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ABSTRACT  

We demonstrate theoretically and confirm experimentally the mechanism by which spectral 

narrowing accompanies enhanced spatial resolution in a saturated coherent anti-Stokes Raman 

scattering (CARS) signal that is demodulated at the third harmonic (3f) of the pump modulation 

frequency (f). Under these modulation conditions, theory predicts a narrowing of the full-width at 

half-maximum (FWHM) of the CARS spectrum by a factor of 2.0 with respect to that of the 

spectrum obtained by demodulation at the fundamental frequency. Theory also predicts an 

improvement of spatial resolution by a factor of 1.7. Experimentally, narrowing of the FWHM of 

the CARS spectrum of 1,4-bis((E)-2-methylstyryl) benzene (MSB) crystals by a factor of 2.5 is 

observed upon saturation. Further experimental confirmation is provided from investigating 

diamond particles, for which spectral narrowing was enhanced by a factor of 2.8 and spatial 

resolution was enhanced by a factor of 2. Details of the mechanism and execution of the saturated 

CARS experiment are elucidated and limits to its applicability are suggested, one of which is the 

conclusion that the saturation approach is not suitable for extraction of harmonics beyond 3f . In 

this work we have developed a more comprehensive understanding of the correlation between the 

observed experimental results and experimental factors than has been previously reported. 
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INTRODUCTION 

Achieving vibrational subdiffraction imaging is an ongoing quest 1-6 whose interest has been 

motivated by the successful implementation of fluorescence techniques like stimulated emission 

depletion (STED),7 structured-illumination microscopy,8 stochastic optical reconstruction 

microscopy (STORM) 9 and photoactivated localization microscopy (PALM).10 These methods 

have made it possible to probe samples with features that are sub-10 nm on a routine basis.  The 

fluorescence technique most relevant to our discussion exploits the saturated excitation of 

fluorescence (SAX), pioneered by Fujita and coworkers.11-14 SAX provides enhanced spatial 

resolution by using the nonlinearity induced in the fluorescence signal at higher incident laser 

powers. In principle, its spatial resolution is limited only by the highest harmonic that can be 

measured. In practice, the limitation on spatial resolution is imposed by the shot noise of the 

detector, which becomes increasingly significant as the signal strength decreases with successively 

higher harmonics.11 Although fluorescence techniques are successful in revealing intricate details, 

their application often requires the use of extrinsic organic fluorophores for labeling samples, 

especially in biological applications. This introduces two limitations. First, the experiment 

provides information on the system indirectly through the label. Second, labels can photobleach 

under laser irradiation and, more importantly, may be cytotoxic.15 Vibrational imaging provides a 

powerful alternative because it is able to exploit the chemical functionalities already present in the 

sample. This presents the added benefit of eliminating additional sample preparation. 

The advent of coherent Raman techniques has contributed to the popularization of label-

free vibrational imaging.16-17 Coherent anti-Stokes Raman scattering (CARS) and stimulated 

Raman scattering (SRS) are the two most widely used coherent Raman spectroscopies, and they 

have been successfully implemented in various laboratories.18-23 In addition to providing much 
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larger signals than those of traditional spontaneous Raman spectroscopy, they are label-free 

techniques; and the near infrared wavelengths that are usually used for CARS and SRS penetrate 

deeper into tissues compared to the wavelengths used for fluorescence imaging. The penetration 

depth of the applied wavelengths is obviously a critical parameter for imaging thick biological 

samples.24 

Theoretical and experimental studies have already been performed in the area of 

subdiffraction coherent Raman microscopy.5, 25-29 Silva et al. 28 demonstrated the elimination of 

the vibrational signal from the edges of a diffraction-limited spot using a doughnut-shaped 

decoherence pulse. This resulted in a focal spot smaller than the diffraction limit. Bi et al. 

employed visible wavelengths instead of near infrared wavelengths for SRS imaging by frequency 

doubling the pump and the Stokes beam; spatial resolution down to 130 nm in a near-resonance 

enhanced SRS microscopy experiment was reported.30 As an extension of SAX, Yonemaru et al. 

used saturation of CARS at high power densities to induce nonlinearity in the CARS signal leading 

to the generation of higher harmonics of the excitation pulse modulation frequency.5 A lock-in 

amplifier demodulated the higher harmonics of the signal frequency, and the image constructed by 

the third harmonic of the signal provided better spatial resolution than that constructed using the 

fundamental frequency.  Enhanced spectral resolution was also observed. 

