
than the steady marking quantity. At date τ3 = 12, all places reach the steady
marking and the steady flow vector is imposed.

The use of the steady firing flow as maximal control value allows to construct
the regular marking such as for place p3 of the example. However, for place
p4, this limitation causes much more delay to create the accumulated part of
the steady marking. Thus the use of the maximal firing flow could reduce the
delay for reaching the steady state. From this motivation, the following work is
dedicated to developing a new control strategy that exploits the maximal firing
flow to improve the time performance.
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4 Maximal flow based ON/OFF control

In this section, we propose a new method that improves the time performance
compared with the steady flow based ON/OFF control strategy. Before intro-
ducing the control strategy, some necessary notions are first presented hereafter.

According to the regular forms in steady state marking (see Section 2), the
steady marking quantity of a batch place pi could be divided into two components
of marking quantities qf,si and qa,si defined as follows.

Definition 7. The steady marking quantity of place pi associated with a steady
state marking ms could be divided as:

qsi = qf,si + qa,si ,

where qf,si and qa,si represent, respectively, the steady marking quantity of free
part and the steady marking quantity of accumulated part. They are defined as
follows:

1. If pi is a batch place :
(a) if ms

i = {βei , βoi }, q
f,s
i = lei · dei and qa,si = loi · dmax

i .
(b) if ms

i = {βoi },
– doi = φsi/Vi, such that qf,si = soi · doi , and q

a,s
i = 0.

– doi 6= φsi/Vi, such that qa,si = soi · doi , and q
f,s
i = 0.

2. If pi is a continuous place : qf,si = 0 and qa,si = qsi . �

Definition 8. For a cGBPN at marking m, given its steady state marking ms

and steady firing quantity vector zs. The minimum remaining quantity that en-
ters into a place pi from an input transition tj for reaching the steady marking
quantity vector qs is denoted as qrsi,j(m) and given by qrsi,j(m) = Post(pi, tj)(zsj −
zj(m)). �

Let us remark that when qrsi,j(m) ≤ 0 holds, it is not necessary to fire tran-
sition tj to reach the steady marking quantity of place pi at current marking
m.

Example 4. Let us consider the cGBPN with the given steady state ms =
[4 0 {(4, 1, 4)} {(2, 1, 2), (3, 2, 5)}]T as shown in Fig. 3. The steady flow vec-
tor is ϕs = [1 1 1]T and the steady marking quantity vector is qs = [4 0 4 8]T .
For continuous places, qs1 corresponds to the steady marking quantity of accu-
mulated part qa,s1 , i.e., qs1 = qa,s1 = 4, and qs2 = qa,s2 = 0 while qf,s1 = qf,s2 = 0.
For batch place p3, do3 = φs3/V3 = 1 / 1 = 1, thus the steady marking quantity
of free part is qf,s3 = lo3 · do3 = 4 · 1 = 4 and the steady marking quantity of
accumulated part is qa,s3 = 0. For batch place p4, the steady marking quantity
of free part is qf,s4 = le4 · de4 = 2, and qa,s4 = lo4 · do4 = 6 for the accumulated part.

For the minimum remaining quantity, the steady firing quantity vector to
reach qs at marking m0 is zs = [12 8 0], thus, for batch place p3 and its input
transition t1, qrs3,1 = Post(p3, t1)(zs1 − z1(m0)) = 1 · (12− 0) = 12 corresponds to
the remaining quantity entering into p3 for reaching steady marking quantity.
Similarly, qrs4,2 = 8, qrs2,3 = 0 and qrs2,1 = 8 which means that transition t3 does
not need to be fired to reach qs as already specified by zs.
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4.1 Proposed control strategy

Due to the existence of batches in a batch place, a steady state marking is
reached by guaranteeing both the steady marking quantity and the regular forms
of batches in a batch place. Hence, the use of the maximal flows of transitions as
the threshold to feed places improves the time performance to reach qs but more
time will be needed to generate regular forms given byms. Therefore, a condition
on the minimum remaining quantity is introduced to switch the threshold from
the maximal flow into the steady flow for getting the steady marking quantity
and creating the regular forms as follows:

qrsi,j(m) ≤ qf,si , (3)

where qrsi,j(m) = Post(pi, tj)(zsj − zj(m)) is the minimum remaining quantity
given by Definition 8. This quantity is thus compared with the free part quantity
of place pi.

