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Abstract: All-solid-state batteries were fabricated by assembling a layer of self-organized TiO2

nanotubes grown on as anode, a thin-film of polymer as an electrolyte and separator, and a layer
of composite LiFePO4 as a cathode. The synthesis of self-organized TiO2 NTs from Ti-6Al-4V alloy
was carried out via one-step electrochemical anodization in a fluoride ethylene glycol containing
electrolytes. The electrodeposition of the polymer electrolyte onto anatase TiO2 NTs was performed
by cyclic voltammetry. The anodized Ti-6Al-4V alloys were characterized by scanning electron
microscopy and X-ray diffraction. The electrochemical properties of the anodized Ti-6Al-4V alloys
were investigated by cyclic voltammetry and chronopotentiometry techniques. The full-cell shows a
high first-cycle Coulombic efficiency of 96.8% with a capacity retention of 97.4% after 50 cycles and
delivers a stable discharge capacity of 63 µAh cm−2 µm−1 (119 mAh g−1) at a kinetic rate of C/10.

Keywords: all-solid-state Li-ion batteries; TiO2 nanotubes; polymer electrolyte; anodization

1. Introduction

Lithium-ion batteries (LIBs) have attracted great interest as excellent reversible energy storage
devices due to their high energy density, low self-discharge, long cycle life, and several other
benefits [1,2]. To gain the advanced storage performance, so far, most research has focused on
innovative electrode materials, such as nanomaterials electrodes, which play a crucial role in recent
technologies to reach high-performance devices [3–5]. Titanium dioxide (TiO2) has been considered as
a good candidate as an anode material for LIBs due to its superior performances such as a low volume
change of less than 4% during the reversible insertion of lithium ions, having a theoretical capacity of
ca. 330 mAh g−1, good cycle life, low cost, and low toxicity [6]. Moreover, a high potential of 1.7 V
versus Li/Li+ provides a good safety compared to commercialized graphite materials [7].

One-dimensional (1D) TiO2 materials have been developed as anodes for LIBs such as nanotubes,
nanowires, nanorods, etc. [8]. Among the various nanostructured oxide materials, special attention
has been directed to TiO2 nanotubes (TiO2 NTs) because they have been already explored for many
applications such as solar cells [9–11], sensors [12,13], photocatalysis [14–16], and rechargeable
batteries [17,18]. In addition, the TiO2 NTs materials have been extensively studied as anode material,
thanks to the high surface-to-volume ratio leading to the enhanced electrochemical properties [19].

Several methods have been employed for the self-assembly of nanotubular arrays on titanium
surfaces [20–23]. Among the approaches, the anodization technique is one of the most known and
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straightforward methods, which offers an extensive area of uniform nanotubes on Ti foil and allows
the thickness of film oxide layer to be fine-tuned [13]. Recently, rechargeable all-solid-state batteries
have become increasingly important to enable the miniaturization of electronic devices, the prevention
of hazardous liquids, the deterioration of electrodes during cycling, and the absence of electrolyte
leakage [7]. Planar thin-film solid-state Li-ion batteries have been rapidly emerged and extensively
studied thorough vacuum deposition processes [24–26], but several potential drawbacks are evident,
such as using highly reactive lithium; the use of highly reactive metallic lithium anode requires
expensive packaging technology. In addition, pure lithium is extremely volatile and has a low melting
point of approximately 180.5 ◦C, which is typically lower than that in the re-flow soldering process [27].

Many efforts have been made to improve the physical and electrochemical performance of
the TiO2 nanotubes such as doping with foreign atoms (N, Nb, S, V, etc.) and carbon coating [28].
For example, Li et al. [29] prepared an N-doped TiO2 nanotubes/N-doped graphene composite via
hydrothermal synthesis followed by a heat treatment in the presence of urea; the galvanostatic cycling
test demonstrated a discharge capacity of 90 mAh g−1 at 5 A g−1. Kyeremateng et al. [30] reported that
Tin-doped TiO2 nanotubes delivered higher reversible capacity compared to un-doped TiO2 nanotubes.
In addition, Lopez et al. [31] prepared nanostructured electrodes based on the surface modification
of TiO2 nanotubes with a low amount of Li3PO4, and their electrochemical performances showed
good cycling stability. In the present work, we report the fabrication of an all-solid-state battery
consisting of TiO2 NTs synthesized from ternary titanium alloy (Ti-6Al-4V, with 6 wt% aluminum
and 4 wt% vanadium) alloy as an anode, a thin layer of polymer electrolyte, and an LiFePO4 layer
as a cathode. Electrochemical tests show an improved performance of anodized Ti-6Al-V alloy after
electropolymerization, exhibiting good discharge capacity, Coulombic efficiency, and capacity retention.