Because of the high laser intensities required for these experiments, designed to improve 

spatial resolution, a common feature is to test them with what are traditionally believed to be 

robust, highly photostable samples, i.e., diamond particles 5, 28. In this work, however, in order to 

examine the suitability of the saturated CARS technique to other chemical systems and obtain a 

thorough and rigorous physical understanding of the experimental observations, we have studied 

a model organic molecule, 1,4-bis(2-methylstyryl)benzene (MSB), in addition to diamond 
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particles. (Because MSB was interrogated as a single crystal, it could only provide information on 

the spectral characteristics of the technique, while the diamond samples provided both spectral and 

spatial information.) Our results, limited to data collected at the third harmonic (3f) of the 

modulation frequency (f), show that both the spectral and spatial resolution is improved by a factor 

of ~2 with respect to that collected at the fundamental and second harmonics. Furthermore, our 

calculations indicate that enhancement cannot occur at the second harmonic. This is also confirmed 

experimentally. Finally, an important practical observation of this work is that it was necessarily 

limited to the third harmonic. This is because the MSB signal was too weak to observe at the fourth 

harmonic and because laser intensities required to observe signal from diamond at the fourth 

harmonic often destroyed the sample, despite its putative robustness. 

 

EXPERIMENTAL SECTION 

Sample Preparation 

1,4-Bis(2-methylstyryl)benzene (MSB) (Figure 1) was purchased from Sigma-Aldrich and was 

recrystallized using toluene. A single crystal was mounted between two clean microscopy 

coverslips (Corning, thickness 0.16 – 0.19 mm) and sealed with nail varnish. Diamond particles 

were purchased from Tomei Diamonds (IRM 2-4, Tokyo, Japan). A ~ 2 mg/mL solution of the 

diamond particles was drop-casted on a clean cover slip and air dried. The diamond particles 

employed have an average diameter of around 2-3 µm and were identical to those used by 

Yonemaru et al..5 
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Figure 1. Structure of 1,4-bis((E)-2-methylstyryl) benzene. 

 
Instrumentation 

Spontaneous Raman Spectroscopy.  Spontaneous Raman measurements were performed with a 

XploRA Plus Raman confocal upright microscope equipped with a Synapse EMCCD camera 

(HORIBA Scientific, Edison, New Jersey). The sample was excited with 16 mW of a 785-nm laser 

source focused on the sample with a 100×, 0.9-numerical aperture (N.A.) objective. Raman spectra 

were collected using a grating with 1200-groove/mm and with a total acquisition time of 1 second 

for MSB and 3 seconds for diamond particles. An average of two accumulations is reported. 

CARS Apparatus: Modulation of the Intensity of the Pump Beam. The schematic for our 

CARS microscopy apparatus is presented in Figure 2 and is based on the layout reported by Fujita 

and coworkers.5 It is based on a one-box picosecond laser source (PicoEmerald S, A.P.E Berlin) 

with a repetition rate of 80 MHz and a pulse width of 2.3 ps. It provides a tunable pump beam 

(720-990 nm) and a Stokes beam fixed at 1031 nm. The pump and Stokes beams exit the laser 

aperture collinearly and are separated by a dichroic shortpass filter (Edmund optics part#86-695, 

cut off 1000 nm). We subsequently used a Mach-Zehnder interferometer to modulate the pump 

beam.5 First, the pump beam was split using a 50:50 nonpolarizing beam splitter (Edmond optics 

part# 47-012). Each arm of the split pump beam was passed through an acousto-optical modulator 

(AOM) (AOM-402AF3, IntraAction Corp, Bellwood). One AOM was driven at 40 MHz and the 
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other at 40.50 MHz using a dual-channel RF frequency driver (DFE-404A4, IntraAction Corp). 

The first-order diffracted beams from both the AOMs were then recombined using a second beam 

splitter to give a beam intensity modulated at the difference frequency of the two AOMs (500 

kHz). The selection of a fundamental frequency of 500 kHz was guided by our goal to detect the 

weak 3f signal above the laser noise. As the theoretical studies discussed below suggest, generating 

the 3f signal requires saturation of the CARS; and the 3f signal is weaker than those at f and 2f. 

