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A Hybrid Indoor Localization
Framework in an IoT Ecosystem

Marc Junior Pierre Nkengue, Ivan Madjarov, Jean Luc Damoiseaux,
and Rabah Iguernaissi

Abstract The Global Position System (GPS) does not work in the indoor environ-1

ment because of the satellite signal attenuation. To overcome this lack, we propose a2

Hybrid Indoor Positioning and Navigation System (HIPNS), based on Li-Fi (Light-3

Fidelity) localization and optical camera positioning analyses deployed in an indoor4

environment. The localization approach is based on the fuse of two positioning5

strategies where the camera-based part is responsible for localizing individuals and6

recovering their trajectories in zones with low coverage of Li-Fi LEDs. A third-party7

element is planned to operate in the event of loss of contact. So, the step detection8

technique and heading estimation are applied in a smartphone-based indoor local-9

ization context between two referenced points. The main contribution of this paper10

focuses on the use of techniques, algorithms, and methods from different spheres of11

application that generate heterogeneous data. We apply a data integration approach12

based on REST Web service architecture to allow localization operations in this13

hybrid indoor positioning system (HIPS). In this work-in-progress paper, we also14

present a state-of-the-art survey of techniques and algorithms for indoor positioning15

with the help of smartphones, as well as the main concepts and challenges related to16

this emergent area.17
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1 Introduction20

Devices providing sensing, actuation, control, and monitoring (positioning) activities21

are defined in [1] as the Internet of Things (IoT) ecosystem. The Indoor Positioning22

Systems (IPS) has been developed using a wide variety of technologies and sensors, or23

even combining several of them in hybrid systems. Our work is part of this approach24

as our indoor guidance system combines low-cost technologies that are simple to25

implement and operate: Li-Fi lamps and video cameras. Besides, we have chosen26

to process the positioning data from these sensors via a Web service platform, thus27

ensuring dynamic contact with the user and considering guidance constraints in real-28

time. Among all indoor positioning technologies, we will focus on those most often29

used with a mobile phone, namely Wi-Fi, low-energy Bluetooth (BLE), and inertial30

sensors. We will also present solutions based on the use of light and computer vision.31

After a reminder of the possible technologies and the existing hybrid systems, we32

will then detail the architecture of our guidance system, and the tests carried out, to33

finally conclude with the follow-up envisaged to our work.34

2 Related Work35

As multiple published surveys attest [2–6], a wide variety of IPS have been proposed,36

for performances that are not always satisfactory in dynamic environments and often37

require costly investments for a significant improvement of the latter. Usually, in IPS,38

the position of the object or person is estimated using either the measurement of its39

angle of arrival (AOA), time of arrival (TOA), the difference between arrival times40

(TDOA), or received signal strength (RSS) [2, 4–6]. If several measurements of the41

same type are used to determine the position more precisely, the term lateration and42

angulation is used [4]. The measurement-based systems are complex to implement43

and expensive in terms of material.44

A WLAN is a high-speed wireless network that uses high-frequency radio waves45

to connect and communicate between nodes and devices within the coverage area.46

To correctly perform indoor geolocation from a WLAN, it is necessary to densify the47

network infrastructure to counteract the effect of environmental and human distur-48

bances [4, 5], and also to be able to combine several position measurements or used49

propagation model within the same algorithm [4, 5].50

Very similar to Wi-Fi, the Bluetooth has recently seen a resurgence of interest51

with the development of Bluetooth Low Energy (BLE) [3, 4]. The low cost of BLE52

equipment and its long energy autonomy is often cited advantages as they make it53

easier than Wi-Fi to obtain better radio coverage also necessary for good performance54

