Elevated expression of endogenous glial cell line-derived neurotrophic factor impairs spatial memory performance and raises inhibitory tone in the hippocampus

Pepin Marshall, Daniel R Garton, Tomi Taira, Vootele Võikar, Carolina Vilenius, Natalia Kulesskaya, Claudio Rivera, Jaan-olle Andressoo

To cite this version:

Pepin Marshall, Daniel R Garton, Tomi Taira, Vootele Võikar, Carolina Vilenius, et al.. Elevated expression of endogenous glial cell line-derived neurotrophic factor impairs spatial memory performance and raises inhibitory tone in the hippocampus. European Journal of Neuroscience, 2021, 10.1111/ejn.15126. hal-03190538

HAL Id: hal-03190538
https://amu.hal.science/hal-03190538
Submitted on 18 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Elevated expression of endogenous glial cell line-derived neurotrophic factor impairs spatial memory performance and raises inhibitory tone in the hippocampus

Pepin Marshall1 | Daniel R. Garton4 | Tomi Taira1,2 | Vootele Võikar1 | Carolina Vilenius1 | Natalia Kulesskaya1 | Claudio Rivera1,3 | Jaan-Olle Andressoo4,5

1HiLIFE Neuroscience Centre, University of Helsinki, Helsinki, Finland
2Veterinary Biosciences, University of Helsinki, Helsinki, Finland
3Institut de Neurobiologie de la Méditerranée, INMED UMR901, Marseille, France
4Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science (HiLIFE) Helsinki, University of Helsinki, Helsinki, Finland
5Karolinska Institute, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Stockholm, Sweden

Abstract
Parvalbumin-positive interneurons (PV+) are a key component of inhibitory networks in the brain and are known to modulate memory and learning by shaping network activity. The mechanisms of PV+ neuron generation and maintenance are not fully understood, yet current evidence suggests that signalling via the glial cell line-derived neurotrophic factor (GDNF) receptor GFRα1 positively modulates the migration and differentiation of PV+ interneurons in the cortex. Whether GDNF also regulates PV+ cells in the hippocampus is currently unknown. In this study, we utilized a Gdnf "hypermorph" mouse model where GDNF is overexpressed from the native gene locus, providing greatly increased spatial and temporal specificity of protein expression over established models of ectopic expression. Gdnfwt/hyper mice demonstrated impairments in long-term memory performance in the Morris water maze test and an increase in inhibitory tone in the hippocampus measured
Electrophysiologically in acute brain slice preparations. Increased PV+ cell number was confirmed immunohistochemically in the hippocampus and in discrete cortical areas and an increase in epileptic seizure threshold was observed in vivo. The data consolidate prior evidence for the actions of GDNF as a regulator of PV+ cell development in the cortex and demonstrate functional effects upon network excitability via modulation of functional GABAergic signalling and under epileptic challenge.

**KEYWORDS**
epilepsy, GABA, mouse models, pentylentetrazole

---

### 1 | INTRODUCTION

Parvalbumin-expressing interneurons (PV+) comprise around 40% of all interneurons in the brain (Markram et al., 2004) and are critical modulators of brain activity (Cobb et al., 1995; Fukuda & Kosaka, 2000a, 2000b; Kawaguchi et al., 1987). Altered PV+ interneuron function and expression is associated with neuropsychiatric conditions (Marín, 2012) and GABAergic function more broadly with epilepsy (Galanopoulou, 2010; Olsen & Avoli, 1997). PV+ interneurons have also recently been shown to co-ordinate the network dynamics of episodic memory consolidation in vivo (Donato et al., 2013; Ognjanovski et al., 2017). Understanding the development and function of interneurons is therefore important for understanding brain function and human diseases.

Glial cell line-derived neurotrophic factor (GDNF (Lin et al., 1993)) has broad effects in the development of multiple cell types in the periphery and central nervous system (see Ibáñez & Andressoo, 2015 for review). GDNF acts by binding to its primary receptor, GDNF family receptor alpha-1 (GFRα1) and signalling via the RET tyrosine kinase receptor (Durbec et al., 1996; Jing et al., 1996; Treanor et al., 1996; Trupp et al., 1996). Whilst GFRα1 is broadly expressed in the central nervous system, RET expression is restricted and GDNF then signals independently of RET via neural cell adhesion molecule (NCAM; Paratcha et al., 2003), or N-Syndecan-3 (Bespalov et al., 2011). Illustrating this, only GDNF or GFRα1 knockout mice show reduced numbers of cortical and hippocampal interneurons at birth, yet RET knockout animals do not (Pozas & Ibáñez, 2005). However, one challenge that has hampered advances in studying the postnatal role of GDNF signalling is the early postnatal lethality of GDNF knockout mice due to lack of kidneys and enteric nerves (Moore et al., 1996; Pichel et al., 1996; Sánchez et al., 1996).

