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Summary  17 

The rodent-murine ectoparasite-human model of plague transmission does not fit for the 18 

Second Pandemic in Europe. Ancient genomes reveal that Yersinia pestis was unable to be 19 

transmitted by rat fleas until around 4,000 BP. Since prehistoric times, human lice have been 20 

reported and mentioned as probable source of plague during the second pandemic. 21 

Experimental models confirmed the efficiency of human lice as plague vectors through 22 

infected feces. These results suggest that Y. pestis could be a louse-borne disease, such as 23 

Borrelia recurrentis, Rickettsia prowazekii and Bartonella quintana. Recent studies have 24 

shown that louse-borne outbreaks often involve multiple pathogens, and several cases of co-25 

transmission of Y. pestis and B. quintana have been reported. Furthermore, an exclusive 26 

louse-borne bacterium, namely B. recurrentis, was found to be circulating in northern Europe 27 

during the second pandemic. Current data make it possible to attribute large historical 28 

pandemics to multiple bacteria. All this evidence leads us to propose that human lice probably 29 

played a preponderant role in the interhuman transmission of plague and pathogen co-30 

transmission during previous large epidemics, including historical plague pandemics.  31 

  32 
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Introduction 33 

Recent insights concerning deadly historical plague pandemics profoundly change our views 34 

concerning the ecology and transmission of this causative agent, Yersinia pestis, and 35 

illustrates how the arising of cutting-edge technologies (e.g. whole genomes sequencing of 36 

ancient sample) have the potential to renew established paradigm. Indeed, the historical 37 

paradigm rats-rats’ fleas-human, which was initially proposed in the frame of the third 38 

pandemics in Asia and focused most of the attention since then, has been somehow passively 39 

extended to the two earlier pandemics without systematical consideration of underpinning 40 

requirements (i.e the presence of rats and their fleas in sufficient abundance). In historical 41 

texts, the description of a fever associated with bubo has been pathognomonic of the plague 42 

since Justinian times, when it was very clearly described by Procopius (1). The Y. pestis 43 

lineage responsible for the Plague of Justinian (2–5) (541-750 AD) represented a (now 44 

extinct) clade which was distinct from the huge pandemic known as the “Black Death” that 45 

decimated Europe in the Middle Ages (1346-1353 for the so called “Black Death” and 1346 46 

to the 19th century for the second pandemic (6–12). Despite the independency of these strains, 47 

the clinical symptoms were similar during both historical plague pandemics (5,8,11,13). 48 

Indeed, the “Black Death” was rather a word coined to refer to plague epidemics in the 49 

symbolic register (with a negative connotation) than a denomination used by contemporaries 50 

to describe the clinical manifestation of plague. Therefore, the “Black death” was later 51 

wrongly associated with purpuric fever or hemorrhagic fever (14) . 52 

In 1894, at the beginning of the third pandemic, Alexandre Yersin’s investigations carried out 53 

during the Hong-Kong plague led to the discovery of the Y. pestis bacteria, the causative agent 54 

of plague (15). In 1898, Paul-Louis Simond completed the epidemiological cycle proposed 55 

four years earlier by Yersin (16). He reported an indisputable mechanism by which infected 56 

fleas (Xenopsylla cheopis) could spread Y. pestis from one murid to another (17). The 57 
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discovery of late-stage biofilm-dependent transmission of X. cheopis (18,19) then made it 58 

possible to study 25 Y. pestis genes involved in the transmission of the plague by fleas (20). In 59 

particular, the ymt gene, which codes for a phospholipase D hydrolase and allows Y. pestis to 60 

survive inside the flea’s digestive tract, is considered to be essential (21). All these studies 61 

demonstrated that X. cheopis is the vector transmitting plague from rats to rats, with a possible 62 

accidental transmission to humans. Later, new methods of whole genome sequencing of 63 

ancient DNA completely undermined this vision and molecular analysis traced the plague 64 

back to at least 5000 BP (22), detecting it not only on the arid shores of the Mediterranean but 65 

also in the northernmost part of Europe, hence in heterogeneous ecological environments (22–66 

24). This finding provided an unexpected opportunity to question the classical 67 

epidemiological rats-rat flea-human transmission cycle. Our objective in this study was to 68 

systematically review data regarding Y. pestis transmission by human lice in the context of 69 

genomic evolution and co-transmission of other major epidemic deadly pathogens throughout 70 

human history, to broaden our view of plague transmission. 71 

 72 

Ancient plague transmission enlightened by paleomicrobiology 73 

Currently, paleomicrobiology studies make it possible to consider another model of plague 74 

diffusion which does not feature rats and rat fleas. Indeed, between 2011 and 2019, 80 ancient 75 

Y. pestis genomes were sequenced (3–5,8–12,22–26). These genomes were all recovered from 76 

Eurasian samples of teeth or bones and dated from 5000 BP (Sweden) (22) to 1722 (France) 77 