[2, 4]. For geolocation systems, based on WLAN or BLE, many studies propose55

to improve their performance either by mapping beforehand (fingerprinting) the56

environment in which the object or person evolves [3–5] or by combining these57

technologies [2, 4, 5].58



The use of the smartphone’s sensors (i.e., accelerometer, gyroscope, etc.) is also59

a research topic tested in the context of IPS [2–4]. Most of the time, they estimate60

walking parameters (number of steps, length of steps, direction) or determine the61

nature of the movement. The performances obtained were not convincing, notably62

because of the difficulty of taking into account the relative position of the smartphone63

in motion or of integrating physiological parameters (weight, age, etc.) of the person64

and the nature of the surface of the movement. The current trend is, therefore, to65

integrate these sensors into WLAN/BLE geolocation systems [2, 3].66

Other systems use LED-light for geolocation purposes [2, 4]. Because LEDs are67

capable of flashing very quickly without impairing human vision, they can substitute68

for conventional lighting while transmitting information to a smartphone. All posi-69

tioning algorithms (RSS, TDOA, lateration, angulation, fingerprinting, etc.) can then70

be used. However, to overcome certain inherent defects of light, it’s short-range or it’s71

possible obscuring, couplings with other technologies have already been proposed72

(e.g., Li-Fi & Wi-Fi) [6].73

Finally, there are IPS based on computer vision [2, 4]. In the simplest cases, the74

phone to determine its position identifies with its camera markers type QR-Codes.75

But there are also more complex solutions where the mobile device uses video scene76

analysis to estimate its location by comparing a snapshot of a scene generated by77

itself with several pre-observed simplified images of the scene taken from different78

positions and perspectives.79

3 A Hybrid System Model for IPS80

The localization methods in an IPS are classified into two groups as noted in [7]: (1)81

based on distance estimation; and (2) mapping-based localization. In the first group,82

the distance estimation process employs techniques based on the signal strength83

and/or the elapsed time between two signals. In our work, we opt for the second84

group where the mapping-based localization works with pre-stored signals (tags)85

values in a database.86

We apply the mapping localization approach in a Li-Fi based positioning system87

that uses a signal emitted from a LED (light source) to determine the position of the88

user’s device (receiving device). The user’s device, which is equipped with a recep-89

tacle (e.g., photodiode-dongle), receives the signal from the LED i.e., its identifier.90

So, we use the ID as a positioning tag associated with a LED lamp installed in a91

known location, both data prior stored in a database.92

We also use a vision-based positioning system to estimate the position and the93

orientation of a person indoor by identifying an image that is within a view. In [8]94

authors note that the commonly used methods for image-based indoor positioning95

are focused on calculating the Euclidean distance between the feature points of an96

image.97

For smartphone-based indoor localization as a compliment, we opt for a Pedestrian98

Dead Reckoning (PDR) technique to give the position of a mobile user relative to a99



reference, as presented in [9]. PDR approach relies on IMU (Inertial Measurements100

Unit) based techniques, which typically comprise an accelerometer, gyroscope, and101

compass. We use the step detection technique (accelerometer) and heading estimation102

(gyroscope) to reassure the guided person between two identified positions in case103

of contact losses from other technics.104

In this research and development project, we opt for a hybrid IPS system based on105

Li-Fi technology with path positioning from optical cameras placed in shadow zones106

to compensate for each other’s shortcomings and take advantage of each other’s107

strengths.108

3.1 Positions Data from Camera109

The camera-based positioning strategies is responsible for localizing individuals and110

recovering their trajectories in zones with low coverage with Li-Fi LEDs. Thus, we111

proposed a mono-camera tracking system that is designed in three main phases. The112

first ones consist of the detection of individuals and the initialization of trackers113

which is done in two parts the motion detection and motion segmentation. Then,114

the second phase consists of the tracking of detected individuals from the first phase115

to recover their trajectories within the camera’s field of view. The last part of our116

strategy consists of the association of image positioning of individuals with their117

ground plane positioning. The system design is illustrated on Fig. 1.118

The first part of our positioning system is the detection of individuals within the119

camera’s field of view. This is done in two main parts, which are motion detection120

and motion segmentation. We started by using a background subtraction algorithm,121

which is based on the use of the Gaussian mixture model as proposed in [10], to122

detect the foreground of the studied scene. This model is applied to all pixels gives a123

binary image representing the moving objects within the current frame of the video124