To overcome the problem posed by early postnatal lethality and gain insight into how GDNF signalling impacts the postnatal brain, transgenic mice were generated where GFRα1 expression is limited solely to RET expressing cells; “cis-only” (Canty et al., 2009). These animals survive the postnatal period as they develop kidneys and enteric nerves and develop grossly normally (Enomoto et al., 1998). Interestingly, about 72% of parvalbumin positive (PV+) interneurons do not express RET in the hippocampus, yet the majority of PV+ interneurons are positive for GFRα1 (Sarabi et al., 2000) suggesting a role for GDNF in PV+ cell development and function, independent of signalling via RET. In line with this hypothesis, Canty et al. (2009) described disruption in the location of cortical PV+ interneurons in medial and rostrocaudal regions and concomitant cortical hyperexcitability in GFRα1 “cis-only” mice. These results suggest that RET-independent GDNF signalling is important in regulating PV+ development and function in the cortex. Furthermore, mice lacking GDNF family ligand neurturin (NRTN) binding receptor GFRα2 show increased PV+ cell number and expression - do not display any of the behavioural or molecular side effects associated with ectopic GDNF expression in the brain (Kumar et al., 2015; Mätlik et al., 2018). Because Gdnf<sup>−/− hyper</sup> mice are viable they present an opportunity to study the effect of endogenous GDNF on brain postnatal development...
and function. Here, we present the finding that long-term memory performance in the Morris water maze test in Gdnf<sup>wt/hyper</sup> mice is impaired. This is paralleled by an increase in PV+ interneurons in the dorsal hippocampus and in distinct cortical areas. We observe an increase in inhibitory tone in acute hippocampal slice preparations in vitro which parallels with an increase in seizure threshold in vivo. These results suggest that GDNF levels regulate cortical and hippocampal PV+ neuron development and regulate inhibitory function in vivo.

2 | MATERIALS AND METHODS

2.1 | GDNF hypermorphic mice

The production of Gdnf hypermorphic heterozygous mice (Gdnf<sup>wt/hyper</sup>) was performed as described by Kumar et al. (2015). Briefly, Gdnf 3′UTR replacement was performed via insertion of an FRT-flanked puΔtk cassette (Chen & Bradley, 2000) after the stop codon in the Gdnf locus in embryonic stem (ES) cells. The puΔtk cassette contains the bovine growth hormone polyadenylation (bGHpA) signal which terminates transcription. In silico analysis demonstrated that puΔtk contains approximately half the number of potential miRNA-binding sites and ~10% of the conserved miRNA sites present in the wild-type Gdnf 3′UTR, resulting in a lack of sites for miRNA-induced down-regulation of Gdnf and a subsequent increase in gene expression (Kumar et al., 2015). Gdnf “hypermorph” mice were maintained in a 129Ola/ICR/C57bl6 mixed background. Gdnf<sup>wt/hyper</sup> males (heterozygotes) were bred with wild-type females to produce offspring with a Mendelian distribution of ~50% wild-type and 50% heterozygous Gdnf<sup>wt/hyper</sup> littermate animals were used as controls. For the electrophysiology experiments Gdnf<sup>wt/hyper</sup> males were bred with wild-type C57Bl/6JRecHSd (Envigo). All animal experiments were performed in accordance with the Council Directive 2010/63/EU of the European Parliament and the Council of 22 September 2010 on the protection of animals used for scientific purposes. The number of animals was kept to a minimum and they were treated in a humane manner in compliance with the guidelines of the Helsinki University Animal Care Committee and approved by the County Administrative Board of Southern Finland under licence numbers EAVI-2010-09011/Ym-23 and EAVI/11198/04.10.07/2014.

2.2 | Morris water maze

44 male mice (22 Gdnf<sup>wt/hyper</sup> and 22 Gdnf<sup>wt/wt</sup> wild-type littermate controls) were tested. The mice were group-housed (2–4 animals per cage) with food and water ad libitum under a 12-hr light-dark cycle (lights on at 6 a.m.) at relative humidity 50%–60% and room temperature 21 ± 1°C. The bedding (aspen chips, Tapvei Oy, Finland) was changed weekly and a wooden tube and aspen shavings (Tapvei) was provided as an enrichment. The age of the mice at the beginning of behavioural testing was 3 months. There was no difference in the body weight of the animals in the beginning of testing (Gdnf<sup>wt/wt</sup> 35.7 ± 0.6 g, Gdnf<sup>wt/hyper</sup> 34.7 ± 0.5 g).