The basic idea of the proposed control strategy is to limit the firing flow
of an enabled transition to its steady value when the condition given by (3)
is satisfied. For any enabled transition that does not satisfy this condition, its
flow is maximized to its maximum flow value. Finally, the flow of an enabled
transition is set to zero when the condition given by Eq. (3) is satisfied but at
least one of its input places has less quantity than steady marking quantity. At
a given marking m(τ), the proposed control strategy could be summarized as
follows2:

– ONss: maximize uj(τ) to ϕsj if tj is enabled with ∃ pk ∈ t•j : qrsk,j(m) ≤ qf,sk .
– ONmax: maximize uj(τ) to Φj if tj is enabled with @ pk ∈ t•j : qrsk,j(m) ≤ qf,sk .
– OFF: uj(τ) = 0 if tj is not enabled or if tj is enabled with ∃ pi ∈ •tj :

qi(τ) < qsi and ∃ pk ∈ t•j : qrsk,j(m) ≤ qf,sk .

The controlled flow values are maintained during an IB-state and updated
when a particular event (or possibly several events at the same time) occurs.
Compared with our previous work in [8], three more events are considered. One
is that the remaining marking quantity satisfies qrsi,j(m) = qf,si . The two other
considered events are: a continuous place becomes empty and batch place be-
comes full where the control actions are updated to ensure the nonnegativity of
marking quantity and avoid increasing the marking quantity, respectively. All
the events considered by the controller are the following:

– The marking quantity of place pi reaches its steady quantity qsi ;
– The remaining marking quantity qrsi,j(m) becomes equal to qf,si ;
– A continuous place becomes empty;
– A batch place becomes full;
– The value of batch place output density changes.

2 For t ∈ T, •t = {p ∈ P | Pre(p, t) > 0}, and t• = {p ∈ P | Post(p, t) > 0}.
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4.2 Computation of the timed control trajectory

Before we present the algorithm that allows one to compute a control trajectory,
several sets must be defined at any marking m.

– P∅(m) = {pi ∈ PC | mi = 0} be the subset of empty continuous places.
– PF (m) = {pi ∈ PB | qi = Qi} be the subset of full batch places.
– SL(m) = {pi ∈ P | qi < qsi } be the subset of places whose marking quantities

are lower than their steady state values.
– SE(m) = {pi ∈ P | qi = qsi } be the subset of places whose marking quantities

are equal to their steady state values.
– TL(m) = {tj ∈ T | ∃pi ∈ {SL(m) ∩ •tj}} be the subset of transitions with

at least one of its input places belonging to SL(m).
– TN (m) be the subset of transitions that are not enabled at m.
– TZ(m) = {tj ∈ T | ∃ pi ∈ t•j : qrsi,j(m) ≤ qf,si } be the subset of transitions

with a remaining firing quantity greater or equal than the free part steady
marking quantity of one of their output place.

– TZL(m) = TZ(m) ∩ TL(m) be the subset of transitions that belongs to
TZ(m) and at least one of their input places belongs to SL(m).

– SZE(m) = {pi ∈ SE(m) | ∀ tj ∈ {•pi ∪ p•i } such that tj ∈ TZ(m)} be the
subset of places whose marking quantities are equal to their steady state
values and the firing quantities of all their input and output transitions
satisfy TZ(m).