(Fig. 2).125

Fig. 1 Ground floor positions from a camera



Fig. 2 Motion detection: a original image and b moving parts

The used strategy for motion detection enables the detection of blobs representing126

the moving objects within the studied scene at a given time t. The detected blobs127

may represent either a single individual or a group of individuals. Thus, we used128

a method based on connected components analysis, which is associated with some129

restrictions on the width and height of blobs, to separate the detected blobs into blobs130

each representing a single individual. We represented each blob with a rectangle of131

width w and height h. The properties of this rectangle are estimated based on Eq. (1).132
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⎨
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Then, we used a restriction on the ratio between the width and the height of135

each blob to estimate the number of individuals within the blob. This is done by the136

assumption of Eq. (2).137
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The estimated number of individuals is used to perform new segmentation of140

blobs based on Eq. (3) for an example of a blob with a ratio w
h > T hmax and an141

estimated number of individuals Nind = 2 (illustration of results is shown in Fig. 3).142
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Fig. 3 Motion segmentation and people’s detection: a moving parts, b segmented blobs and
c detected individuals

The previous steps end up with the list of detected individuals at a given instant145

t0. This list is used to initialize the list of tracked individuals, which are then tracked,146

and their trajectories recovered. For this, we used a strategy based on the use of a147

particle filter similar to the one proposed in [9] to estimate the position of the tracked148

individual at instant t based on his position at the instant t − 1 (Eq. 4).149

{
(x, y)t = (x, y)t−1 + (u, v)t−1∗�t
(u, v)t = (u, v)t−1

(4)150151

With (x, y)t and (u, v)t the position and velocity of the individual at instant t .152

Then a set of N particles are propagated around this position and weighted based153

on the difference between their color histograms and the color histogram of the154

individual in the HSV color space.155

The positions of these weighted particles are then used to refine the position of156

the tracked individual at the instant t. The new position of the individual within the157

current frame is estimated by Eq. (5).158

[
x
y

]

=
N∑

n=0

w
(n)
t

[
x
y

](n)

(5)159160

The last step of our localization algorithm consists of the association of the image161

positioning of individuals with their ground plane positioning. In fact, the previous162

steps are used to recover the trajectories of the individuals on the video. These163

trajectories are represented by a set of detections representing the individual while164

moving on the camera’s field of view. These detections are then used, first, to localize165

the individual within the image and, second, to localize the individual on the ground166

plane. The first part consists of the association with the bounding box of a tracked167

person with a single point representing his position on the ground plane on the image168

(u0, v0). This is done by considering the point of intersection between the central169

vertical axes of the detection with the bottom limit of the bounding box.170



Then to get the positions of individuals on the ground plane, we use a perspective171

transformation, similar to the one used in [11], which maps the locations of indi-172

viduals in the image with their corresponding positions in a plane representing the173

ground floor of the studied scene. This method is based on the use of four initials174

points, located by the user in both the image and the plane, that are used to calcu-175

late the transformation that will be used later on to map the points from the image176

to their corresponding positions on the plane. This perspective matrix is estimated177

using the Eq. (6) and the selected points. Then this perspective matrix is used to get178

the correspondence between any point on the image and its position on the viewing179

plane.180

[
x ′ y′ z′ ] = [

u v w
]

