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Abstract: In central Senegal, malaria incidence declined in response to scaling-up of control measures
from 2000 to 2010 and has since remained stable, making elimination unlikely in the short term.
Additional control measures are needed to reduce transmission. We simulated chemoprophylaxis
interventions targeting malaria hotspots using a metapopulation mathematical model, based on
a differential-equation framework and incorporating human mobility. The model was fitted to
weekly malaria incidence from 45 villages. Three approaches for selecting intervention targets
were compared: (a) villages with malaria cases during the low transmission season of the previous
year; (b) villages with highest incidence during the high transmission season of the previous year;
(c) villages with highest connectivity with adjacent populations. Our results showed that intervention
strategies targeting hotspots would be effective in reducing malaria incidence in both targeted
and untargeted areas. Regardless of the intervention strategy used, pre-elimination (1–5 cases per
1000 per year) would not be reached without simultaneously increasing vector control by more than
10%. A cornerstone of malaria control and elimination is the effective targeting of strategic locations.
Mathematical tools help to identify those locations and estimate the impact in silico.

Keywords: malaria elimination; mathematical model; human mobility; intervention chemotherapy

1. Introduction

Malaria remains a major health burden, with a global annual incidence of 228 mil-
lion new cases and 405,000 deaths in 2018, most of which have occurred in sub-Saharan
Africa [1]. In line with the situation in Senegal nationwide, malaria incidence has declined
in the Mbour area since the 2000s, due to scaling-up of malaria control. This is primarily due
to universal coverage of long-lasting insecticide-treated bednets (LLIN) [2], improved ac-
cess to diagnosis (Rapid Diagnostic Tests RDT) and prompt treatment of malaria with
Artemisinin-based Combination Therapy (ACT) [3,4]. Senegal is still in the control phase
of the malaria program, according to the World Health Organization (WHO) classification
(more than 5 cases per 1000 inhabitants per year), but the country has been committed to
achieving the objectives of pre-elimination by 2020 [5].
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Malaria control and elimination projections are challenging due to the complex inter-
actions between humans, vectors, parasite genetic complexity as well as environmental
and socioeconomic factors. Spatial heterogeneity characterizes low-transmission settings
within non-endemic areas of sub-Saharan Africa and Asia [6,7]. Hotspots are broadly
defined as areas where malaria transmission exceeds an average level [8,9]. Targeting in-
terventions to specific hotspots, may be efficient in reducing the burden of malaria in the
entire area [8–11]. Operational definitions of hotspots allow the evaluation of the impact of
intervention strategies in dry or rainy seasons. Intervention strategies simulated in this
study were:

• Focused Mass Drug Administration (MDA), consisting of systematically treating
individuals in a selected geographic area with antimalarial drugs, without screening
for infection.

• Focused Mass Screen and Treat (MSAT), consisting of malaria screening, using a rapid
diagnostic test and providing treatment to those with a positive test result, in a selected
area.

• Seasonal Malaria Chemoprevention (SMC), consisting of intermittently administrating
preventive antimalarial treatment to children during the main transmission period.

• Long-Lasting Insecticide-treated Nets (LLIN), intended to avoid mosquito bites, rely-
ing on physical and chemical barriers of manufactured nets.

Mathematical modeling consists of describing a phenomenon and using mathematical
concepts in order to better understand, control or predict it. Depending on the frame-
work, the models can be predominantly mechanistic or stochastic. Compartmental mod-
els are mechanistic models that assign the population to compartments or states, be-
tween which individuals may progress. The use of compartmental models in malaria
transmission dates back over a century [12] and has made it possible to better understand
the malaria transmission and to estimate the effectiveness of control strategies [13,14].
In Senegal, Smith et al. used a stochastic approach to study malaria endemicity in Dielmo
and Ndiop [15]. Laneri et al. modeled the impact of climate and immunity on seasonal
dynamics [16] and Slater et al. modeled the effect of ivermectin as a new potential vector-
control tool to reduce malaria transmission [17].