2. Results

2.1. Structural and Morphological Characterization

Figure 1 displays the XRD pattern of the TiO2 NTs before and after annealing treatment.
As can be seen, some peaks located at 2θ = 35.6◦, 38.7◦, 40.6◦, 53.3◦, 63.6◦, 71.1◦, and 76.9◦

(Titanium, JCPDS 01-1197) can be attributed to Ti metal, and no visible diffraction peaks assigned to
crystalline TiO2 are observed after anodization, indicating that the samples are amorphous [29,30].
The samples reveal sharp and strong peaks, which indicate that the as-annealed TiO2 NTs arrays have
crystallized. The typical peaks observed at 2θ = 25.4◦ and 48.3◦ can be assigned to crystal phases of
TiO2 (tetragonal, anatase, JCPDS 21-1272); the anatase peaks correspond to the planes (101) and (002),
respectively. Furthermore, no peak of Al and V oxides are observed in the XRD patterns, which may
be due to the very low percentage in the sample [32].

The water content plays a significant role in the dissolution rate, meaning that the increase in the
water content leads to the faster dissolution of the oxide layer. Figure 2 shows the SEM micrographs of
the anodized nanotubes grown on Ti-6Al-4V alloy in the ethylene glycol electrolyte with different water
contents (20 wt% and 25 wt%). When the water content of 20% is employed, vertically aligned and
uniformly opened TiO2 NTs are distributed over the alloy substrate with accessible pores on the surface.
An inner diameter of the TiO2 NTs varies between 90 and 210 nm. Indeed, the TiO2 NTs structure does
not collapse, implying that the nanotube arrays maintained better thermostability during annealing
treatment at 450 ◦C. The length of the tubes of 1.25 µm has been estimated from the SEM cross-section
view (see the inset Figure 2a). In contrast, at higher water content of 25 wt%, the surface shows some
debris, and the appearance of the surface is less uniform (Figure 2b). This phenomenon is commonly
found in polyphase alloys due to the presence of different phases, resulting in a preferential dissolution
of less stable elements. The selective dissolution of heterogeneous alloy is reduced at a water content
of 20 wt%, and the nanotube arrays formed uniformly for α and β phases.
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Figure 2. SEM images of TiO2 NTs obtained from the anodization of Ti-6Al-4V alloy in fluoride ethylene
glycol electrolyte with different water contents: 20 wt% H2O (top view in the inset) (a) and 25 wt%
H2O (b), and the energy-dispersive spectroscopy (EDS) elemental spectrum of the anodized Ti-6Al-4V
alloy (c).

Figure 2c illustrates the energy-dispersive spectroscopy (EDS) analysis for the elemental
identification of the anodized Ti-6Al-4V alloy. The EDS spectrum of the sample indicates that
Ti, O, Al, and V are present at the surface of anodized Ti-6Al-4V alloy. The strong percentage of
O suggests that the oxidation of all elements occurred. In contrary to anodized pure Ti, F is not
incorporated in oxides during the anodization process.