Algorithm 1 computes a timed control trajectory from an initial state to a
given reachable steady state. It starts at initial marking m0 with a control fir-
ing flow vector u0 initialized to 0 at line 2. Each timed event that refers to an
execution of the while-end structure (lines 3 – 8), a new markingmi is built and
compared with the steady marking ms. Line 4 determines the necessary con-
straint sets to solve the LPP which maximizes the controlled firing flow vector
at each timed event. Constraints (a) are used to maximize the flow approaching
the maximal firing value. Constraints (b) show that the maximal flow of each
transition tj cannot exceed the steady firing flow ϕsj when the remaining marking
quantity associated with one of its output places pk is less than or equal to the
free part steady marking quantity i.e., ∃ pk ∈ t•j : qrsk,j(m) ≤ qf,sk . Constraints
(c) block transition tj when it is not enabled or when belongs to TZL(m). Con-
straints (d) require that the marking quantity cannot increase when the batch
place is full. Constraints (e) claim that the marking cannot decrease when the
continuous place is empty. Constraints (f) hold the marking quantity to the
steady marking quantity when place pi belongs to SZE(m). Constraints (g) en-
sure that the input flow of a batch place should be less than or equal to the
maximal flow that can be accepted by its transfer element. Constraints (h) re-
quire that the output flow of a batch place should be lower than or equal to
the flow out-coming from the place. Lines 6–7 determine the nearest event and
update the new marking. The procedure is repeated until the steady marking is
reached. When the markingmi reaches the steady state valuems, the controlled
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Algorithm 1: Computation of control trajectory
Input: A cGBPN 〈N,m0〉, a reachable steady state (ms, ϕs) and the steady

firing quantity vector zs

1 . Output: Control trajectory (u0, τ0), (u
1, τ1), · · ·

2 Initialize : q0 = µ(m0), m0 = m0, u0 = 0, z0 = 0, τ0 = 0, i = 0 ;
3 while mi 6= ms do
4 Determine TN (mi), TL(m

i), TZ(m
i), TZL(m

i), P∅(mi), PF (m
i) SL(m

i),
SE(m

i), SZE(m
i) ;

5 Solve the following LPP: max1T · ui s.t.

(a) 0 ≤ ui
j ≤ Φj ∀tj ∈ T

(b) 0 ≤ ui
j ≤ ϕs

j ∀tj ∈ TZ(m
i)

(c) ui
j = 0 ∀tj ∈ TN (mi) ∪ TZL(m

i)
(d) C (pk, ·) · ui ≤ 0 ∀pk ∈ PF (m

i)
(e) C (pk, ·) · ui ≥ 0 ∀pk ∈ P∅(mi)
(f) C (pk, ·) · ui = 0 ∀pk ∈ SZE(m

i)
(g) Post (pk, ·) · ui ≤ Vk · dmax

k ∀pk ∈ PB

(h) Pre (pk, ·) · ui ≤ Vk · doutk ∀pk ∈ PB

6 Determine all the next timed events, select the nearest in time and deduce
time τi+1 ;

7 Determine the new marking mi+1, the marking quantity vector qi+1 and
the current firing quantity vector zi+1;

8 i = i + 1;

9 ui = ϕs;
10 Return (u0, τ0), · · · , (ui, τi)

firing flow vector is set to its steady firing flow vector ϕs as shown in line 9. The
complexity of this algorithm is polynomial since it is obtained by solving a LPP
at each timed step.

Remark 2. When transitions are in structural conflicts that are effective ones,
the proportional policy is used to solve these conflicts by adding the following
constraints : uia · ϕsb = uib · ϕsa if ∀ta, tb ∈ T, •ta ∩ •tb 6= ∅ and ta, tb /∈ TN ∪ TZL.

4.3 Transient behavior of the controlled net

In this part, we focus on the convergence of the proposed algorithm for reaching
a give steady state from an initial one. Different from the previous work that
all the places converge and maintain the steady marking quantities, here we
consider all the transitions should be included in the set of TZ , then this set will
hold on until the steady state marking is reached.

Lemma 1. Consider a cGBPN 〈N,m0〉 that satisfies assumptions (A1) – (A3).
By Algorithm 1, a transition included in TZ remains in TZ whatever the net
evolution.
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Proof. A transition tj is included in TZ if ∃ pi ∈ t•j : qrsi,j(m) ≤ qf,si , which is
equivalent to ∃ pi ∈ t•j : zj(m) ≥ zsj−q

f,s
i /Post(pi, tj). Since zsj−q

f,s
i /Post(pi, tj)

is a constant value and the firing quantity zj is monotonically increasing, any
new reachable marking m′ will satisfy zj(m′) ≥ zj(m) ≥ zsj − q

f,s
i /Post(pi, tj)

for place pi which means that tj will remain in TZ . ♦

Lemma 2. Consider a cGBPN 〈N,m0〉 that satisfies assumptions (A1) – (A3).
By Algorithm 1, all the transitions in the net N will be included in TZ in finite
time.