When several subpopulations are studied simultaneously, one can define a metapop-
ulation model. A metapopulation is made up of a group of spatially separated subpop-
ulations that interact with each other [12]. To date, in Senegal, no study has deployed
a metapopulation model in order to obtain global-scale estimates, while simultaneously
considering the complex factors that affect the countrywide effectiveness of malaria inter-
ventions, including geographical targeting and human mobility. Human mobility may play
a critical role in malaria elimination strategies, leading to reintroduction and resurgence of
malaria in treated areas, hampering malaria elimination efforts [18].

This study aims to understand the impact of spatially targeted malaria interventions,
considering human mobility and using a metapopulation mathematical model based on
a susceptible-exposed-infected-recovered (SEIR) framework, with 45 spatially separated
villages that interact with each other via moving individuals.

2. Materials and Methods
2.1. Study Area and Dataset

The population data came from 45 villages in the health district of Mbour, Senegal
Figure 1 and were collected from 2008 to 2012 through a health and demographic surveil-
lance system established in central Senegal [19]. Malaria cases at health facilities were
confirmed by using a rapid diagnostic test and geographical coordinates of village cen-
troids recorded using GPS (Global Positioning System) devices. Estimates of rainfall were
extracted from Goddard Earth Sciences Data and Information Services Center. The model
was implemented using R 3.1.2 free software. [20], deSolve [21] and FME [22] packages
for numerical solution of differential equations describing transmission. The Geosphere R
package [23] was used to estimate distances between villages. Graphics were edited with
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Paint.NET (Rick Brewster, Washington, DC, USA). The dataset analyzed during the current
study is available as an additional file.

Figure 1. Mbour zone, Senegal, 2008–2012. The geographical coordinates of the 45 villages are
represented by black circles, and moving individuals by gray lines. The thickness of the lines reflects
the number of trips.

2.2. Model Structure

Malaria transmission in each village was represented by a deterministic compartmen-
tal SEIR transmission model, based on the “Bancoumana” model described by Gaudart
et al. [13], as seen in Figure 2. At the time t, individuals from the susceptible compartment
Sk(t) may get infected. The proportion of human infection in village k, denoted Ik(t),
was proportional to anopheles density υ(t), to frequency of mosquito bites α, to human
susceptibility to infection β and to the effective proportion of infected mosquitoes i(t).
The latter represent a weighted sum of the local proportion of infected mosquitoes Aik(t)
and the remote proportion of infected mosquitoes Aij(t) Equation (1). The weights de-
pended on the proportion (m) of people that are away at a given time, and also on relative
probabilities Qkj of travel from remote locations j to local village k.

i(t) = (1−m)Aik + m ∑
j 6=k

Qkj Aij (1)

Probabilities Qkj were estimated via the radiation model of human mobility [24] and
is represented here as Equation (2):

Qkj =
PkPj(

Pk + skj

)(
Pk + Pj + skj

) (2)
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In Equation (2), Pk and Pj are the population sizes in locations k and j, respectively
and skj is the total population inside the circle centered at k, whose circumference touches
j, excluding the source and destination populations (Pk and Pj). Travel was modeled as
round trips of approximately a one-week duration. The population sizes of the villages
were updated annually over the study period. Each inhabitant of a village k could infect or
be infected at other villages j. In this approach, moving individuals remain residents of
their home village, but spend some time in neighboring villages. Long-term mobility is not
incorporated.

Figure 2. Malaria transmission diagram at a local village k. Letter j stands for remote villages.
Human compartments are Sk (susceptible), Pk (premunition), Ik (blood-stage infection), Gak (asymp-
tomatic carriage of gametocytes), Gmk (symptomatic carriage of gametocytes) and Rk (resistance
due to treatment). Mosquito compartments are Aik (infected mosquitoes) and Ask (susceptible
mosquitoes). The arrows represent the transition rates between compartments.

The model assumes that newly infected individuals at village k, Ik(t), initially carry
only blood-stage infection. Gametocytes are sexual precursor cells of the malaria parasite
that mediate the transmission of the parasite from the host to the Anopheles mosquito.
Gametocytes subsequently appear and the individual may have malaria symptoms or
stay asymptomatic, leading to Gmk (symptomatic, infectious) and Gak (asymptomatic,
infectious) compartments, respectively. All gametocyte carriers were assumed to contribute
to transmission. Infection of mosquitoes depends on the effective proportion of human
infection im(t), represented as a weighted sum of human infection at local and neighboring
villages. Gametocytes were transmitted to anopheles from gametocyte carriers that reside
in the local village k and by gametocyte carriers that travel from remote villages j to the
local village k. It was assumed that mosquitoes are infected by feeding on humans carrying
gametocytes and that blood-fed anopheles do not move from one village to another [25].