Accordingly, experimental parameters had to be adjusted to optimize the signal strength: the laser 

power density at the sample; the N.A. of the condenser lens used for the collection of the signal; 

the detector gain, the lock-in amplifier sensitivity, or both. The imposition of the modulation 

frequency on the pulse train was monitored with an oscilloscope (Agilent Infiniium 54830B DSO) 

(Figure S1, supporting information). In order to obtain efficient diffraction of the pulse train (and 

consequently, modulation depth) and to obtain the highest beam quality, the pump beam was 

directed into the AOM with a 500-mm focal length lens. Identical lenses were used to collimate 

the first-order diffracted beams. A retroreflector mounted on a computer-controlled delay stage 

(Physik Instrumente, M-410.CG) was used in one of the arms of the interferometer for 

compensating the temporal mismatch between the two beams at recombination. After the 

recombination at the second beam splitter, one part of the beam was detected by a photodiode 

(Thorlabs DET025A) and served as the reference frequency (f) for the lock-in amplifier (Model 

SR865A, Stanford Research Systems). A variable neutral-density filter was placed in front of the 

photodiode to prevent saturation of the photodiode. The second part of the beam was recombined 

with the Stokes beam using a dichroic, long-pass filter (Edmond optics part#87-047, 1000-nm cut 

off). A second retroreflector mounted on a computer-controlled delay stage was used in the path 

of the Stokes beam to ensure temporal overlap between the pump and Stokes beams in cases where 
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the 20-picosecond internal delay of the laser was not enough to compensate for the path difference 

between the two paths. After recombination, the pump and the Stokes beams were spatially filtered 

and expanded (8×) with a homemade beam expander to match the back aperture of the objective 

lens (Nikon Plan Apo, 60×, 1.27-N.A. water immersion) and fed into the back port of an optical 

microscope (Nikon Eclipse Ti2). The CARS signal was collected in the forward mode using a 1.4-

N.A. oil immersion condenser lens (Nikon HNA-oil) and detected by a Hamamatsu C10508-01 

avalanche photodiode (APD). A stack of shortpass filters (ET850sp–2p, Chroma Technologies, 

850-nm cut off) and one bandpass filter (FF01-769/41-25, Semrock for MSB; FF01-810/10-25, 

Semrock for diamond particles) were used to reject the pump and the Stokes beam. The 

fundamental and higher harmonics of the CARS signal were detected and demodulated using the 

lock-in amplifier. The SR865A lock-in amplifier is capable of extracting up to the 99th harmonic 

of the reference frequency if nf < 4MHz, where n is nth harmonic and f is the reference frequency. 

The CARS signal at f and the higher harmonics (2f and 3f) were extracted using the lock-in 

amplifier. CARS and saturated CARS spectra were constructed by detuning the pump wavelength 

in small steps (typically 0.2–0.4 nm) to cover the full range of the Raman band under consideration 

with a sufficient number of points and demodulating the signal at f, 2f and 3f. Image construction 

was performed by scanning the sample over the pump and Stokes beams using an xyz-piezo stage 

(Nano-LP200, Mad city labs) and demodulating the signal at f and 3f at each pixel. Data and image 

acquisition were performed using GPScan.VI,31 a Labview-based program for image scanning 

with a National Instruments multifunction I/O device (PCIe-6353). Fiji-ImageJ package32 was 

used for image analysis. 
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Figure 2. The CARS apparatus. M (mirror), DM (dichroic mirror), DL (delay line), L (lens), BS 

(50:50 nonpolarizing beam splitter), AOM (acoustooptical modulator), BE (beam expander), 

OL (objective lens), TS (translation stage), CL( condenser lens), SP (short pass filter), PD 

(photodiode), APD (avalanche photodiode), and LIA (lock-in amplifier). 

 

High numerical aperture condenser lenses were used for signal collection for their large 

light gathering capability; they also have the additional advantage of reducing background caused 

by processes such as cross-phase modulation.17 In addition to the different power requirements for 

the f and the 3f, the measurement of a reproducible signal with good signal-to-noise ratio required 

adjustment of the detector parameters and the lock-in settings. Depending on the alignment and 

the incident power, the f and 2f signals were readily measured with a low detector gain (30-50) 

compared to the 3f signal, which needed adjustment of the detector gain to higher values (150). 
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The lock-in time constant was set at 300 µs with a dwell time of 1 ms for the signal measurement 

at f, 2f, and 3f. In this work, we have limited our discussion only up to the 3f signal. For MSB, 

higher harmonics (> 3f) could not be detected under the maximum available power density in the 

sample plane (12 MW/cm2). While in the case of MSB, sample damage did not occur at these 

power densities, it did for the diamond particles. Thus, sample degradation of the diamond particles 

prevented acquisition of data at harmonics greater than 3f. 