As reported in the literature [33,34], the growth reactions of the TiO2 NTs involve the field-assisted
oxidation reaction of metal, field-assisted dissolution, and the chemical dissolution of the anodic layers.
In this work, once a high potential of 60 V is applied to Ti alloys, an oxidation reaction occurs at the
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metal/metal oxide interface to generate Ti4+. The interaction of Ti4+ with O2- and OH- ions supplied by
water molecules in the electrolyte produces a barrier layer of TiO2 and Ti(OH)4. Eventually, the Ti(OH)4

creates TiO2 and releases water via a condensation reaction. Meanwhile, the hydrogen evolution takes
place to form hydrogen ions and electrons at the Pt counter electrode surfaces [35]. The chemical
reactions involved during this process are represented in the following Equations (1)–(5):

Ti→ Ti4+ + 4e− (1)

Ti4+ + 2O2−
→ TiO2 (2)

Ti4+ + 4OH−→ Ti(OH)4 (3)

Ti(OH)4→ TiO2 + 2H2O (4)

4H+ + 4e−→ 2H2. (5)

An overall reaction of the Ti reacts with water generating the oxide layer and hydrogen gas is
written as follows:

Ti + 2H2O→ TiO2 + 2H2. (6)

The formation of TiO2 nanotubes is generally associated with the presence of fluoride ions. At the
high applied potential, the formed compact oxide layer, Ti(OH)4, and Ti4+ ions are chemically reacting
with F− to form water-soluble fluoride complexes [TiF6]2−. The selective dissolution of aluminium
oxide (Al2O3) and vanadium oxides (e.g., VO2) might be occurred simultaneously at this stage. As a
result, the balance of the metal oxidation and chemical dissolution of the oxide layer leads to the
growth nanotubular structures. The dominant reaction mechanisms are proposed in Equations (7)–(9)
as follows:

TiO2 + 6F− + 4H+
→ [TiF6]2− + H2O (7)

Ti(OH)4 + 6F−→ [TiF6]2− + 4OH− (8)

Ti4+ + 6F−→ [TiF6]2−. (9)

2.2. Electropolymerization of PMMA–PEG Polymer Electrolyte

In the present study, the electrochemical deposition of the polymer electrolyte into TiO2 NTs is
achieved by the cyclic voltammetry (CV) technique. The nanotubes synthesized in ethylene glycol
electrolyte containing 20 wt% water are used for the electropolymerization of the polymer electrolyte
into the nanotubes. The starting monomer is methyl ether methacrylate poly (ethylene glycol)
(MMA-PEG, Mw: 500). The upper potential limit was set according to the open circuit voltage of
the system, which is around −0.35 V versus Ag/AgCl (3M KCl), and the lower limit was set to −1V
versus Ag/AgCl (3M KCl) [36]. The starting monomers are electropolymerized into short chains of
PMA-PEG, where PMA is used to enhance the mechanical properties and PEG is responsible for the ionic
conductivity of the polymer electrolyte. The reaction mechanism of MMA-PEG electropolymerization
into TiO2 NTs is based on the formation of intermediate hydrogen-free radicals [37]. For cathodic
applied potentials, the reduction of H+-producing H2 is accompanied by the formation of hydrogen-free
radicals that can react with the monomers, leading to the polymerization of methyl methacrylate
(PMMA). Figure 3 shows the cyclic voltammogram of the polymer-coated TiO2 NTs for 25 cycles.
Clearly, the absolute value of the cathodic current at −1 V versus Ag/AgCl (3M KCl) drops as the
increment of cycles. The reason for the obvious fading can be explained by the successive growth of
thin insulating polymer layers on the walls of TiO2 NTs.

The electrodeposition of the polymer electrolyte into the TiO2 NTs layer was confirmed by
morphological analysis. Figure 4a–f shows the SEM images of polymer-coated TiO2 NTs after a
different number of CV cycles such as 5, 10, and 25 cycles, confirming the conformal deposition of the
polymer electrolyte. After 25 cycles, the nanotubes are filled and almost covered by a thin polymer film,
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following the surface rugosity of the surface. The polymer electrolyte must be conformally deposited
onto the electrodes and form a continuous layer without any pinholes in order to be used as separator
to prevent the short-circuiting of the electrodes.
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2.3. Electrochemical Performance of Polymer-Coated TiO2 NTs