The model assumes that adults gradually acquire partial immunity (premunition) at
a rate p1 [26], after several malaria attacks. Premunition is assumed to be lost at rate p2 [26].

Targeted interventions were modeled as a transition of individuals to the resistant
compartment. The transition rates are defined as rectangular pulse functions reflecting
interventions, over a limited period of time. The protection resulting from drug adminis-
tration is assumed to be lost at a constant rate depending on the antimalarial half-life.

The seasonal variations of anopheles density, υ(t), were modeled assuming that the
anopheles density is proportional to the cumulative rainfall over the previous six weeks
and oscillated seasonally between the minimum and maximum values reported in previous
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entomological studies for this area (0 to 12 anopheles/individual/day) [27]. The correlation
lag between the density of anopheles and the malaria incidence was estimated by sensitivity
analysis, and can be seen in Figure A1. The estimated value was about 6 weeks, 95% CI
(3–8 weeks). This value was consistent with previous studies [28,29].

The equations of the model are set out in Appendix A, and a description of the
parameters is given in Table A1.

2.3. Model Calibration

The metapopulation model was fitted to weekly malaria incidence data from 1 January
2008, to 31 December 2008, using an optimization approach based on the Markov Chain
Monte Carlo (MCMC) method [30].

Initial values of the compartments were defined at the beginning of each rainy sea-
son. Several parameter values relied on values from the literature [31] Tables A1 and A2.
The sensitivity of the parameters was assessed by varying them around the estimated value.

2.4. Hotspots Definitions and Interventions

Three pragmatic definitions of hotspot were investigated:

1. Low transmission period hotspots (LT hotspots) were defined as villages reporting at
least one malaria case in the previous low transmission period (December to May).

2. High transmission period hotspots (HT hotspots) were villages with the highest
malaria incidences during the previous transmission season (June to November).

3. High connectivity hotspots (HC hotspots) were villages highly connected to neigh-
boring villages based on human mobility potential.

Connectivity was approximated by the degree centrality score Equation (3). Degree cen-
trality of village k (dk) was defined as the number of travel connections from outside villages
to village k and which volumes were above the first decile of total volume of travels towards
k [32]. Degree centrality captures infection routes from outside villages to k and higher
values indicate an increased vulnerability to malaria spread.

dk = card(wjk

∣∣∣wjk ≥ 0.1wk) (3)

In Equation (3), dk represents the degree centrality score of village k, card (cardinality)
represents the number of connections to village k above the threshold of 10%, wjk represents
the number of trips from villages j to village k and wk represents the total volume of travel
to village k.

These definitions were kept deliberately simple to be applicable in practice and require
neither prior serological surveys nor special clustering analysis [8,10,33].

In silico interventions were simulated from 2010. MSAT and MDA drug interven-
tions assumed the use of dihydroartemisinin-primaquine. Benefits of Artemisinin com-
pounds include rapid parasite clearance, but, when used alone, recrudescence rates are
high. Primaquine has a potent gametocidal effect, meaning it can help block transmission.
The coverage rate was set to 70% for each round of MDA/MSAT, meaning that 70% of the
population in targeted hotspots effectively received the intervention (treatment in the case
of MDA and pre-treatment screening in the case of MSAT). Two rounds of intervention,
separated by a one-month interval, were assumed for both MDA and MSAT, with drugs
provided during the first week of September and again during the first week of October
(high transmission period simulations) or in February and March (low transmission period
simulations).

The simulated SMC strategy assumed the use of sulphadoxine-pyrimethamine-
amodiaquine, and targeted only children under 10 years old, representing 30% of the
population [34]. Delivery occurred on the first 4 days of each month from September to
December, in the entire study area. According to WHO recommendations, SMC should not
be implemented as a geographically limited targeted strategy. The impact of long-lasting
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insecticidal nets was implemented as a direct decrease in the rate of mosquito bites (α) over
the intervention period.