 

RESULTS AND DISCUSSION 

Theory 

The basis of the enhancement of the spectral and spatial resolution in coherent anti-Stokes Raman 

scattering microscopy is the saturation of the vibrational population difference at high laser 

powers.5 This intrinsically nonlinear effect33 saturates the intensity of the CARS signal and induces 

additional nonlinearity in it. If, therefore, one of the lasers is modulated with a sinusoidal intensity 

variation, higher harmonics of that modulation frequency can be detected in the CARS signal. Here 

we present a detailed theoretical account of the saturation effect on the enhancement of the spectral 

and spatial resolution enhancement in CARS microscopy. 

The intensity of the CARS signal ( )CARSI generated at the focal plane (defined by 0z = ) as 

a result of the interaction of two pump ( )p photons and one Stokes ( )s photon can be expressed 

as:34-36 

 (3) 2 2( , , ) | ( , , ) | [ ( , , )] ( , )CARS a a pm p s sI t k t I t Iω χ ω ω ω=r r r r , (1) 

where aω , pω  and sω are the frequencies of the anti-Stokes, pump, and Stokes beams, respectively. 

pmI and sI are the intensities of the pump and Stokes beams, respectively. (3)χ is the third-order 
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nonlinear susceptibility. ( , )x y≡r at 0z =  are the spatial coordinates at the sample plane. t is the 

timescale of the intensity modulation of the pump beam. (Note that while the experiment described 

above relies upon pulsed laser beams, the only time dependence that we explicitly consider in our 

treatment is that arising from the modulation of pmI , which in turn modulates (3)χ and CARSI . Any 

intensity variations occurring on a much shorter timescale, such as those characterizing the profiles 

of the laser pulses or the oscillations of the optical fields, are integrated out over the modulation 

timescale t  and can therefore can be ignored.) 2
0(2 / )k cnε=  is a proportionality constant (related 

to the conversion of the electric field to intensity); c , the speed of light; 0ε , the permittivity of light 

in a vacuum; and n , the refractive index of the medium. The spatial intensity distributions of the 

two beams on the xy -plane at the focal spot ( 0)z = are: 

 
2 2

,0 2 2

1( , ) exp
2 2j j

j j

x yI x y I
πσ σ

   +
= −      

   
, (2) 

where j pm= or s  for the modulated pump and Stokes beams, respectively. ,0jI is the integrated 

intensity on the xy -plane at 0z = . We assume circular symmetry of the laser beam at the focal spot 

with jσ  as the beam-width parameter. Although our calculation is based on the focal plane, it can 

be generalized by incorporating the interaction length of the beams along the propagation direction 

(𝑧𝑧 axis) into equation (1).37-38 In our experiment, however, we did not vary the relative focus of 

the two beams in the z  direction, and the collinear CARS signal from the entire focal volume was 

collected. This is equivalent to integrating the signal in the focal volume, which eliminates the z-

dependency in equation (2). Also, we note the laser beam is not monochromatic and thus has a 

finite spectral width.34 Since, however, we do not spectrally resolve the CARS signal but, rather, 

collect all the light generated at given central wavelengths of the laser beams, the effect is 
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equivalent to that of integrating the signal in the spectral domain of the laser. We, therefore, omit 

the spectral width of the laser in the model. 

The third-order nonlinear susceptibility is: 

 (3) (3) (3)( , , ) ( , , )a R a NRt tχ ω χ ω χ= +r r , (3) 

where R  and NR  denote the resonant and nonresonant contributions.39-42 The resonant component 

(3) ( , , )a tχ ωr  is: 

 
4

(3) 0
4

2 ( , , )( , , )
2[ ( )]

a
R a

s v p s

Nc tdt
d i

ε ωσχ ω
ω ω ω ω

∆ =  Ω − − − Γ 

rr , (4) 

where N  is the number density;
d
d

σ
Ω

, the Raman cross section; Γ , the linewidth of the vibrational 

transition; vω , the frequency of the vibrational transition; and  , the reduced Planck constant. ∆  

is the normalized population difference between the two vibrational states involved in the 

transition (i.e., if there is no saturation 1∆ = ; it is 0 for complete saturation). The nonresonant 

contribution imparts asymmetry to the CARS spectrum, which is shown in Figure S2, supporting 

information. Combining equations (1), (3) and (4) yields: 

2 2 2 (3) (3) 2 2
1 2 1( , , ) [( )( ( , , )) 2 ( , , ) ( ) ][ ( , , )] ( , )CARS a a NR a NR pm p s sI t k a a t a t I t Iω ω χ ω χ ω ω= + ∆ + ∆ +r r r r r , (5) 

 

where 

 
( )