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦ (6)181182

With: x , y the coordinates of pixels on the viewing plane (ground floor), u, v the183

coordinates of pixels on the image. At the end of this part, we map the trajectories184

obtained previously to the estimated trajectories on the ground floor of the studied185

scene. These trajectories on the ground floor are then sent to the server as camera186

data that will be combined with the Li-Fi data to localize individuals.187

3.2 Data from Li-Fi Lamp188

The Li-Fi indoor data model is part of infrastructure-based positioning, non-GPS189

technologies, where fixed beacon nodes are used for location estimates. The posi-190

tioning algorithms are associated with Proximity Based Localization (PBL) as clas-191

sified in [7]. Proximity sensing techniques are used to determine when a user is near a192

known location. The provided location is the area in which the user is detected. In our193

case of using, a Li-Fi lamp emits tag to be detected by a mobile target when passes194

within the covered area. The most common manufacturers’ technical parameters for195

a Li-Fi LED mounted in a standard ceiling height indicate a luminous flux dispersion196

in a range of 30°–40°. So, to calculate the detector’s area, a simple cone-diameter197

equation can be used, as presented in (7).198

D = 2 × h × tg(α), S = π ×
(

D

2

)2

(7)199200

where: D expresses the LED covered area, h indicates the ceiling height, α the angle201

of light dispersion, and S expressed the surface covered by the detector. In a general202

case, we can count on a detector area with 3 m of diameter i.e., approximatively203

7 m2. This is quite reassuring for the installation of Li-Fi lamps on points of interest204



in a building. So, the detection infrastructure can be developed as a mesh of Li-Fi205

lamps, which can be presented as nodes in a graph-path.206

3.3 Data Integration and Graph Path207

Hybrid System Model. Li-Fi lamps and optical cameras (OC) are two promising208

IPS technologies that can be implemented in all kinds of indoor environments using209

existing infrastructures. However, both are subjected to data heterogeneity. In this210

paper, we propose a hybrid IPS that integrates data from Li-Fi lamps and OC in211

a RESTful architecture to improve the quality-of-service (QoS) of the user’s posi-212

tioning and navigation in order to provide better performance in terms of accuracy,213

power consumption, and reduced costs of installation.214

In the proposed system model, the source of data dissemination is a Li-Fi lamp and215

a processed image from an OC, whereas the source data collection is a user device216

with a photoreceptor. The collected data are analyzed and processed, and the local-217

ization is performed via a Web service. In Fig. 4, a four layers system architecture is218

presented: (1) data generation and image collection, (2) communication technology,219

(3) data management and processing, and (4) application for data interpretation.220

When the user passes under a LED his smartphone can receive the tag associated221

with this LED lamp. Its path is followed by an optical camera to confirm the user’s222

position. An alert message will be sent in case of remoteness from the prescribed223

Fig. 4 System model for hybrid IPS



path or in case of unexpected barriers. A reconfigured path will be then sent to the224

user.225

The graph-path algorithm. The BFS-based graph-path algorithm resides on the226

RESTful Web service side. This algorithm allows us to obtain the path to follow when227

a destination is defined at the beginning (e.g., the entry point of a building). With228

knowledge of the starting point and the endpoint, the algorithm determines all inter-229

mediary points to be followed to guide the user to the destination. These intermediary230

points represent the graph-vertices where the Li-Fi lamps are positioned.231

The Graph algorithm is developed as a class with two methods. The first one232

determines the vertices in the graph corresponding to the building’s plan stored in233

numerical format. Once the set of vertices is retrieved, the method locates for each234

node the set of vertices that succeeds it in a unidirectional manner (i.e., for each235

vertex, the edge to follow to the next vertex throughout the part of the suggested236

path). The second one is essential to allow us to find the available path from the237

starting point to the defined endpoint. Based on the graph-paths established by the238

previously described method, this method allows the suggested path to be highlighted239

on the user’s screen.240

The vector floorplan. The vector graphics format (SVG) used for the building’s241

plan representation allows us to manipulate the graph directly on the plan by asso-242

ciating it to the user’s path. Thus, the highlighting path can be displayed directly on243

the graph with the points of reference (i.e., graph-vertices).244

4 Implementation and Evaluation245

Implementation. We have focused on server-side processing as a development246

approach to reduce the user’s client–server interactions. So, in this IoT schema,247

the dedicated REST service, as shown in Fig. 4, can handle multiple requests at248

once with correctly achieved data integration from heterogeneous sources like Li-Fi249

lamp, optical camera, an accelerometer as shown in Fig. 5. On the other hand, this250