The intervention efficacy, ∆I was defined as the relative variation in malaria annual
incidence from no intervention assumption to intervention assumption:

∆I = 1− I1

I0
(4)

In Equation (4), I0 and II were the cumulative incidences of malaria, respectively
before and after intervention.

3. Results
3.1. Parameters Estimates and Sensitivity Analysis

The estimated weekly mobility rate was m = 0.09 (95% CI: 0.0015–0.2) corresponding
to 2–200 individuals moving between villages per 1000 inhabitants per week. The entomo-
logical inoculation rate (EIR), calculated from the model, varied seasonally between 0 and
2.16 infected bites per person per night. This was consistent with literature data [4].

Key parameters were varied to assess their sensitivity on malaria incidences Figure 3.
Model predictions were sensitive to the following parameters: density of anopheles (a 33%
increase in malaria incidence while increasing the parameter by about 5%), access to
treatment (a 16% increase in malaria incidence while decreasing the parameter by about
5%), loss of premunition (a 4.5% increase in malaria incidence for a 5% parameter increase)
and human mobility (a 1% increase in malaria incidence for a 100% parameter increase).

Figure 3. Sensitivity of model parameters in the malaria metapopulation model, Mbour, Senegal, 2008–
2012. Right and left correspond to a parameter increase and decrease, respectively. Black and gray
bars respectively represent a increase and decrease in total malaria cases, subsequent to parameter
variations.

3.2. Sensitivity of Hotspot Definitions

LT hotspots showed temporal instability. Their locations changed from one year to
another (Cohen’s Kappa coefficient 0.21, 95% CI: 0.16–0.33 versus 0.6, 95% CI: 0.36–0.85
for HT hotspots). HC hotspots were almost static in time, because this definition relied
on mobility estimates, based on population densities, while relative variations remained
comparable between sites.

HT hotspots were less populated than LT hotspots (average population per HT hotspot,
with 510 inhabitants in HT hotspots versus 1703 inhabitants in LT hotspots, Wilcoxon test
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p = 0.13), suggesting that small population groups had higher incidence rates during the
transmission season.

HC hotspots were slightly more populated than LT hotspots (average population
per HT hotspot, with 1876 inhabitants in HT hotspots versus 1703 inhabitants in LT
hotspots, Wilcoxon test p = 0.6) and demonstrated lower malaria incidences than LT
hotspots (Wilcoxon test p = 0.03).

3.3. Intervention Simulations

Variations in annual incidences after a unique intervention and after yearly repeated
interventions on LT hotspots are shown on Figure 4, for the overall study area.
Int. J. Environ. Res. Public Health 2021, 18, x 2 of 20 
 

 

Figure 4. Decrease in malaria incidence while targeting low transmission (LT) hotspots in Mbour,
Senegal, 2008–2012. The y-axis represents the relative decrease in malaria incidence for the overall
area (45 villages). (a) unique one-year intervention in the rainy season, (b) repeated interventions
over five consecutive rainy seasons, once per year, (c) unique one-year intervention in the dry season,
(d) repeated interventions over five consecutive dry seasons, once per year. SMC12 corresponds to
a theoretical schedule of uninterrupted monthly administration of SMC over 12 months.

Percentage of villages defined as LT hotspots in 2011 and 2012 were 35% and 31%,
respectively. As LT hotspots were not predictable beyond data limits, we assumed that
their proportion would remain at 31%, in order to allow forecasting. Repeating MDA and
MSAT interventions in LT hotspots, once per year, during the rainy seasons, after five
consecutive years, yielded a decrease in malaria incidence of 34% and 28%, respectively.
As interventions stopped, the efficacy reverted and stabilized at 25%. After delivering SMC
sequentially in dry seasons, efficacy reached only 10% after 5 years. Effects were higher
after SMC was sequentially delivered in rainy seasons (20% after 5 years). Monthly unin-
terrupted SMC would reach a 50% incidence decrease after 5 consecutive years.

When targeting the equivalent proportion of HT hotspots, repeated interventions
stabilized at 56% efficacy when delivered during the dry season. When delivered during
the rainy seasons, they respectively yielded 67% and 56% long-term efficacy (Figure 2).

Targeting equivalent proportion of villages according to HC hotspot definitions,
five years of repeated interventions during the rainy seasons yielded 74% and 64% ef-
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ficacy, respectively, for MDA and MSAT, which decreased and stabilized at 57% cessation
of interventions.