( )
4

0
1 24 2

22

4

v p s

s v p s

Nc da
d

ω ω ωε σ
ω ω ω ω

 − −   =  Ω   − − + Γ 


, (6) 

and 

 
( )

4
0

2 24 2

2

4s v p s

Nc da
d

ε σ
ω ω ω ω

Γ =  Ω   − − + Γ 


. (7) 
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The saturation of the population difference induces additional nonlinearity in the CARS signal via 

(3)
Rχ . Because of stimulated Raman scattering (SRS), ∆ becomes strongly dependent on the 

intensity of the pump and the Stokes lasers.5, 43 The temporal dependence of ∆ on the modulation 

frequency can be described using the following kinetic equation: 

 
( )

2

22 2

( , , )1 42 ( , , ) ( , )
( , , ) 4

a
pm p s s

a s v p s

d t c d I t I
t dt d

ω π σ ω ω
ω ω ω ω ω

 ∆ Γ = −    ∆ Ω     − − + Γ 


r r r
r

. (8) 

Note that equation (8) only considers one of several processes that contribute to the population 

difference (other factors such as CARS and the lifetime of the excited vibrational state have been 

ignored owing to their smaller contribution).38, 43 As described above, the intensity modulation of 

the pump beam is achieved via a Mach-Zehnder interferometer by mixing two frequency-shifted 

pump beams. The intensity of the modulated pump beam can be written as: 

 
( ),

( , , ) (1 cos )
2

p p
pm p m

I
I t t

ω
ω ω= +

r
r , (9) 

where 2m fω π=  is the modulation frequency. The modulation of ∆ in equation (8) depends on 

the time-dependent part of pmI  (i.e., we neglect the exponential decay of the population due to the 

constant term because the population of v = 1 is reasonably assumed to be depleted on a time scale 

that is much faster than the time scale of modulation) and can be written as: 

 ( , , )1 cos
( , , )

a
m

a

d t t
t dt

ω β ω
ω

∆
= −

∆
r

r
, (10) 

where 

 
( )

2

2 2 2

( , )42 ( , )
24[ ]

p p
s s

s v p s

Ic d I
d

ωπ σβ ω
ω ω ω ω

  Γ =    Ω − − + Γ  

r
r . (11) 

Solving the differential equation with the boundary condition 1∆ = at 0t = , we have: 
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 ( , , ) exp sina m
m

t tβω ω
ω

 
∆ = − 

 
r . (12) 

The effect on the population difference due to modulation of the pump beam is given in Figure 3 

for various intensities of the pump beam. Substituting equations (9) and (12) in equation (5) yields: 

 
( ) ( )

( )

22 2 (3) (3)
1 2 1

2
2

2, , ( ) exp sin 2 exp sin

1( , ) ( , ) 1 cos
2

CARS a m NR m NR
m m

p p s m

I t k a a t a t

I I t

β βω ω χ ω χ
ω ω

ω ω ω

    
= + − + − +    

    

  × +    

r

r r

. (13) 

 

Figure 3. The effect on the population difference due to the modulation of the pump beam, at 

various intensities of the pump beam, for MSB. The intensity of the pump beam is given in 

multiples of 2.8 MW/cm2.  The intensity of the Stokes beam was fixed at 1.6 MW/cm2. The 

relevant parameters for MSB are d
d

σ
Ω

= 2×10-27 cm2sr-1molecule-1 44, vω  = 1593.1 cm-1 44, Γ = 

9.286 cm-1,
2

mf ω
π

= = 500 kHz.  The linewidth was determined from a measurement of the 

spontaneous Raman spectrum and appropriate fitting of the lineshape. 
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The CARS signal will always have DC and 2f components (Figure S3(a, d), supporting 

information) along with a component corresponding to f, owing to its quadratic dependence on the 

pump laser intensity. Because, however, of the additional nonlinearity introduced by the 

exponential terms in CARSI  (equation (13)), the signal will have terms corresponding to the third 

and even higher harmonics of f (Figures S3(b, e), supporting information). The intensities of these 

higher-order harmonics (3f and greater) strongly depend on the intensity of the pump and Stokes 

beams and on the frequency of modulation via the ratio
m

β
ω

 (e.g., as shown in Figures S3(c, f) in 

comparison to Figures S3(b, e) of supporting information). The signal in the time domain can be 

converted into the frequency domain to extract the frequency component of interest. 