Proof. Based on Lemma 1, the transitions that are already included in TZ at
m0 remain in TZ . In case that transition tj is not initially included in TZ atm0,
which means ∀pi ∈ t•j : qrsi,j(m0) > qf,si , let us assume that this transition will
never be included in TZ and show that this leads to a contradiction.

The transition tj cannot be included in TZ in finite time means that it is
blocked before satisfying the condition ∃pi ∈ t•j : qrsi,j(m0) ≤ qf,si and remains
blocked whatever the net evolution. According to Algorithm 1, a transition that
does not belong to TZ is blocked only when it is not enabled. More precisely, one
of input places pk of transition tj should be empty. Due to assumption (A3), the
empty place pk must belong to a conservative component. This means that there
must exist at least one upstream place pl that has a marking quantity which is
greater than its steady one. By Algorithm 1, the output transition of place pl
cannot be blocked for infinite time. Thus, place pk cannot remain empty which
contradicts the initial assumption. Consequently, transition tj can be included
in TZ in finite time.

Proposition 1. Given a cGBPN 〈N,m0〉 that satisfies assumptions (A1) –
(A3) and a given reachable steady state (ms,ϕs). The control trajectory com-
puted by Algorithm 1 drives the system from its initial state to the given steady
state in finite time.

Proof. According to Lemmas 1 and 2, all the transitions of the net will be in-
cluded in TZ in finite time. When TZ = T , the controlled firing flows are maxi-
mized to the steady ones by constraint (b) in Algorithm 1 and the sets TZL and
SZE will satisfy TZL = TL and SZE = SE . In this case, the algorithm is equiv-
alent to the one presented in our previous work in [8] where the convergence of
the marking to the steady state marking has been proved (see Proposition 12 in
[8]). ♦

Example 5. Let us consider again the cGBPN with an initial marking m0 =
[8 8 ∅ ∅}]T in Fig. 2 and the reachable steady state (ms,ϕs) with ms =

[4 0 {(4, 1, 4)} {(2, 1, 2), (3, 2, 5)}]T as shown in Fig. 3, and ϕs = [1 1 1]
T . The

steady marking quantity vector is qs = [4 0 4 8]T , and the steady firing quantity
vector is zs = [12 8 0]T . Under the proposed strategy, a control trajectory that
drives the net from its initial state to the steady state is obtained as follows.
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– At τ0 = 0, TN (m0) = {t2, t3}. As q0 = [8 8 0 0]T , the subsets of places
are: SE(m0) = ∅, SL(m0) = {p3, p4}, PF (m0) = ∅ and, TL(m0) = {t2, t3}.
The firing quantity vector is z(m0) = [0 0 0 0], by checking the condition
qrsi,j(m0) ≤ qf,si , TZ(m0) = {t3}, TZL(m0) = {t3} and, SZE(m0) = ∅.
Consequently, transition t1 is enabled and ONmax since it is not in TZ(m0)
while transitions t2 and t3 are not enabled, thus u02 = u03 = 0. Algorithm 1
returns the controlled firing flow vector u0 = [2 0 0]T .

– At τ1 = 2, places p1 and p3 reach steady marking quantities so SE(m1) =
{p1, p3} where m1 = [4 8 {(2, 2, 2)} ∅]T and q(τ1) = [4 8 4 0]T . This implies
TN (m

1) = {t2, t3}, PF (m1) = ∅, SL(m1) = {p4} and TL(m1) = {t3}. The
firing quantity vector is z(m1) = [4 0 0], TZ(m1) = {t3}, TZL(m1) = {t3},
and SZE(m1) = ∅. Consequently, transition t1 is enabled and ONmax since
it is not in TZ(m1). Transitions t2 and t3 are not enabled, thus u12 = u13 = 0.
The obtained controlled firing flow vector is u1 = [2 0 0]T .

By continuing the Algorithm execution, the resulting control trajectory is
given by (u0, 0), (u1, 2), (u2, 4), (u3, 6), (u4, 7), (u5, 8), (u6, 9), (u7, 10) with u0 =
[2 0 0]T , u1 = [2 0 0]T , u2 = [0 2 0]T , u3 = [1 2 0]T , u4 = [1 0 0]T , u5 = [1 1 0]T ,
u6 = [1 1 0]T , u7 = [1 1 1]T .