To gain deeper insight into the positive influence of the electropolymerization approach, the bare
TiO2 NTs and the polymer-coated TiO2 NTs were investigated as anode materials for Li-ion batteries.
Herein, the synthesized TiO2 NTs with 20 wt% H2O has been used to study the charging and discharging
mechanisms during the electrochemical cycling experiments. The samples were tested at scanning rates
of 0.5 mV s–1 in the potential range between 1 and 3 V versus Li/Li+ at room temperature, as displayed
in Figure 5a,b. The distinctive anodic and cathodic peaks represent the redox reactions of the electrodes
with Li+, which is responsible for the electrode phase transformations. The redox peaks are well-defined
and distinguishable (Figure 5a). The Li+ insertion (cathodic peak) and extraction (anodic peak) occur
at the potential of 1.68 and 2.06 V versus Li/Li+, respectively. The slightly decrease of the current
densities in the absolute cathodic and anodic peak indicates the small discharge capacity fading
upon cycling. However, after first cycle, well-overlapped redox peaks are visible, indicating a good
electrochemical stability of the electrode. An additional peak pair at a potential of approximately 2.62 V
versus Li/Li+ with a low current density is also appeared due to the presence of an electrochemically
active VO2 phase, but the VO2 phase does not significantly contribute to the storage performance of
the electrode [31]. The similar behavior is observed for the bare TiO2 NTs, showing the anodic peak at
2.08 V versus Li/Li+ and cathodic peak at 1.63 V versus Li/Li+ (Figure 5b). The CV of the bare TiO2

NTs clearly indicates a lower electrochemical activity and lithium ions storage compared to that of
polymer-coated TiO2 NTs, as shown by a smaller sweeping area and a lower oxidation and reduction
peak current density. Moreover, the peak separation of the polymer-coated TiO2 NTs is substantially
lower than that of bare TiO2 NTs, suggesting a lower polarization.

Figure 5c,d depicts the galvanostatic charge–discharge profiles of polymer-coated TiO2 NTs.
The profiles display flat plateaus of charge at 1.85 V versus Li/Li+ and discharge 1.76 V versus Li/Li+,
which are typical profiles for anatase TiO2 NTs as obtained from XRD results. The first charge and
discharge capacities for polymer-coated TiO2 NTs are 74.9 µAh cm−2 µm−1 (176.8 mAh g−1) and
139.2 µAh cm−2 (328.5 mAh g−1) µm−1, respectively, corresponding to a Coulombic efficiency (CE)
of 53.78%. Meanwhile, the bare TiO2 NTs shows flat plateaus of charge at 1.86 V versus Li/Li+ and
discharge 1.74 V versus Li/Li+, a delivering charge capacity of 59 µAh cm−2 µm−1 (139.2 mAh g−1) and
a discharge capacity of 132.5 µAh cm−2 µm−1 (312.7 mAh g−1) with a significantly lower CE of 44.5%
compared to that of polymer-coated TiO2 NTs. The specific discharge capacity of the polymer-coated
TiO2 NTs is higher compared to some previous studies. For instance, Fasakin et al. [38] reported
that an anatase TiO2 NTs prepared from pristine anatase TiO2 nanoparticles via a low temperature
modified stirring-hydrothermal technique delivered a capacity of 160 mAh g−1 at a specific current
of 36 mA g−1. Auer et al. [39] studied the TiO2 NTs synthesized by a two-step anodization process,
and the anatase TiO2 NTs exhibited a reversible capacity of 185 mAh g−1 (Li0.55TiO2) at a slow C-rate
(C/20). In addition, Savva et al. [40] synthesized ordered TiO2 NTs via electrochemical anodization and
subsequently annealed under N2 and water-vapor (WV) atmospheres. The obtained capacities for the
N2 and WV-treated TiO2 NTs were 231.9 mAh g−1 and 230.6 mAh g−1 at C/20, respectively.

The cells were cycled at multiple C-rates as presented in Figure 5e. A bare TiO2 NTs layer exhibits
a stable capacity of 41.8 µAh cm−2 µm−1 (98.6 mAh g−1) at C/5, 25.9 µAh cm−2 µm−1 (61.1 mAh g−1) at
C/2, and 17.2 µAh cm−2 µm−1 (40.6 mAh g−1) at 1C. Obviously, there is a significant capacity increase
for the polymer-coated TiO2 NTs compared to the bare TiO2 NTs for all C-rates. Polymer-coated TiO2

NTs layers deliver a stable capacity of 53.6 µAh cm−2 µm−1 (126.5 mAh g−1) at C/5, 36.9 µAh cm−2 µm−1