The system consisted of a black circular swimming pool (Ø 120 cm) and an escape platform (Ø 10 cm) submerged 0.5 cm under the water surface in the centre of one of four imaginary quadrants. Noldus Ethovision XT 10 software (Noldus Information Technology) was used for tracking and recording the trials in water maze. The animals were released to swim in random positions facing the wall and the time to reach the escape platform (maximum time 60 s) and the swimming distance were measured in every session. In addition, thigmotaxis (time spent swimming within the outermost ring of the pool 10 cm from the wall) was measured. Two training sessions consisting of three trials each were conducted daily. The interval between trials was 4–5 min and between training sessions ~5 hr. The hidden platform remained in a constant location for 3 days (for the six initial training sessions) and was thereafter moved to the opposite quadrant for 2 days (four reversal training sessions). The probe trials (PT) were conducted approximately 18 hr after the last initial training session and the last reversal training session. For probe trials mice swam in the maze for 60 s without the platform being available. Spatial memory in the probe trials is therefore estimated by preference for swimming within the trained quadrant (a circular area of Ø 30 cm surrounding the previously trained platform location) over swimming in corresponding regions in the three other quadrants. After the second probe trial, mice were tested as a control for one block of three trials with the platform made fully visible in a quadrant not previously used to see if escape latency was affected (VIS). Statistical analyses were performed in SPSS (IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version 24.0.).

2.3 | Immunohistochemistry

For parvalbumin staining, brains of 6 Gdnf<sup>wt/wt</sup> and 6 Gdnf<sup>wt/hyper</sup> male mice aged 10–12 weeks were dissected out and fixed in 4% PFA (Sigma-Aldrich) for 72 hr at 4°C, cryoprotected in 30% sucrose, and cut into 40μm coronal slices with a cryostat (CM3050; Leica). Every sixth slice of the dorsal hippocampus between −1.355 mm and −2.488 mm anteroposteriorly was selected for staining and the distance between slices was 200 μm. Slices were then prepared for staining as described in Bespalov et al., 2011 rinsed in PBS, pH 7.4 and dehydrated in a series of methanol (30%, 50% and 80% in PBS), treated in Dent’s fixative (80% methanol and 20% DMSO),
2.4 In vitro electrophysiology

400 µm thick coronal hippocampal slices were prepared from 2 to 3 week-old male Gdnf<sup>wt/wt</sup> and Gdnf<sup>wt/hyper</sup> mice for electrophysiological recordings, N = 7 per genotype per procedure and 1–2 slices were used from each mouse. Mice were decapitated under general anaesthesia by placing 20 µl halothane (Sigma-Aldrich) onto a paper towel in a 500 ml covered plastic beaker and checking for signs of respiratory depression (<60 inhalations per minute) and testing for lack of paw withdrawal reflex, at which point brains were rapidly removed, dissected and cut with a vibratome in ice-cold standard solution containing (in mM): NaCl, 124; KCl, 3; CaCl<sub>2</sub>; NaHCO<sub>3</sub>, 26; NaH<sub>2</sub>PO<sub>4</sub>, 1.25; MgSO<sub>4</sub>, 1.3; D-Glucose, 15 (Sigma-Aldrich); and equilibrated with 95% O<sub>2</sub>/5% CO<sub>2</sub> to yield a pH of 7.4. The slices were allowed to recover for at least 1 h at room temperature before being transferred into recording chamber. All recordings were carried out at 32°C in submerged configuration in standard solution.