3.4. Pre-Elimination/Elimination Stage

MDA simulated over one single year, targeting LT hotspots, led to the pre-elimination
stage (1–5 cases per 1000 per year), provided that mosquito bites were simultaneously
reduced by 10% or more, as can be seen in Figure 5. The elimination stage (less than 1 case
per 1000 per year) would be theoretically achievable by combining a 70% vector decrease
and MDA in LT hotspots. When targeting HT or HC hotspots, more than a 10% simultane-
ous decrease in mosquito bites would be needed to reach pre-elimination, regardless of the
MDA coverage.

Figure 5. Malaria incidence in the year following mass drug administration associated with vector
control. Various definitions of hotspots were tested. The x-axis represents the percentage of villages
included as hotspots. The y-axis represents the decrease in mosquito bites from baseline.

3.5. Rebound Effects Due to Human Mobility

An incidence rebound (incidence increase after interventions ended) was noticed at
the cessation of repeated MDA/MSAT interventions. Rebounds occurred only if mobility
was considered to not be null. While targeting one third of HC hotspots for five consecutive
rainy seasons, rebound was about 17% for the overall area and 43% in targeted villages.
This may be a worst-case scenario, as we assumed an average proportion of 20% travelers
would be moving between villages.

4. Discussion

This study investigated the use of a spatially explicit malaria metapopulation model,
fitted to weekly malaria incidence in rural villages in central Senegal.

A final decrease in the incidence of malaria, of more than 25% was reached in the
overall area, with both MDA and MSAT simulated interventions repeated for five years
on LT hotspots and 57% on HT or HC hotspots. Monthly uninterrupted SMC simulated
on the 45 villages over five years showed similar results (a 50% decrease in the incidence).
Reaching the pre-elimination stage (1–5 cases per 1000 per year) was possible only when si-
multaneously decreasing mosquito bites by more than 10%. We highlighted the foreseeable
interest of spatially targeted interventions.

Obviously, the reservoir of parasites is not limited to hotspots. The asymptomatic
reservoir in untargeted areas may trigger transmission, especially when mosquito bites
increased at the beginning of a new rainy season. This would explain why targeting
LT hotspots (31–35% of villages, supposed to be the bottleneck in the dry season) was
not enough to reach the elimination stage, despite the important impact of this strat-
egy. Targeting LT hotspots in the dry season was intended to quickly clear the parasite
reservoir when its level was low. But if a widespread asymptomatic parasite carriage is
assumed, high coverage and repeated interventions would be needed to reach elimination.
Asymptomatic and sub-microscopic parasite carriage should be investigated to display
geographical patterns of the reservoir [35,36]. Further research is needed on the relationship
between sub-microscopic parasitemia and clinical malaria hotspot definition [37]. It has
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been argued that clinical malaria incidences should not be used in hotspot definitions with-
out considering asymptomatic malaria patterns [8,38] and clustering of asexual parasite
carriage, using serological tools to detect malaria-specific immune responses [8].

Human mobility has usually been identified as a threat to malaria-free areas [14,39].
In our study, malaria incidence decreased in untargeted areas due to the decrease in malaria
importation. Some studies assumed that this could be related to fewer infected mosquitoes
moving from targeted areas [40], but mosquito mobility modeling was not relevant in our
model. More than 80% of the villages were more than 3 km far from the nearest village.
Real human mobility data may be more accurate than estimations from the radiation model.
However, concerns about the geographical scale prevented us from using proxies, such as
anonymized call details records [41], to estimate mobility. Systematic studies are needed to
inform mobility patterns in rural and semi-rural malaria areas in Senegal.

In the past, MDA interventions have contributed to eliminating malaria from islands
and remote areas, where population movements were closely controlled and gametocytoci-
dal drugs have been used [42,43].

No resistance to dihydroartemisinin-primaquine was previously reported in our study
area by 2017, and therefore this was not modeled.

In practice, coverage and efficacy of drug interventions would also depend on the
cooperation, involvement and education of local communities, alongside good communi-
cation and support from local authorities [44].