Mathematically, this can be expressed as: 

 ( , , ) [ ( , , )]CARS a CARS aI F I tω ω= Fr r , (14) 

where F denotes the modulation frequency space and F  denotes the Fourier transform. Extraction 

of a signal at a multiple of the modulation frequency can be accomplished via a lock-in amplifier 

using the modulation as the reference, as described above. The signals at the fundamental and its 

harmonics are obtained by collecting terms in the expansion corresponding to the appropriate 

powers of 
m

β
ω

. Specifically, the third harmonic will only contribute to the signal for nonzero 

powers of 
m

β
ω

 (as 3f originates solely because of the additional nonlinearity introduced by the 

saturation). The 
0

m

β
ω

 
 
 

term, however, always contributes to the signal corresponding to the 

fundamental and second harmonic and does not necessarily require saturation of the CARS signal. 

(Because signal is collected at a given harmonic, the total signal at that harmonic is normalized by 
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dividing all terms contributing to that signal at that harmonic by the magnitude of the largest term.) 

The most important conclusion drawn from this analysis is that 𝛽𝛽 determines both the spectral and 

the spatial dependence of the signal.  In other words, the maximum of the harmonic component, 

set to 1 and demodulated at the third harmonic, will show spectral as well as spatial narrowing 

compared to that corresponding to the normalized fundamental and second harmonic (which are 

identical to each other in these respects). This will lead to resolution enhancement in both the 

spectral and spatial domains when signal is collected at 3f or higher harmonics. Therefore, spatial 

resolution enhancement is fundamentally linked to the spectral resolution enhancement through 

the saturation of the population difference. These calculated results are presented in Figures 4 and 

5 for MSB and Figures S4 and S5 of SI for diamond particles. Our model implies limits on the 

laser power. If it is sufficiently great that higher powers of 
m

β
ω

 dominate the expansion, the terms 

corresponding to the third harmonic signal diminish in relative importance with respect to those 

of the fundamental and second harmonic; and spectral and spatial enhancement at the third 

harmonic become insignificant. Under our experimental conditions, 
m

β
ω

 is ~ 0.002. Thus, higher-

order terms can be neglected; and we should, therefore, expect spectral and spatial enhancement 

at the third harmonic. Our experimental data confirm our theory and calculations, as shown in 

Figures 6 and 7. 

 

Enhancement of Spectral Resolution in Crystals of the Organic Molecule, MSB 

The Raman cross section of MSB is estimated to be 65 times that of neat benzene.44 The 1593 cm-

1 band of MSB was selected for the CARS experiment as it is the most intense (Figure S6, 

supporting information). The CARS spectra were constructed by demodulating the signal at the 
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fundamental (f, 500 kHz), the second harmonic (2f, 1 MHz), and the third harmonic (3f, 1.5 MHz). 

The large MSB Raman cross section enabled the construction of the CARS spectrum by 

demodulating the signal at f and 2f using a pump power density of 0.8 MW/cm2 and Stokes power 

density of 0.3 MW/cm2. The robustness of our theoretical analysis is further demonstrated in that 

it predicts that CARS signals at both f and 2f do not require saturation (Figure S3) and that the 

computed spectra (Figure 4) are identical, as is demonstrated experimentally (Figure 6). 

 

 

Figure 4. Saturated CARS spectra computed for MSB at f, 2f, and 3f show spectral narrowing 

only at 3f. The f and the 2f spectra are exactly identical. The FWHM for the f and 2f spectra are 

9.29 cm-1; that for the 3f spectrum is 4.70 cm-1. The parameters used for the calculation of the 

spectra and spatial profiles of saturated CARS whose results are presented here and in Figure 5 

are the same as those used for Figure 3. Owing to the absence of any values for (3)
NRχ  for MSB, 

we have used a value typical of organic molecules, 10-14 e.s.u or 10-22 m2/V2.45 Furthermore, for 

the same reason, this value has been used in our computations of the signal for diamond (Figures 

S4 and S5, supporting information).  
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Figure 5. Calculated spatial distribution of saturated CARS signal for MSB at f (a), 2f (b), 3f 

(c), and the intensity profile (d).  The FWHM determined from the intensity profile is 200 nm 

for both f and 2f. It is 116 nm for 3f.  The beam width parameters ( jσ ) for the pump beam (λ = 

885.6 nm) and Stokes beam (λ = 1031 nm) were 111 nm and 129 nm, respectively.  Other 

parameters used for MSB are same as those used in calculation of the saturated CARS spectra 

shown in Figure 4. 