Blind whole-cell patch-clamp recordings of IPSCs were made from CA1 pyramidal neurons using an Axopatch 200B amplifier (Axon Instruments). Internal solution for glass microelectrodes (5–7 MΩ) contained (in mM): CsMeSO<sub>4</sub>, 130; HEPES, 10; NaCl, 8; EGTA, 0.5; QX314, 5; Mg-ATP, 4; Na-GTP, 0.3; 280 mOsm, pH adjusted to the final value of 7.2 with KOH (Sigma-Aldrich). Recordings were made in voltage-clamp mode at a holding potential of −70 mV. Series resistance was monitored throughout the recordings and cells were rejected if values changed by more than 25% or exceeded 30 MΩ. Glutamate receptor antagonists D-AP5 (40 µM) and CNQX (10 µM) were added to the bathing solution to isolate GABAA receptor-mediated currents and record spontaneous inhibitory postsynaptic currents (sIPSCs). The voltage-dependent Na-channel dependent blocker tetrodotoxin (TTX, 1 µM) was added in combination with D-AP5 and NBQX to record action-potential-independent miniature spontaneous postsynaptic currents (mIPSCs). All drugs were from Tocris. IPSC frequency was measured from 200 s periods of continuous recordings. MiniAnalysis 6.0.3 (Synaptosoft Inc.) was used for analysis of IPSC data. sIPSCs and mIPSCs were detected using a peak detection algorithm of the software measuring peak amplitude, 10%–90% rise time and the time to decay (fraction of peak to find decay time was 37%). Undetected events and false positives were corrected by visual inspection. Threshold values were set at 2× the root mean square (2RMS) of baseline noise amplitude. Data were analysed blind as genotyping was performed post-hoc. Statistical analyses were performed in Graphpad Prism 7 (GraphPad Software) apart from the Kolmogorov–Smirnov tests performed online at http://www.physics.csbsju.edu/stats/KS-test.html (College of Saint Benedict and St John's University, MN, USA).

Field potential recordings of long-term potentiation (LTP) utilized the same procedure of sectioning brain slices as above. Slices were cut, stored and perfused as above and recordings were made in the same chamber using the same amplifier. Schaffer collateral afferents were stimulated with a bipolar stimulating electrode to elicit field excitatory
post-synaptic potentials (fEPSPs) in the stratum radiatum of hippocampal area CA1. Recordings were made using glass microelectrodes at a resistance of ~4 MΩ and filled with 150 mM NaCl. Baseline stimulation frequency was 0.05 Hz, pulse duration was 0.1 ms. LTP was induced by theta burst stimulation consisting of 10× 100 Hz bursts at an interval of 5 Hz. The LTP program (Anderson & Collingridge, 2001, University of Bristol, UK) was used for acquisition of fEPSP slope data. Data were normalized to the 20-min baseline prior to tetanic stimulation and the amount of LTP was assessed as the average increase in potentiation from 55 to 60 m after induction relative to baseline using a student’s t test.

**FIGURE 1** Morris water maze performance is impaired in Gdnf<sup>wt/hyper</sup> mice. All chart values are mean ± SEM. Gdnf<sup>wt/wt</sup> N = 22, Gdnf<sup>wt/hyper</sup> N = 22. 1A Training schedule for Gdnf<sup>wt/wt</sup> and Gdnf<sup>wt/hyper</sup> mice in the Morris water maze. S = session. PT = probe trial; two are performed on day 4 and two on day 7. VIS = average time to locate platform three times when it is visible and not submerged to see if escape latency is a factor. 1B Total swim distance in probe trials 1 and 2 as an indicator of motor activity. 1C Initial training of three sessions twice per day, 5 hr apart, 3 days in total. Statistical tests performed: 1 = two-way ANOVA, repeated measures; 2.3 = t test; 1D First probe trial; platform is removed and average time spent searching in each quadrant is recorded. Statistics: t test; Gdnf<sup>wt/wt</sup> N = 22, Gdnf<sup>wt/hyper</sup> N = 21. 1E Reversal training; platform is removed to the opposite quadrant and retraining takes places over 2 days. VIS = time spent swimming to platform that is made visible to see if escape latency is a factor. A t test was performed for p-values marked 1 and 2. 1F Second probe trial. Statistics: t test; Gdnf<sup>wt/wt</sup> N = 22, Gdnf<sup>wt/hyper</sup> N = 21.
2.5 | Seizure threshold in vivo

Pentylenetetrazole (PTZ; Sigma-Aldrich) was administered intraperitoneally (i.p.) to a cohort of mature adult male mice aged 12–20 weeks comprised of 11 Gdnf<sup>wt/wt</sup> and 13 Gdnf<sup>ht/ht</sup> wild-type littermate controls at an initial starting dose of 30 mg/kg and with additional top-up doses of 15 mg/kg at 5 m intervals until stage 5 seizure had been reached as scored via a modified Racine scale of seizure ratings (see Figure 4a). Seizures were video recorded using a standard webcam at 30fps and saved for analysis and verification. Mice were aged 12–20 weeks comprised of 11 Gdnf<sup>wt/wt</sup> and 13 Gdnf<sup>ht/ht</sup> wild-type littermate controls at an initial starting dose of 30 mg/kg and with additional top-up doses of 15 mg/kg at 5 m intervals until stage 5 seizure had been reached as scored via a modified Racine scale of seizure ratings (see Figure 4a). Seizures were video recorded using a standard webcam at 30fps and saved for analysis and verification. Mice were matched for body composition (mean weight = 34.54 g, SD = 5.14, min. = 27 g, max. = 45 g) as mice noted to be obese, weighing >45 g had shorter latency to seizure in pilot experiments (data available on request). Statistical analyses were performed in Graphpad Prism 7 (GraphPad Software).