5. Conclusions

Our metapopulation model specifically and explicitly considered human mobility
at the village scale, analyzing malaria transmission and interventions efficacy in Senegal.
Regardless of the type of intervention, the pre-elimination stage (1–5 cases per 1000 per
year) could not be reached without simultaneously increasing vector control by more than
10%. Compartmental modeling remains an interesting tool to specifically guide malaria
strategies and policies. Nevertheless, this deterministic approach needs to be cautiously
interpreted. Unexpected changes in climatic, biological and socio-environmental factors
could generate high inaccuracies in predictions.
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List of Abbreviations
LLIN long-lasting insecticide-treated bed nets
RDT rapid diagnostic tests
ACT artemisinin-based combination therapy
WHO World Health Organization
MDA mass drug administration
MSAT mass screen and treat
SMC seasonal malaria chemoprevention
SEIR susceptible-exposed-infected-recovered
GPS global positioning system
MCMC Markov Chain Monte Carlo
LT hotspots low transmission period hotspots
HT hotspots high transmission period hotspots
HC hotspots high connectivity hotspots
HTP high transmission period
LTP low transmission period
EIR entomological inoculation rate
IRS indoor residual spraying

Appendix A
Appendix A.1. Model Description

In each village k, malaria transmission was described by a set of equations describing variations
in human and mosquito compartments. The terms of the equations are defined below:
• Sk(t): proportion of humans susceptible to malaria infection.
• Ik(t): proportion of blood-stage infected humans, with few gametocytes, not immune and

positive to rapid diagnostic test (RDT).
• P(t): proportion of humans with partial immunity (premunition). Individuals could remain in

this state for many years, but could lose their immunity if pregnant or on cessation of exposure.
They were assumed to be RDT positive and with few gametocytes.

• Gak(t): proportion of infected humans, gametocyte-positive, asymptomatic.
• Gmk(t): proportion of infected humans, gametocyte-positive, symptomatic.
• Rk(t): proportion of humans who were temporarily not susceptible to new infection, as a result

of the prophylactic effect of treatment.
• Aik(t): proportion of female mosquitoes that carry sporozoites in their salivary glands.
• Ask(t): proportion of female mosquitoes that have survived the cycle and were free from

malaria sporozoites.
• m: proportion of people in the overall population, who are away at a given time (visiting other

villages than their own village).
• υ(t): anopheles’ density (ratio of the number of female anopheles to the number of humans,

at time t).
• α: number of bites per female anopheles per night.
• β: probability that a person bitten by an infectious mosquito becomes infected.
• γs(t), γi(t), γp(t) and γa(t) are rectangular pulse functions. γ(t) = K = − log(1− c)/∆ where

c represents coverage and ∆ the duration of intervention in weeks.
• γs(t): rate at which susceptible individuals are treated.
• γi(t): rate at which blood-stage infected individuals are treated.
• γp(t): rate at which naturally immune individuals are treated. Naturally immune individuals

are assumed RDT positive. Susceptible individuals are RDT negative.
• γa(t): rate at which asymptomatic gametocyte carriers are treated. Asymptomatic gametocyte

carriers are assumed RDT positive.
• γm(t): rate at which symptomatic gametocyte carriers are treated. This corresponds to access to

care, in periods of no intervention.
• ηa1: transition rate from blood-stage infection, to asymptomatic gametocyte carriage.
• ηm1: transition rate from blood-stage infection, to symptomatic gametocyte carriage.
• p1: transition rate from blood-stage infection to premunition.
• p2: transition rate from premunition to blood-stage infection (loss of premunition).
• δ: transition rate from resistant to susceptible (loss of the protection due to treatment).
• ζm: probability that a mosquito, biting a symptomatic gametocyte carrier, got infected.
• ζa: probability that a mosquito, biting an asymptomatic gametocyte carrier, got infected.
• ξ: mortality rate of mosquitoes.
• Qkj: relative probabilities of travel from remote locations j, to local village k.
• r(t): rainfall at week t.
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Differential Equations describing malaria transmission inside a village k are listed below. j stands
for remote villages.

dS
dt

= −υ× αβS× i + δR− γsS (A1)

dI
dt

= v× αβS× i− (ηa1 + ηm1 + γi + p1)I + p2P (A2)

dP
dt

= p1 I −
(

p2 + γp
)