One can remark that the delay τs = 10 for reaching the steady state is im-
proved compared with the steady flow based ON/OFF control τs = 12 obtained
in Example 3 although the number of steps is greater (7 generated events with
the proposed strategy and 3 events using the steady flow strategy). The time
improvement is due to the use of the maximal firing flow (vectors u0, u1, u2,
and, u3).

5 Study case

The considered system depicted in Fig. 4 is a communication system composed
of three buffers and four routers. Its corresponding cGBPN model is represented
in Fig. 5(a) where three buffers are respectively modeled by three batch places
p4, p5, p6 with γ(p4) = (V4, d

max
4 , s4) = (8, 4, 4), γ(p5) = (2, 3, 5), γ(p6) =

(2, 4, 4), and the routers are modeled with five controlled transitions such that
the processing rates of the routers are controllable variables. The maximal flow
of the transitions are given by: Φ1 = Φ2 = Φ4 = Φ5 = 4, Φ3 = 8. Data arrived
in buffer B1 from router R1 are processed by the router R2 which allows to
direct the data flows throughout two different channels represented by (B2, R3)
and (B3, R4). The desired (nominal) behavior of the system is represented by
the steady state showed in Fig. 5(a) and characterized by (ms,ϕs) with ms

= [10 0 0 {(4, 0.5, 4)} {(5, 1, 5)} {(2, 1, 2), (2, 4, 4)}]T and ϕs = [4 2 2 2 2]
T . It

means that only buffer B3 has an accumulation while data in buffers B1 and B2

are processed as soon as they are received by the routers. The steady marking
quantity vector is qs = [10 0 0 2 5 10]T .

Let us consider that some faults or cyber-attack causes a deviation from the
normal behavior which leads the system to the state represented in Fig. 5(b)
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Buffer 𝑩𝟑
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Buffer 𝑩𝟐
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Fig. 4: The considered communication system.

with m0 = [0 0 10 {(3, 4, 4)} {(2.5, 2, 5)} ∅]T . The steady firing quantity vector
for reaching the steady marking quantity vector is zs = [0 0 10 0 0]T .
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(a) A steady state.
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(b) The initial marking.

Fig. 5: A cGBPN of study case.

The proposed control strategy is used to compute a control trajectory that
drives the net from its abnormal state given by m0 to the steady state ms.
By applying Algorithm 1, the following control trajectory is obtained (u0, 0),
(u1, 0.625), (u2, 1), (u3, 1.5), (u4, 2), (u5, 2.5) with u0 = [0 2 8 2 0]T , u1 =
[0 2 8 2 0]T , u2 = [4 2 2 2 0]T , u3 = [4 2 2 2 0]T , u4 = [4 2 2 2 2]T ,
u5 = [4 2 2 2 2]T .

Consequently, 5 events are generated and the delay for reaching the steady
state with the maximal flow based ON/OFF strategy is τs = 2.5.

Under the steady flow based ON/OFF control strategy, a control trajectory
that drives the net from its initial state to the steady state is (u0, 0), (u1, 0.625),
(u2, 2), (u3, 2.5), (u4, 3), (u5, 5) with u0 = [0 2 2 2 0]T , u1 = [0 2 2 2 0]T ,
u2 = [0 2 2 2 0]T , u3 = [4 2 2 2 0]T , u4 = [4 2 2 2 0]T , u5 = [4 2 2 2 2]T .

Although the number of generated events is equal (5 events), the delay for
reaching the steady state is τs = 5 and is much higher compared with the
maximal flow based ON/OFF control strategy.
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From the results above, one can conclude that the proposed control method
that considers the maximal firing flow of transition improves the time perfor-
mance.

6 Conclusions

An algorithm that incrementally computes a control trajectory for reaching the
steady state from an initial one has been proposed. The main advantage of this
algorithm is to exploit the maximal firing flow of transitions compared with the
previous one developed in [8]. The convergence of the algorithm has been proved
and the proposed method is applied to recover a communication systems from its
abnormal state to its nominal steady state. In future work, we plan to compare
the two methods to quantify the improvement. We will focus on the optimality
to address the minimum-time control problem.
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