3 | RESULTS

3.1 | Deficits in memory performance in the Morris water maze

The Morris water maze is a well-established measure of memory performance in rodents. The first session requires the experimental animal to swim and locate a submerged platform hidden from view and to then locate it in subsequent sessions as a measure of dorsal hippocampal memory performance. In the initial search session Gdnf<sup>wt/wt</sup> and Gdnf<sup>ht/ht</sup> mice demonstrated almost identical mean search times (see Figure 1c: Gdnf<sup>wt/wt</sup> N = 22, mean search time = 41.13s, SEM = 3.05; Gdnf<sup>ht/ht</sup> N = 22, mean search time = 42.23s, SEM = 2.52; t=−0.279, df = 42, p = .782) indicating that there are no differences in the initial search strategy. However, a significantly impaired overall learning strategy in sessions S2–S6 was observed as a main effect between genotypes (Figure 1c: two-way ANOVA, repeated measures; Gdnf<sup>wt/wt</sup> N = 22, Gdnf<sup>ht/ht</sup> N = 22; F = 4.7, df = 2, p = .036), with sessions 5 and 6 significantly impaired (t-test; Gdnf<sup>wt/wt</sup> N = 22, Gdnf<sup>ht/ht</sup> N = 22; S5 t = −2.233, df = 42, p = .031; S6 t = −2.018, df = 42, p = .050). After three days of training in platform location, on the fourth day a probe trial with no platform present is performed and the time spent in each quadrant of the swimming area is recorded. Upon probe trial training on day 4 after initial training completion, Gdnf<sup>ht/ht</sup> mice spent significantly less time in the trained quadrant and significantly more time in the opposite and right quadrants, indicating impaired search performance (Figure 1d: t test; Gdnf<sup>wt/wt</sup> N = 22, Gdnf<sup>ht/ht</sup> N = 21; Trained Quadrant t = 2.666, df = 41, p = .011; Opposite Quadrant t = −2.236, df = 41, p = .031; Right Quadrant t = −2.295, df = 41, p = .027). Reversal training is then performed with the platform in a different location for two days, on days 5 and 6. During reversal training, Gdnf<sup>ht/ht</sup> again displayed a trend towards impaired learning overall (Figure 1e) that was however not statistically significant (two-way ANOVA, repeated measures; Gdnf<sup>wt/wt</sup> N = 22, Gdnf<sup>ht/ht</sup> N = 22; F = 2.774, df = 2, p = .103), although session 9 was significantly impaired (t test; S9 t = −2.461, df = 42, p = .018). Upon testing with the reversal training probe trial with the platform removed, Gdnf<sup>ht/ht</sup> again displayed an impaired search strategy and spent significantly more time in the left quadrant compared with wild-type mice (Figure 1f: t test; Gdnf<sup>wt/wt</sup> N = 22, Gdnf<sup>ht/ht</sup> N = 21; Left Quadrant t = −2.228, df = 41, p = .027). No significant differences were found between Gdnf<sup>wt/wt</sup> and Gdnf<sup>ht/ht</sup> in total swim distance in either probe trial 1 or 2 (Figure 1b), indicating no gross differences in motor activity. Therefore, Gdnf<sup>ht/ht</sup> mice display significant impairment in memory compared to wild-type littermates and search performance across several measures in the MWM. These are not attributable to any increase in motor activity and suggest impaired memory function.