The CARS spectrum is broader than the spontaneous Raman spectrum of MSB at power 

densities as low as 0.8 MW/cm2 (Figure 6). Yonemaru et al. have also reported broadening of 

CARS spectrum for the 1332 cm-1 band of diamond constructed by demodulating the signal at the 
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fundamental frequency.5 In their experiment, however, they maintained the same power levels for 

collecting f and 3f data and have attributed the broadening at f to saturation. In our case, for MSB 

we observed broadened CARS spectra at f when the pump power density was maintained either at 

a comparatively low excitation power density of 0.8 MW/cm2 or a higher excitation power density 

of 2.8 MW/cm2, which was used to extract the saturated CARS signal at the third harmonic (Figure 

S7, supporting information). The broadening of the CARS spectrum at f can be attributed to the 

fast dissipation of the vibrational energy46 in the MSB crystal as well as to the nonresonant 

background contribution, which is evident from the asymmetric CARS spectrum. 

   

Figure 6. Comparison of experimentally obtained spectra for MSB: spontaneous Raman 

spectrum (pink shaded region); CARS spectra at the fundamental (f, 500 kHz, blue) and the 

second harmonic (2f, 1MHz, olive); and the saturated CARS spectrum at the third harmonic (3f, 

1.5 MHz, black).  The pump and Stokes power densities for the CARS spectra at f and 2f were 

0.8 MW/cm2 and 0.3 MW/cm2, respectively; while for the saturated CARS spectrum at 3f, the 

pump and Stokes power densities were 2.8 MW/cm2 and 1.6 MW/cm2, respectively. 
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For the detection of the 3f signal, the power densities used for the pump and the Stokes 

beams were 2.8 MW/cm2 and 1.6 MW/cm2, respectively. In another set of experiments (Figure S8, 

supporting information), we were able to reproduce the trend using 2.3 MW/cm2 and 1.3 MW/cm2 

of pump and Stokes power density, respectively, which indicates the onset of the 3f signal at 

somewhat lower power densities compared to those used for the 3f data presented in Figure 6 

(black curve) .As shown in Figure 6, there is a significant narrowing of the 3f spectrum upon 

saturation.  The FWHM of the f and 2f spectra are 18.3 cm-1 and 17.3 cm-1, respectively. In 

comparison, the FWHM of the 3f spectrum is 7.2 cm-1, which corresponds to a spectral narrowing 

of a factor of 2.5 compared to the theoretically determined factor of 2.0. Although the asymmetry 

and distortion of the f and 2f spectra induced by the nonresonant background make it difficult to 

assess precisely the extent of spectral narrowing, a comparison between FWHM of the 3f spectrum 

(7.2 cm-1) and the FWHM of the Lorentzian fit of the spontaneous Raman band (9.3 cm-1) are 

useful in making a comparison (Figure 6). Also, there appears to be suppression of the nonresonant 

background (NRB) in the 3f spectrum (as opposed to the f and 2f spectra), as has been previously 

demonstrated for diamond.5  

While MSB provides a useful system for exploring the applicability of saturated CARS 

and for testing theoretical predications, it was only able to be investigated in the form of chemically 

homogeneous organic crystals, necessarily lacking discernible microstructures. Thus, it was not 

appropriate for interrogating the enhancement of spatial resolution. For this, we were obliged to 

resort to diamond particles.  

 
Enhancement of Spectral and Spatial Resolution in Diamond Particles 

Owing to their photostability, high number-density of tetrahedral carbon bonds, and 

biocompatibility, nonfluorescing diamond particles have shown promise for testing the 
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development of new CARS imaging techniques.5, 47 Thus, we chose the 1332 cm-1 Raman band of 

diamond (Figure S9, supporting information) to examine the capability of our system for achieving 

enhanced spatial as well as spectral resolution. The diamond particles used had an average size of 

~2-3 µm and were identical to those used by Yonemaru et al..5 The spectra (Figure 7) and images 

(Figures 8a, b) corresponding to f and saturated 3f signals obtained by demodulating the signal at 

500 kHz and at 1.5 MHz of the pump modulation frequency are presented. The data indicate 

spectral narrowing at 3f as compared to f. The FWHMs of the normalized spectra at f (14.8 cm-1) 

and 3f (5.2 cm-1), reveal a narrowing of a factor of 2.8. (We note that this determination was based 

upon the consideration of the central narrow feature of the 3f spectrum.) A visual comparison of 

the images obtained from the f and 3f data clearly shows improvements in spatial resolution (Figure 

8c). As shown in Figure S4, the theoretically calculated spectral narrowing at 3f as compared to f 

is 2.0. 