Fig. 5 Use case scenario for hybrid Li-Fi-camera-accelerometer IPS



centralization approach for indoor navigation process management allows server-251

side service to track simultaneously different requested paths without interferences252

between users.253

A location-aware Android-based application for indoor navigation tracking is254

developed. So, when a smartphone with a light sensor, is within the range of a Li-Fi255

lamplight, it will compare the emitted from the lamp tag with the value recommended256

in the building’s path-list. The graph-path is highlighted on the building’s plan,257

already displayed on the smartphone’s screen, with the highlighted intermediary point258

of the detected position as shown in Fig. 5. The developed Android activity is based259

on the Oledcomm GEOLiFi Kit [12], with GEOLiFi LED lamp, GEOLiFi Dongle260

to be used with a smartphone, and GEOLiFi SDK Library for Android application261

development.262

The data integration of the camera and the Li-Fi lamps is done through the Web263

service installed on a Node.js server running on a Raspberry pi 4. The reference points264

identified by the camera for the guided person are stored in the database. When the265

user passes through a Li-Fi point, the retrieved coordinates are compared with those266

transmitted by the camera. In case of differences, the coordinates confirmed by the267

position of the Li-Fi lamp are considered for the user’s guidance.268

To improve the accuracy of the localization system, we combine different tech-269

nologies. To increase the quality of the data and to reassure the user in case of failure270

of the main approach, an accelerometer, a gyroscope, embedded in a smartphone271

are employed to develop a multi-sensor fusion approach. This results in the Android272

application that integrates data from the IMU for the user’s guidance between two273

reference points. However, this data is not communicated to the server and its Web274

service.275

Evaluation. For this work-in-progress paper, the performance of each positioning276

approach is partially analyzed due to objective reasons. Our project started at the277

end of 2019. The containment imposed by the Covid-19 pandemic prevented us278

from deploying the entire infrastructure, namely optical cameras, and Li-Fi lamps,279

on a larger scale. We were planning to deploy four optical cameras and 32 Li-280

Fi lamps. The pretests were carried out in an enclosed space with a minimum of281

deployed equipment. The camera-based algorithms for localizing individuals and282

recovering their trajectories were tested with an extern public database. Moreover,283

this avoids some inconvenience in terms of image rights. The guidance activity with284

an accelerometer and gyroscope was tested in extern associated to the main Android285

application. The graph path algorithm, installed as RESTful service on Raspberry pi286

4, was tested on a virtual floorplan with QR Codes in place of the Li-Fi lamps. The287

developed Android application for user indoor guidance gave satisfaction.288

To estimate the accuracy of the IMU unit associated with the user’s activity, we289

proceed by a test to count the number of steps over 10 m and then to compare with290

real values. It appears that the accuracy of the IMU unit is quite good over the tested291

distance. The observed error has a rate of up to 23%, which is a tolerable threshold.292

A real difference begins to be created between the values of the IMU unit and the293

real values beyond 9 m, so a distance lower than 10 m is recommended between two294

Li-Fi lamps.295



5 Conclusion

In this article, we present a hybrid IPS system based on the integration of data from297

heterogeneous sources: i.e. Li-Fi tags to determine the positioning of a user on a298

floorplan; trajectory tracking of the user by optical cameras; step counting by a299

smartphone application supposed to guide the user between two reference points300

and in case of loss of cameras tracking due to congestion, smoke or other disruptive301

events.302

Because it does not require any special infrastructure, the proposed solution is303

easy to implement and low cost, and it would be easy to install it in most indoor304

environments like hospitals, buildings, campuses, and malls.305
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