3.2 | Increased PV+ interneurons in dorsal hippocampus and in somatosensory and parietal cortex

Animals expressing GDNF binding receptor GFRα1 only in RET-positive cells display defective distribution of PV+ interneurons in the cortex (Canty et al., 2009). In order to assess parvalbumin-expressing interneuron density...
immunohistochemical staining for the calcium-binding protein parvalbumin was performed (see Figure 2a for representative sections). Cell density counts revealed that the number of parvalbumin-positive (PV+) interneurons per millimetre squared is significantly increased in Gdnfwt/hyper versus wild-type littermates in primary somatosensory (S1, trunk division) and posterior parietal cortex as shown in Figure 2c in layers 2/3 (Gdnfwt/wt N = 12, Gdnfwt/hyper N = 14, t = −2.71, df = 24, p = .012) and in layers 5–6 (Gdnfwt/wt N = 12, Gdnfwt/hyper N = 14, t = −3.39, df = 24, p = .002). No significant differences were seen in S1 barrel cortex (Figure 2b), nor in retrosplenial or primary motor cortex (M1), (Figure 2d,e). A significant increase in PV+ cell density was also seen in hippocampal areas CA1 (Gdnfwt/wt N = 12, Gdnfwt/hyper N = 14, t = −3.22, df = 24, p = .004) and in CA3 (Gdnfwt/wt N = 12, Gdnfwt/hyper N = 14, t = −3.10, df = 24, p = .007) but not in dentate gyrus, as shown in Figure 2f.

An apparent increase in PV+ cell density could be due to a decrease in cortical or hippocampal thickness, or due to an overall increase in cell density. To analyse these option cell density and cortical and hippocampal thickness were measured using Nissl staining. Representative sections show no gross differences in morphology (Figure 1g). Nissl body staining of coronal brain sections at the same level of the dorsal hippocampus as those used for staining of parvalbumin was performed (see Figure 2a for representative sections). Cell density counts revealed that the number of parvalbumin-positive (PV+) interneurons per millimetre squared is significantly increased in Gdnfwt/hyper versus wild-type littermates in primary somatosensory (S1, trunk division) and posterior parietal cortex as shown in Figure 2c in layers 2/3 (Gdnfwt/wt N = 12, Gdnfwt/hyper N = 14, t = −2.71, df = 24, p = .012) and in layers 5–6 (Gdnfwt/wt N = 12, Gdnfwt/hyper N = 14, t = −3.39, df = 24, p = .002). No significant differences were seen in S1 barrel cortex (Figure 2b), nor in retrosplenial or primary motor cortex (M1), (Figure 2d,e). A significant increase in PV+ cell density was also seen in hippocampal areas CA1 (Gdnfwt/wt N = 12, Gdnfwt/hyper N = 14, t = −3.22, df = 24, p = .004) and in CA3 (Gdnfwt/wt N = 12, Gdnfwt/hyper N = 14, t = −3.10, df = 24, p = .007) but not in dentate gyrus, as shown in Figure 2f.

To gain further insight into how an increase in PV+ cell number influences hippocampal function we next performed electrophysiological measurements in the hippocampus.

3.3 Increased GABAergic tone in hippocampus in vitro

To further corroborate the increase in GABAergic tone seen in vitro, in vivo seizure threshold was measured with intraperitoneal application of pentylenetetrazole. A significant increase in latency to stage 5 seizures in Gdnfwt/hyper versus wild-type littermates was observed (Figure 4b: Gdnfwt/wt N = 13, Gdnfwt/hyper N = 11, t = 2.14, df = 22, p = .044)
behavioural repertoire (Määtlik et al., 2018), thus enabling analysis of the postnatal effects of a constitutive increase in GDNF expression without altering the pattern of expression. We observed significant impaired memory performance in young adult mice in the Morris water maze during initial training and testing and somewhat impaired memory performance during reversal training and testing. The lesser effects in reversal training as compared to initial training may be due to confounding factors upon memory function due to repeat training and testing over multiple days increasing the signal-to-noise ratio for detection.

The memory component of the platform location task is largely dependent upon dorsal hippocampal function (Moser et al., 1995). Given this evidence of reduced dorsal hippocampal function we then measured classical long-term potentiation (LTP) in stratum radiatum of CA1 via theta-burst stimulation yet observed no significant impairments in excitability analogous to memory formation. We did however observe increased inhibitory tone in the hippocampus that was paralleled by an increased number of PV+ interneurons in the hippocampus and in several cortical areas. This increase in PV+ cell number was not attributable to gross changes in cell density, cortical layer thickness, or hippocampal size as ascertained by Nissl staining. As increased GABAergic activity in the hippocampus is known to be protective against chemically-induced seizures (Martin et al., 1995; Yoo et al., 2006), we next found that Gdnfwt/hyper mice are indeed protected from PTZ-induced seizures. However, why does a persistent, twofold increase in endogenous GDNF levels impair memory retrieval in young adult mice?