(10), thus covering the first two historical pandemics. Complete genome analysis confirmed 78 

the systematic presence of plasmid virulence-associated genes, such as the pla gene (pPCP1 79 

plasmid) coding for a plasminogen activator or the caf1 gene responsible for antiphagocytic 80 

activity (pMT1 plasmid), which are both associated with human mortality (27,28). 81 
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Furthermore, the archaeological identification of several individuals in the same grave, 82 

combined with the molecular presence of plague virulence-associated genes indicated that 83 

plague was already a deadly epidemic disease during the Bronze Age, as further described 84 

during historical pandemics (1,29). However, while 68/80 available ancient genomes do 85 

harbour the pMT1-encoded ymt gene, 12/80 ancient Y. pestis genomes dating from 5000 BP 86 

(Sweden) (22) to 1746-1626 cal BC (Russia) (24) lack this gene, (22–24) which is involved in 87 

the survival of Y. pestis in the flea’s gut and is essential in effective plague flea transmission 88 

(30). Spyrou et al. indicate that the ymt gene probably appeared approximately 3,800 years 89 

ago during the Early Bronze Age and concluded that both Y. pestis flea-adapted and non-90 

adapted variants circulated in Eurasia throughout the Bronze Age (26). These facts indicate 91 

that, for approximately 1,200 years, fatal plague did not necessarily require rat fleas (22–92 

24,26). Regarding these results, Y. pestis appear to be a very old human pathogen present 93 

throughout Eurasia, even in its most northern part. Furthermore, the geographical location of 94 

the strains, combined with an absence of the ymt gene (Sweden, Germany, Estonia, Lithuania, 95 

Croatia, Russia, Norway, Austria and Poland (22–24)) does not seem to support a 96 

transmission mechanism mediated by rats and rat fleas (31–33). The presence of the pla gene 97 

in all ancient genomes is an unequivocal indicator that plague could be bubonic and therefore 98 

vectorised by arthropods (introduction of Y. pestis in human tissues following biting) (23). 99 

Genetic and archaeological studies (34–36)  provide evidence that the only known competent 100 

plague vectors present during the Neolithic and Bronze ages in Eurasia were Pulex irritans 101 

(35,36) and the human louse (Pediculus humanus ssp.) (34,37,38). However, P. irritans is 102 

known to be a very poor plague vector (27,39) with a very low blocking capacity (40). Some 103 

authors have hypothesized that P. irritans could have been involved in the spread of plague 104 

during the second pandemic (39–41) but currently, the transmission rates obtained in the 105 

laboratory using early phase transmission [0.14 per cent] are too low to consider P. irritans as 106 
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an efficient vector (20,42,43) . Therefore, the most parsimonious hypothesis is that the 107 

human-human transmission of the plague at this time may have mostly involved human lice, 108 

given the absence of effective flea vector such X. cheopis and the presence of all associated 109 

virulence genes involved in the deadly bubonic plague. 110 

 111 

The rat-and-flea model is not consistent with the historical demography of the second 112 

pandemic 113 

Beyond Neolithic and Bronze age transmission, the epidemiological rat-rat fleas-human 114 

schema cannot explain the speed and magnitude of the second pandemic which spread much 115 

faster that the current third pandemic (32,39,44). In particular, this model is not compatible 116 

with the 1.5 to 6 km/day speed of dissemination of the Black Death as calculated using 117 

historical sources (45). Occasionally, this scheme cannot even be implemented given the 118 

absence of its protagonist (31). For example, in Northern Europe, there are very few 119 

archaeological records of Rattus rattus in the Middle Ages which appears to have been 120 

unevenly distributed in coastal towns (32,33). Current archaeozoological data does not appear 121 

to be compatible with the classical patterns of Y. pestis(31–33,46) given the low density of rat 122 

bones found from medieval archaeological sites in Nordic countries (32,33). Some authors 123 

argue, however, that the scarcity of rats in medieval Europe (47) is compatible with the 124 

classical model of transmission (rats-rat ectoparasites) observed in India during the third 125 

pandemic (29,48,49). These conclusions are based on unsupported assertions (43) or on 126 

mathematical models in which the plague can persist in relatively small rodent populations 127 

(50). Nevertheless, the current parsimonious hypothesis is that is very unlikely that rats could 128 

have played a significant role in vectorization of the plague in Nordic countries (32,33,43). In 129 

an example from the 15th century, two waves of plague killed approximately 50% of 130 
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Icelanders despite an attested absence of rats (31). However, this observation did not exclude 131 

the presence of other cold-resistant mammals that could have served as intermediate hosts. 132 

Finally, while it is acknowledged that the “eastern” rat flea (X.cheopis) has been the main 133 

vector of plague epidemics since the end of the 19th century, its role in spreading the Black 134 