(87.1 mAh g−1) at C/2, and 27.4 µAh cm−2 µm−1 (64.7 mAh g−1) at 1C. The capacities can be recovered
at C/10 for both samples. Herein, we note a large irreversible capacity at the first initial cycles for both
samples, which may originate from the side reaction between the electrodes and Li+, as well as the
presence of residual water at the surface of TiO2 NTs after electropolymerization. This phenomenon
is in agreement with the previous reports [41]; the polymerization of MMA monomer during the
electrochemical cycling test could occur, and the increasing viscosity of the electrolyte might lead
to the decrement of the ionic conductivity. The enhanced capacity and good rate capability of the
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polymer-coated TiO2 NTs can be ascribed to the lower interfacial resistance due to the better interfacial
contact between the anode and polymer electrolyte; hence, it also enhances the diffusion of Li ions.
Indeed, the Coulombic efficiency of the electrode is significantly improved close to 100% upon cycling
(Figure 5f). It should be noted that the increment in the capacity is obtained for the polymer-coated
TiO2 NTs for 25 cycles CV due to the enhancement of the electrode–electrolyte interface between
the TiO2 NTs and the polymer electrolyte. Additionally, the electropolymerization process helps in
exploiting the full active surface area of the nanotubes and hence obtaining the contribution from the
whole electrode surface.Molecules 2020, 25, x FOR PEER REVIEW 8 of 15 
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Figure 5. Cyclic voltammogram of the polymer-coated TiO2 NTs (a). Comparison of cyclic voltammograms
between bare TiO2 NTs and polymer-coated TiO2 NTs (b). Typical galvanostatic charge–discharge profiles
of the polymer-coated TiO2 NTs (c) and bare TiO2 NTs (d). Rate performance of the bare and polymer-coated
TiO2 NTs (e) and Coulombic efficiencies of the bare TiO2 NTs and polymer-coated TiO2 NTs at C/10 to 1C
rate (f).

2.4. Fabrication and Characterization of All-Solid-State Batteries Based on Anodized TI-6Al-4V Alloy
and LiFePO4

Herein, a LiFePO4 cathode is paired with polymer-coated TiO2 NTs in the full-cell system due to its
stability, low cost, and environmental friendliness [42]. Compared to many other cathode compositions,
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LiFePO4 has a lower voltage of 3.45 V versus Li/Li+. However, LiFePO4 shows flat charge–discharge
curves during the two-phase Li insertion–extraction process and excellent cycling stability due to
its unique ordered olivine structure [43]. The electrochemical reactions of LiFePO4 with Li using a
polymer electrolyte have been studied by cyclic voltammetry. Figure 6a shows the CV curves obtained
in the potential range of 2–4.2 V versus Li/Li+ at a scan rate of 0.5 mV s−1. The oxidation peak is visible
at 3.75 V versus Li/Li+, while the reduction peak appears at 3.2 V versus Li/Li+. These redox peaks
correspond to the reversible insertion/extraction of Li ions in the LiFePO4 electrode. Galvanostatic
tests revealed that the reversibility of LiFePO4 cathode is reflected in the voltage profiles with plateaus
at the corresponding voltages (Figure 6b). The charge and discharge plateaus located at 3.57 V versus
Li/Li+ and 3.31 V versus Li/Li+, respectively, originate from the redox process between Fe3+ and Fe2+.
The initial reversible capacity is 118 mAh g−1 at a rate of C/10, which is followed by a capacity of
117.8 mAh g−1 in the second cycle; afterwards, the voltage profiles and capacity are retained. A slight
decrease in the capacity could be attributed to a lower ionic conductivity of the MMA-PEG polymer
electrolyte compared to that of organic liquid electrolyte, resulting in an internal resistance (IR) drop at
the anode–electrolyte interface.
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at C/10 rate in the potential range of 2–4.2 V vs. Li/Li+.