In hippocampal slice preparations in vitro both the frequency and amplitude of sIPSCs (spontaneous inhibitory post-synaptic currents) were increased in CA1 pyramidal cells of Gdnfwt/hyper mice compared to wild-type littermates. These results are consistent with a larger population of interneurons firing simultaneously. Additional changes in interneuronal intrinsic excitability and/or restructuring of inter-interneuron connectivity may mediate the observed increase in frequency. This increase in GABAergic network activity is postulated to have an effect on memory because GABA (Klausberger et al., 2005) and, more specifically, parvalbumin-positive interneurons (Ognjanovski et al., 2017) are important regulators of hippocampal oscillations (Ylinen et al., 1995) during memory consolidation immediately following learning and in the consolidation that occurs during sleep. As mIPSCs (miniature inhibitory post-synaptic currents) showed no increase in frequency or amplitude this suggests that the observed increase in GABAergic tone is not due to increased quantal release of GABA, nor to increased GABAA receptor number (Nusser et al., 1997), but rather due to increased inhibitory network activity.

Although GDNF has also been shown to regulate excitatory synapse formation in the hippocampus (Irala

**FIGURE 4** Increased seizure threshold in vivo. 4A Racine scale of seizure classification modified for mouse behaviour. 4B Horizontal line denotes mean latency to stage 5 seizure in Gdnfwt/wt and Gdnfwt/hyper mice. Boxplots represent 25th and 75th percentiles, bars represent range of minimum and maximum values. Statistical test: t test, Gdnfwt/wt N = 13, Gdnfwt/hyper N = 11 animals

(a) Racine scale of seizure classification

<table>
<thead>
<tr>
<th>Stage</th>
<th>Characterisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Decrease in motor activity until comes to rest; time at which abdomen makes contact with cage.</td>
</tr>
<tr>
<td>2</td>
<td>Twitches. First whole body head to tail hiccups.</td>
</tr>
<tr>
<td>3</td>
<td>Time to first fall, with recovery. Fully developed minimal seizures with head and forelimb clonus.</td>
</tr>
<tr>
<td>4</td>
<td>Falls and remains prone. Forelimbs parallel to body axis and stiff.</td>
</tr>
<tr>
<td>5</td>
<td>Wild running and jumping (WRJ). Major seizure resulting in fall and clonus of all limbs usually leading to death.</td>
</tr>
</tbody>
</table>

(b) Latency to stage 5 seizure

---

**DISCUSSION**

Previous work on the effects of GDNF signalling on interneuron development studied either embryonic development in genetic knockout mice or utilized GFRα1 “cis-only” mice where perinatally-induced lethality is overcome by only expressing the GDNF receptor GFRα1 in RET-expressing cells. This transgenic model of GFRα1 knockout revealed PV+ “holes” in various areas in the cortex and reduced threshold to seizures (Canty et al., 2009). Conversely, here we have studied Gdnfwt/hyper mice that over-express GDNF protein only in natively expressing cells. These mice survive and gain weight normally (Kumar et al., 2015) and display a normal
et al., 2016) we did not observe hyperexcitability in *Gdnf*^wt/hyper^ mice in response to pentylenetetrazole challenge; on the contrary, they were protected. While Canty et al. (2009) did not observe changes in hippocampal PV+ neuron number in GFRα1 “cis-only” mice, we did observe an increase in PV+ cell number in the CA1 and CA3 pyramidal layers in *Gdnf*^wt/hyper^ mice, suggesting that RET-independent GDNF signalling may be a factor in hippocampal PV+ neuron development and positioning. The observed increase in PV+ cells in the cortex in *Gdnf*^wt/hyper^ mice complements the previous observation in GFRα1 cis-only mice (Canty et al., 2009) and suggests that GDNF is the likely ligand for GFRα1 in driving cortical PV+ neuron development.

A recent study suggested that PV+-dependent long-term memory consolidation has a critical time window of 12–14 hr post-training (Karunakaran et al., 2018). This supports our observations as impairments in recall become apparent only after consolidation: during training on day 3, in the probe trial on day 4, and in reversal training on day 5. The same study also showed that memory consolidation is dependent upon dopamine (DA) D1/D5 receptors. So far it is known that complete ablation of GDNF does not alter DA levels or DAergic cell survival (Kopra et al., 2015) but instead modifies dopamine transporter (DAT) function in the striatum (Kopra et al., 2017). *Gdnf* heterozygous knockout mice do however exhibit a learning and memory deficit (Gerlai et al., 2001), again without any changes in striatal DA or the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) levels. We have, however, previously reported in these *Gdnf*^wt/hyper^ mice a 25% increase in striatal DA concentration and a 35%–40% increase in striatal DOPAC along with greatly enhanced dopamine transporter (DAT) function (Kumar et al., 2015). Although dopamine release in the hippocampus is correlated with episodic and spatial memory learning (Kempado et al., 2016) it is possible that increased dopamine turnover may occur in the hippocampus of *Gdnf*^wt/hyper^ mice and be a factor in impaired memory consolidation.