P (A3)

dGa
dt

= ηa1 I − γaGa (A4)

dGm
dt

= ηm1 I − γmGm (A5)

dR
dt

= γmGm + γaGa + γi I + γpP + γsS − δR (A6)

dAi
dt

= α(1− Ai)im − ξ Ai (A7)

i = (1−m)Ai + m ∑
j 6=k

Qkj Aij (A8)

im = (1−m)(ζaGa + ζmGm) + m ∑
j 6=k

Qjk

(
ζaGaj + ζmGmj

)
(A9)

υ ∝ µ
t

∑
t−lag

r (A10)

Equation (A1) describes the variations in the proportion of susceptible individuals. In each
village k, individuals leave the susceptible compartment by getting infected. The human infection
rate consists of the product of the anopheles density υ, the frequency of mosquito bites α, the human
susceptibility to infection β and the effective proportion of infected mosquitoes affecting village k,
represented by i.

The proportion of susceptible individuals in village k, was increased by individuals losing
their protection from the resistant compartment (R), who were no longer under treatment effect.
These individuals entered the susceptible compartment at rate δ. In the case of mass intervention,
the proportion of susceptible individuals in village k was decreased by the fraction of treated
individuals (−γs × S).

Population sizes remained stable, since travel was assumed to be round trips. We updated
the population size of each village by year. For the sake of simplification, each year, at the week
level, birth and death rates were balanced. Real population growth rate was estimated 0.023%
per week [34].

Equation (A2) describes the variations in the compartment (I) of blood-stage infection. New
infections increased the compartment I by υ× αβS× i . Compartment I was decreased by gametocyte
production (−(ηa1 + ηm1)I) and acquisition of premunition (−p1 I).

Equation (A3) describes the variations in the compartment (P) of pre-immune. The compart-
ment increased by receiving individuals acquiring premunition after several blood-stage infections
(+p1 I). The compartment decreased when infection was reactivated by loss of immunity (−p2P) or
by interventional treatment (−γpP).

Equations (A4) and (A5) describe the variations in the compartments of gametocyte carriers.
Compartments of gametocyte carriers increased by receiving individuals from blood-stage infection
(+ηa1 I or +ηm1 I). These compartments could decrease by transition to resistant compartment
because of treatment (−γa × Ga , − γm × Gm).

Equation (A6) describes the variations in the resistant compartment. This compartment
was increased by individuals under treatment effects (usual malaria therapies or interventional
drugs), coming from all compartments where an effective malaria treatment had been delivered.
This compartment was depleted by the loss of protection (−δR), beyond drug half-life. Long-acting
drugs dihydroartemisinin-primaquine and sulphadoxine-pyrimethamine-amodiaquine were used
for MDA/MSAT and SMC, respectively, all yielding protection for about 4 weeks’ duration.

Equation (A7) describes the variations in the proportion of infective mosquitoes. The pro-
portion of infective mosquitoes was the product of the frequency of mosquito bites (α) and the
effective proportion of infected humans (im). The proportion of infective mosquitoes was decreased
by deaths in mosquito population (−ξ Aik).

Equation (A8) details the effective proportion of infective mosquitoes in a location k taking
account of human mobility. This proportion is represented by i = (1−m)Aik + m ∑

jk
Qkj Aij. The ef-

fective proportion of infected mosquitoes affecting village k is a weighted average of local proportions
of infected mosquitoes Aik and remote proportions of infected mosquitoes (Aij). The weights de-
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pended on the proportion of human mobility m and also on the relative probabilities of travel from
remote locations j to local village k (Qkj).

Equation (A9) details the effective proportion of infected humans in a location k taking
account of human mobility. This proportion is represented by im = (1−m)(ζaGak + ζmGmk) +

m ∑
j 6=k

Qkj

(
ζaGaj + ζmGmj

)
as a weighted average of the local proportion of infected humans

(ζaGak + ζmGmk) and remote proportions of infected humans ∑
j 6=k

Qkj

(
ζaGaj + ζmGmj

)
, weekly.

The weights depended on the proportion of human mobility (m) and on the relative probabilities of
travel from remote locations j to local village k (Qkj). The susceptibility of mosquitoes to infection
from humans (ζm) was assumed ten times higher from symptomatic than from asymptomatic (ζa)
(expert opinion).