The promising performances of the polymer-coated TiO2 NTs suggested it as a suitable anode
material for application in full all-solid-state Li-ion batteries using the LiFePO4 cathode material,
as schematically depicted in Figure 7a. Note that for this battery, the polymer electrolyte is deposited
via electropolymerization reaction for 25 cycles CV. The polymer thin film deposited atop the TiO2 NTs
during the electropolymerization process serves as a continuous layer with an additional drop-cast
polymer layer, with the total thickness of the polymer electrolyte layer being approximately 200 µm. As
seen in Figure 7b, the electrochemical behavior of TiO2 NTs/polymer/LiFePO4 full-cell by performing
the cyclic voltammetry (CV) test is investigated. The CV curves of the full-cell recorded at the scanning
rate of 0.5 mV s−1 exhibit well-defined redox peaks. The presence of the oxidation peaks at 1.93 V
is attributed to the extraction of Li+ from the cathode and their subsequent insertion into the anode
material. By contrast, reduction peaks at 1.21 V are assigned to the extraction of Li+ from the anode and
their simultaneous insertion into the cathode according to the reactions given in Equations (10)–(12).

Cathode: LiFePO4→ xLi+ + xe− + Li(1−x) FePO4 (10)

Anode: TiO2 + xLi + xe−→ LixTiO2 (11)

Overall reaction: LiFePO4 + TiO2 
 LixTiO2 + Li (1−x) FePO4 (12)
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Figure 7. Schematic representation of the all-solid-state battery (a). Cyclic voltammograms of TiO2

NTs/polymer/LiFePO4 full-cell at a scan rate of 0.5 mV s−1 in the potential range of 0.5–2.8 V (b).
Galvanostatic charge/discharge profiles of TiO2 NTs/polymer/LiFePO4 full-cell at the C/10 rate in the
potential range of 0.5–2.8 V (c). Charge–discharge profiles of TiO2 NTs/polymer/LiFePO4 full-cell at
various current densities from C/10 to C/2 (d). Rate capability of TiO2 NTs/polymer/LiFePO4 full-cell (e).

Since the limiting reactant material of the thin-film battery is TiO2 NTs, the capacity values
are reported versus the mass and the surface of the anode. Figure 7c shows the galvanostatic
charge/discharge profile of the battery consisting of a TiO2 NTs/Polymer/LiFePO4 full-cell in the
potential window of 0.5–2.8 V cycled at the C/10 rate. At the first cycle, the initial charge and discharge
capacities recorded at the C/10 rate are 66 µAh cm−2 µm−1 (155.8 mAh g−1) and 63.9 µAh cm−2

µm−1 (150.8 mAh g−1), resulting in a high Coulombic efficiency (CE) of 96.8% and high capacity
retention of 97.4% after 50 cycles at the C/10 rate. The discharge plateau at approximately 1.75 V
and a charge plateau at approximately 1.50 V almost match with the two intensive peaks in the CV
curves. By taking the middle point of two plateaus, we noted that the operating cell voltage of the TiO2

NTs/Polymer/LiFePO4 full-cell is approximately 1.6 V. An additional plateau observed at 0.75 V could
be attributed to the insertion of Li+ from LiFePO4 to the VO2 structure. This result is in agreement
with the galvanostatic cycling, resulting in half-cell TiO2 NTs on Ti-6Al-4V alloy where the plateau at
2.62 V corresponds to the VO2 phase.
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Figure 7d,e shows the rate performance of a TiO2 NTs/polymer/LiFePO4 full-cell recorded at
multi-C rates for 50 cycles. The battery delivers capacity values of 63 µAh cm−2 µm−1 (119 mAh g−1) at
C/10, 51 µAh cm−2 µm−1 (96.4 mAh g−1) at C/5, and 23 µAh cm−2 µm−1 (43.5 mAh g−1) at C/2, which are
well recovered after the fast cycling rate (C/2). The high capacities for the TiO2 NTs/polymer/LiFePO4

full-cell are attributed to the enhanced surface area between the nanotubes and the gel polymer
electrolyte, hence providing a robust and a high quality electrode–electrolyte interface for long
charge–discharge cycles36. The better electrode–electrolyte contact established between the electrode
and polymer electrolyte drastically facilitates the insertion and diffusion of Li+. Furthermore, calculated
using a working voltage of approximately 1.6 V and taking into account the reversible areal capacity of
the polymer-coated TiO2 NTs (69 µAh cm−2 µm−1), an areal energy density of 110.4 µWh cm−2 µm−1

and an areal power density of 11.04 µW cm−2 µm−1 at C/10 rate can be achieved.