PV+ cell number is known to directly affect seizure threshold and PV+ interneurons are particularly sensitive to epileptic insult in both mice (Bouilleret et al., 2000; Kuruba et al., 2011) and in humans (Magłoczy & Freund, 2005). Pharmacological ablation of PV+ interneurons in mice results in the development of spontaneous seizures (Drexel et al., 2017) and optogenetic stimulation of PV+ interneurons abolishes seizures in mice (Krook-Magnuson et al., 2013). However, ectopic GDNF overexpression in and of itself suppresses seizures in rodent models (Boscia et al., 2009; Kanter-Schlifke et al., 2007, 2009; Waldau et al., 2010; Yoo et al., 2006) and, although in those experiments GDNF expression generally far exceeds endogenous GDNF expression levels by two or more orders of magnitude, we cannot exclude that the around twofold increase in endogenous GDNF expression in *Gdnf*^wt/hyper^ mice supresses seizure threshold directly and independently of increased PV+ cell number. Decreased seizure threshold has been reported in a GFRα1R cis-only knockout mouse model in response to pentylenetetrazole (PTZ) challenge (Canty et al., 2009). We observed an increased seizure threshold in *Gdnf*^wt/hyper^ mice that appears to compliment this previous work. Experiments with inducible *Gdnf*^hyper^ or conditional knockout *Gdnf*^hyper^ mice in the future would shed further light upon whether this is an acute or developmental effect of GDNF expression in native cells. Activation of PV+ neurons has been shown to attenuate temporal lobe epilepsy (TLA) (Wang et al., 2018) and loss of PV+ neurons to precede juvenile myoclonic epilepsy in a Brd2 mouse model (McCarthy et al., 2020). Altered PV+ function is also seen in schizophrenia and bipolar disorder (Ferguson & Gao, 2018; Toker et al., 2018), Fragile X syndrome (Goel et al., 2018), Tourette syndrome and autism (Rapanelli et al., 2017). Therefore, there may be therapeutic benefits to understanding the relationship between interneuronal function and GDNF.

**ACKNOWLEDGEMENTS**

This study was supported by Instrumentarium Foundation grant to PM, the Academy of Finland (1308265, 266820 to CR, 297727 to JOA), the Sigrid Juselius Foundation (CR, JOA), the University of Helsinki Doctoral Programme Brain and Mind (DRG), Faculty of Medicine at the University of Helsinki, Helsinki Institute of Life Science Fellow grant (JOA), European Research Council (ERC) nr 724922 (JOA) and by Alzheimerfonden (JOA). VV was supported by Jane and Aatos Erkko Foundation; Mouse Behavioural Phenotyping Facility supported by Biocenter Finland and Helsinki Institute of Life Science. The authors also thank Prof Mart Saarma for his enormous support, for initiating the in vivo GDNF studies and providing funding from the Sigrid Juselius Foundation and the Academy of Finland.

**CONFLICT OF INTEREST**

The authors declare no conflicts of interest.

**AUTHOR CONTRIBUTIONS**

PM designed and performed all experiments and statistical analyses except for the Morris water maze and Nissl stain and wrote the manuscript. DRG performed Nissl stain and created related figures and text, performed related statistical analysis and edited some sections of the manuscript. TT provided facilities and reagents for the in vitro electrophysiology experiments. VV provided facilities and funding for the Morris water maze experiments. CV and NK performed the Morris water maze experiments. CR provided facilities, reagents and funding for immunohistochemistry and in vivo seizure experiments and aided with implementation of the latter and edited some sections of the manuscript. JOA...
proposed the study, supplied the transgenic mice, edited and co-wrote several sections of the paper, and provided funding.

PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1111/ejn.15126.

DATA AVAILABILITY STATEMENT
All supporting data and materials can be accessed at the corresponding author’s host institution at University of Helsinki, HiLIFE Neuroscience Centre, Helsinki, Finland.

ORCID
Pepin Marshall https://orcid.org/0000-0002-3620-1889

REFERENCES


protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. *Cell*, 85, 1113–1124.