Equation (A10) represents variations in anopheles’ density with respect to rainfall. Anophe-
les density depends on deterministic environmental factors. Among these factors, accumulated
rainfall in previous weeks was the most important. lag was the duration (in weeks) between rainfall
and mosquito bites. Optimal lag was estimated using sensitivity analysis as the one minimizing the
gap between model estimations and observations Figure A1.
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Figure A1. Goodness of fit of malaria metapopulation model according to the assumed lag between rainfall and mosquito
bites. Calibrations were undertaken on 2008 and 2010 transmission seasons. Optimization function computing the sum of
squared residuals (SSR) were minimized for 6 weeks lag.

Appendix A.2. Model Parameters

In each village k, malaria transmission was described by a set of equations describing
variations in human and mosquito compartments. The terms of the equations are defined
below:

Table A1. Model Parameters.

Parameter Symbol Parameter Description References Parameter Values 95% C.I.

υ
Anopheles density in

relation to hosts [27,31] 0–12 (min–max)

α Mosquito biting rate [45] 0.46
bite/anopheles/night

β
Human susceptibility

to infection [45] 0.3

EIR Entomological
Inoculation Rate [46] 0 to 2.16/per

person/year

ζm

Mosquito susceptibility
to infection from

symptomatic humans
[45] 0.80

ζa

Mosquito susceptibility
to infection from

asymptomatic humans
Expert opinion 0.08 (ζa = 0.1ζm )

ηm1

Transition rate from
blood-stage

parasitemia to
symptomatic infection
with gametocytemia

[47] 0.1 days−1

ηa1

Transition rate from
blood-stage

parasitemia to
asymptomatic infection

with gametocytemia

[47] 0.1 days−1

δ

Transition rate from
post-treatment
protection, to

susceptible

[48,49] 0.032 days−1
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Table A1. Cont.

Parameter Symbol Parameter Description References Parameter Values 95% C.I.

ξ
Daily mosquito
mortality rate [45] 0.18

p1
Rate of the acquisition

of premunition fitted 0.0002 days−1 0.0001–0.00035 days−1

p2
Rate of the loss of

premunition fitted 0.0002 days−1 0.0001–0.00035 days−1

γm

Usual recovery rate by
access to care, not
related to specific

interventions

fitted 0.37 days−1 0.20–0.51 days−1

m

Proportion of people
who are away from

their home village at a
given time

fitted 0.01 0.09–0.2

Table A2. Initial conditions.

Compartment Assigned Value Reference

I0

I0 ≈ 0. Proportion of plasmodium
falciparum infection in humans, in

dry season
[27,45]

P0
P0 = 0.2, Proportion of pre-immune

individuals 0.16 [46] B0.27 [47] 0.23-0.32 [31]

Gm0

Proportion of symptomatic malaria
in dry season. Average dry season
incidence estimated from all the

dataset (5years data)

[48]

Ga0

Proportion of asymptomatic
gametocyte carriers were assumed
10 times lower than symptomatic

(expert advice)

Deduced from Gm0

R0
R0 ≈ Gm0. Continuous access to

treatment for symptomatic malaria. Deduced from Gm0

Ai0
Ai0 ≈ 0. Proportion of female

anopheles that carry sporozoites, in
dry season

[27,45]

S0 S0 = 1− Gm0 − Ga0 − R0 − P0 Calculated

Appendix B

Appendix B.1. Simulation of Interventions Targeting HT Hotspots
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Figure A2. Decrease in malaria incidence while targeting one third of HT hotspots in Mbour, Senegal 2008–2012. The y-axis
represents intervention efficacy (relative decrease in overall malaria incidence). (a) Unique one-year intervention during
rainy season, (b) Repeated interventions on five consecutive rainy seasons, once per year, (c) Unique one-year intervention
during the dry season, (d) Repeated interventions on five consecutive dry seasons, once per year.

Appendix B.2. Simulation of Interventions Targeting HT Hotspots

High-connectivity hotspots are defined according to the radiation model Figure A2
directy depend on population sizes and remain almost stable. For other definitions,
hotspots change from one year to another (spatio-temporal variations).

Figure A3. Mbour zone, Senegal, 2008–2012. Geographical coordinates of the 45 villages circles.
Red circles represent connectivity hotspots and gray lines represent main connections between villages.
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