3. Materials and Methods

3.1. Synthesis of Self-Organized TiO2 Nanotubes Grown on Ti–6Al–4V Alloy

The Ti–6Al–4V alloy (0.1 mm thick, 25% tolerance, Goodfellow) was cut into 1.2 cm × 1.2 cm and
ultrasonically cleaned in acetone, 2-propanol, and methanol for 10 min each. Then, the treated foils
were rinsed with ultrapure water and dried in compressed air. At room temperature, the anodization
was performed in a two-electrode electrochemical cell with Ti-6Al-4V alloy as the working electrode
and Pt foil as the counter electrode in ethylene glycol electrolyte containing 0.3 wt% ammonium
fluoride (NH4F) with two different water contents (20 and 25 wt%). All anodization experiments
were carried out under a constant voltage of 60 V using a generator (ISO-TECH IPS-603) for 3 h [32].
After the anodization, the samples were removed from the electrochemical cell and they were dried
in compressed air. The as-prepared samples were annealed at 450 ◦C for 3 h with a heating rate of
5 ◦C/min.

3.2. Electropolymerization of MMA-PEG on TiO2 NTs

The electropolymerization was performed by the cyclic voltammetry (CV) technique in a
three-electrode configuration consisting of the layer of TiO2 NTs as the working electrode, a Pt
foil as the counter electrode, and an Ag/AgCl (3M KCl) as the electrode. An aqueous solution of lithium
bis(trifluoromethanesulfonyl)imide (LiTFSI) and MMA-PEG monomer was mixed and stirred for 3 h;
then, the solution was introduced into the cell. Prior to the electropolymerization, the solution was
purged with N2 for 10 min to eliminate dissolved oxygen. Cyclic voltammetry tests were carried out in
a cathodic current with a potential range of −0.35 to −1 V versus Ag/AgCl (3M KCl) at the scan rate
of 10 mV s−1 for 5, 10, and 25 cycles. After the CVs, the sample was removed from the cell without
rinsing and dried in the BUCHI vacuum dryer at 70 ◦C overnight to evaporate the residual water.

3.3. Preparation of Electrodes

For the TiO2 NTs anode, there was no need to further mix with any additive due to their
self-supported structure. For the positive electrode materials, the LiFePO4 powder was synthesized as
previously reported [41]. Each material was mixed with carbon black (Super P) and polyvinylidene
fluoride (PVDF) at the ratio of 80:10:10. N-methyl-2-pyrrolidone (NMP) was added in the powder
mixture to obtain a paste. The paste was spread on an Al disk (diameter of 8 mm) that was used as the
current collector. The electrode was dried at 110 ◦C for 8 h.

3.4. Fabrication of the All-Solid-State Batteries

All-solid-state batteries were assembled using bare and polymer-coated TiO2 NTs and LiFePO4.
After drying the polymer-coated TiO2 NTs electrode at 70 ◦C for 24 h, 7 µL of the MMA-PEG carrying
LiTFSI salt was drop-casted at the polymer-coated TiO2 NTs surface. The sample was dried again
under vacuum at 70 ◦C for 24 h to obtain a homogeneous polymer thin film. The cells consisting of
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a polymer-coated TiO2 NTs anode and an LiFePO4 cathode were assembled in an argon-filled glove
box (MBraun, Munich, Germany) with <0.5 ppm H2O and <0.5 ppm O2 atmosphere. The LiFePO4

composite cathode on the Al disk was pressed to polymer-coated TiO2 NTs and a polymer electrolyte
dropcast. Two wires were connected to the backside of each current collector using silver conductive
paste and wires.

3.5. Characterizations and Measurements

The surface morphology of the self-organized TiO2 NTs was examined using a field-emission
scanning electron microscope (FE-SEM, Ultra-55, Carl Zeiss, Oberkochen, Germany). The purity of TiO2

NTs was examined by X-ray diffraction (XRD) using a Diffractometer D5000 (Siemens, Munich, Germany)
with CuKα1 (λ= 1.5406 Å) radiation. Then, they were analyzed by comparing with the JCDS-ICDD
database (Joint Committee on Powder Diffraction Standards—International Center for Diffraction Data,
Newtown Square, PA, USA) to check the purity of the samples.