 

Figure 7. Spectra of diamond particles:  spontaneous Raman spectrum (shaded pink region), 

CARS spectrum at the fundamental (f, 500 kHz, blue), and the saturated CARS spectrum at the 

third harmonic (3f, 1.5 MHz, black).  The pump and Stokes power densities for the spectrum 
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collected at f were 0.8 MW/cm2 and 0.5 MW/cm2, respectively; at 3f, they were 2.2 MW/cm2 

and 1.2 MW/cm2, respectively. 

 

A comparison between the intensity profiles of the f and 3f images for the region where the 

diamond particles were present (designated as 1 and 2 Figure 8a, b) reveals three prominent 

features in both the f and 3f images. The 3f image clearly had a narrower intensity profile within a 

single feature. The ratio of the FWHM of the intensity profiles of feature I (Figure 8c) at f and 3f 

indicates an enhancement of a factor of ~2. The theoretical calculation shows an enhancement of 

a factor of 1.7, as shown in Figure S5. A comparison of the background regions of f and 3f 

(designated as 1’ and 2’ in Figure 8a, b) indicates an inferior signal-to-noise ratio for 3f , and there 

is no significant correlation between the features of f and 3f . 

 

Figure 8. (a) The CARS image of diamond particles collected at f. The pump and Stokes power 

densities were 0.8 MW/cm2 and 0.5 MW/cm2. (b) Saturated CARS image constructed by signal 

demodulation at 3f. (c) The comparison between the intensities using line profiles of two 

identical regions. Square markers represent intensity values for the region where diamond 

particles were present (1 for f and 2 for 3f), and circular markers represent intensity values for 
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the background region (1’ for f and 2’ for 3f). Images are 64×64 pixels, with a lock-in time 

constant of 300 µs and a pixel dwell time of 1 ms. 

CONCLUSION 

We have performed a theoretical analysis of the saturated CARS experiment for MSB that provides 

predictions concerning how the experimental parameters (notably, laser power density and 

modulation) affect the spectral and spatial enhancement of the signal. Computations based on the 

theory were compared with experimental results obtained with an organic molecule, MSB, and 

with diamond particles. While it is not surprising that neither spectral nor spatial enhancement 

should be obtained when the signal is detected at f, theory predicts (and experiment confirms) that 

signal at 2f also affords no improvement in the spatial or the spectral resolution. The enhancement 

afforded by saturation is only attained at the third and higher harmonics of the modulation 

frequency. The theory correctly predicts the changes in the spectral line width upon saturation of 

the CARS, as confirmed by our experiments for MSB and diamond particles. The theory is also 

consistent with a previous calculation by Yonemaru et al. indicating a spatial resolution 

improvement of a factor of 1.27 in the lateral direction at 3f. We obtained an enhancement at 3f of 

1.7 in our calculations and ~ 2 in our experiments. 

Our experimental results are limited to the third harmonic. At the fourth harmonic, the 

signal from MSB was too weak to be detected; and the powers required to generate signal at the 

fourth harmonic often damaged the diamond particles. Thus, as has already been appreciated in 

the literature, there is a practical limitation to performing the saturated CARS experiment. 

Recently, methods like differential SAX (dSAX)12 and virtual sinusoidal modulation (VSM)48 

have been developed to improve the signal to noise ratio in saturation based techniques. dSAX, 

developed for saturated fluorescence microscopy has a better efficiency in extracting higher 
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harmonic signal than regular SAX experiment for the same excitation power density thereby 

reducing the pixel dwell time and improving the signal to noise ratio.12 Gong et al. have employed 

a similar strategy for high resolution stimulated Raman scattering imaging by VSM which 

alleviates the requirement of prolonged laser exposure to accumulate sufficient signal for image 

generation.48 This scheme is particularly attractive as it helps prevent photodamage of the sample.  

    In addition, however, our analysis indicates that certain ratios of the laser power to the 

modulation frequency, quantified by the value defined as 𝛽𝛽
𝜔𝜔𝑚𝑚

 , can render the signal at the third 

harmonic negligible to those at higher harmonics. Given the high-power densities required to 

obtain a saturated CARS signal at the smallest possible harmonic, 3f, the utility of this technique 

is determined by maintaining a balance between the excitation power required for achieving the 

saturation while at the same time avoiding photodamage of the sample. In our experiments, in 

order to obtain the largest possible signals with which to test our theoretical results, we have 

employed strong Raman scatterers: MSB and diamond particles. But in the cases of other samples 

having functionalities with small Raman cross sections and low number densities for the bonds of 

interest, the incident power requirements may be prohibitively high. This will either require the 

reconsideration of experimental design or stimulate the development of algorithms for data 

analysis. 
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