For the Swagelok test cells employing the gel electrolyte, the separators were prepared by soaking
each circular sheet (diameter of 10 mm) of the Whatman glass microfiber with 80 µL of a mixture of
10 mL of 0.5 M LiTFSI with 2.5 g MMA-PEG. The separators were dried overnight at 70 ◦C in the
BUCHI vacuum dryer. For the electrochemical performance tests, bare TiO2 NTs and polymer-coated
TiO2 NTs having a surface area of 0.50 cm2 were used as electrodes without the use of any binders and
conductive additives, assembling using standard two-electrode Swagelok cells. All cells assembly were
conducted in a glove box that was filled with high-purity argon atmosphere in which the moisture and
oxygen contents were less than 0.5 ppm. Cyclic voltammetry tests were carried out using a VMP3
(Bio Logic, Seyssinet-Pariset, France) in the potential window of 1–3 V versus Li/Li+ with a scan rate
of 0.5 mV s−1 for the bare TiO2 NTs and polymer-coated TiO2 NTs. Galvanostatic charge–discharge
cycles were performed with a VMP3 (Bio Logic) in the potential window between 1 and 3 V versus
Li/Li+. The Swagelok test cells were assembled in an Argon-filled glove box. In the half-cell system,
TiO2 NTs electrodes were assembled against metallic Li foil using the gel electrolyte of LiTFSI and
MMA-PEG. The Li foil was cut in a circular shape with the diameter of 9 mm, and two circular sheets
(10 mm in diameter) of the gel electrolyte in the Whatman paper were used as the separator. For the
LiFePO4 electrodes, cyclic voltammetry tests were carried out in the potential window of 2–4.2 V
versus Li/Li+ with a scan rate of 0.5 mV s−1 and galvanostatic charge–discharge cycles were performed
in the potential window between 2 and 4.2 V versus Li/Li+.

Full-cells consisting of the polymer-coated TiO2 NTs/polymer/LiFePO4 were cycled at different
C-rates varying from C/10 to C/2 in the potential window of 0.5–2.8 V. The charge and discharge rates
of a battery are expressed by the C-rate; it means a battery is charged and discharged relative to its
maximum capacity. The rate nC means the current will charge and discharge the full capacity in
1/n hour.

4. Conclusions

In the present work, we showed that the water content in the electrolyte significantly affects the
morphology of self-organized TiO2 nanotubes obtained by anodization of Ti-6Al-4V alloy. A vertically
aligned and uniformly opened TiO2 NTs are distributed over the alloy substrate at 20 wt% H2O,
and by adding 5 wt% H2O, the nanotubes have become less uniform. The electropolymerization
of the MMA-PEG into TiO2 nanotubes was carried out at different CV cycles (5, 10, and 25 cycles).
After 25 cycles, the nanotubes are almost covered by a thin polymer film following the nanotubes
surface rugosity. As a result, there is a significant increase in the capacity of the polymer-coated TiO2 NTs
compared to the bare TiO2 NTs in all C-rates due to the improvement of the electrode-electrolyte interface.
Therefore, polymer-coated TiO2 NTs layers deliver higher stable capacity of 53.6 µAh cm−2 µm−1

(126.5 mAh g−1) at C/5, 36.9 µAh cm−2 µm−1 (87.1 mAh g−1) at C/2, and 27.4 µAh cm−2 µm−1

(64.7 mAh g−1) at 1C compared to that of bare TiO2 NTs. The full-cell battery was composed of a
polymer-coated TiO2 NTs as an anode, a thin layer of MMA-PEG polymer electrolyte, and a composite
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LiFePO4 cathode shows an operating voltage of 1.6 V with good electrochemical performance, not only
a stable discharge capacity of 62.2 µAh cm−2 µm−1 (117.6 mAh g−1) after 50 cycles versus anode at C/10
but also a high capacity retention of 97.35% and a Coulombic efficiency of 96.78% beyond 50 cycles.
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