Death is controversial as there are no fossil records of X. cheopis in Europe. However, 135 

remains of P. irritans have been discovered in these latitudes (51), which is consistent with 136 

the fact that the northern European climate may not be conducive to this tropical flea species, 137 

which were adapted to the warmer climate of southern Europe, as evidenced by their 138 

involvement in four’s third pandemic plague outbreaks [Barcelona, Malta, Marseille, 139 

Ajaccio](52). Studies have demonstrated the incapacity and inefficiency of Y. pestis 140 

transmission by X. cheopis exposed to low temperatures (<10-12.5°C) (53–55). This finding 141 

questioned the etiology of the plague, suggesting that it has been caused by haemorrhagic 142 

fever viruses (56) without any scientifically identified causative agent. Accumulated evidence 143 

in favour of Y. pestis indicates that plague exhibited the very same clinical features, mortality 144 

and dissemination rates without rat and rat fleas, as illustrated by the northern epidemics 145 

(31,46). Furthermore, studies on plague and climate seem to indicate that plague introduction 146 

during the Black Death is correlated with hot Mediterranean summers in southern Europe, 147 

which are compatible with flea transmission (57). In contrast, in the southern Baltic states and 148 

Iceland, plague was driven by a cold climate (< 10°C) (57) or a climate consistent with the 149 

Little Ice Age (58). Such temperatures are completely incompatible with rat flea transmission 150 

but consistent with other vectors, such as human lice, that can live in the heat of clothes and 151 

could have be an effective Y. pestis vector following the 1.5/6km day speed of plague 152 

dissemination (45) which correspond to human travel through Eurasia to the most northern 153 

places in Europe (51). In summary, in the context of the plague epidemic, the two main 154 

methods of transmission are ectoparasites and aerosols. Considering that interhuman 155 
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transmission of plague through aerosols has proved to be ineffective unless particular 156 

conditions are met (59,60), the most plausible form for the ancient plagues is the bubonic 157 

form. Particularly during northern plague outbreaks, moreover, in particular during northern 158 

plague outbreaks, lice are the most plausible vector proposed (Figure 1). 159 

 160 

History and role of lice in human infection 161 

Lice are among the oldest human ectoparasites ever recorded. Lice are estimated to 162 

have appeared around 100 million years ago, and speciation between chimpanzee lice 163 

(Pediculus schaeffi) and human lice (Pediculus humanus ssp.) occurred approximately 5.6 164 

million years ago (34). Ancient human lice have been recovered from all continents with the 165 

exception of Oceania. Lice dated as being 9,000 years old were retrieved from textiles in 166 

Israel (61). Lice have also been directly identified on mummified human bodies in Egypt and 167 

pre-Colombian America (62,63). Regarding European prehistory, ancient lice have been 168 

found in textiles in Austria (64). Based on these observations, one of the main candidates 169 

(with P. irritans) for a vector of plague in the Bronze Age is human lice. Furthermore, the 170 

same model is likely apply to the great medieval epidemics in northern Europe where the 171 

presence of lice has been confirmed (51). These outbreaks had a very high rate of mortality 172 

and led to the decline of northern populations (31,46). Louse-borne diseases are able to cause 173 

immense epidemics, as evidenced by contemporary observations. For example, in the 174 

Napoleonic wars, approximately 30% of Napoleon’s soldiers died of typhus while they were 175 

infested with lice in the city of Vilnius during the Russian campaign (65). Lice also killed 176 

millions of people with louse-borne relapsing fever, typhus, and probably trench fever in 177 

Bolshevik Russia and later during World War II (66). The last extremely severe outbreak of 178 

louse-borne diseases was observed in Burundi in 1997, where they are likely to have killed 179 
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10,000 people and affected 100,000 others (67). The role of lice as a vector of R. prowazekii 180 

was first identified by Charles Nicolle, which earned him a Nobel Prize. Nicolle noted that 181 

patients whose clothes were removed and who were bathed prior to admission did not 182 

transmit typhus to others, including healthcare workers in the hospital (68). Searching 183 

patients’ clothes revealed the only possible vector and source of transmission, the louse. 184 

Later, the louse was funded to be responsible for trench fever during World War I (69). 185 

Finally, the presence of B. recurrentis (the causative agent of relapsing fever) in lice was 186 

identified as early as the 19th century in Ireland (70). Among louse-borne outbreaks, therefore, 187 

it is generally difficult to determine which diseases are caused by different pathogens. Indeed, 188 

among Napoleon’s soldiers, R. prowazekii and B. quintana were identified retrospectively as 189 

co-occurring during the same epidemic, but B. recurrentis was not tested for (65). In Burundi, 190 

the co-circulation of R. prowazekii and B. quintana during the same epidemic was 191 

highlighted, but B. recurrentis was not tested for (67). In historical studies in Douai 192 

performed by molecular testing dental pulp, the co-occurrence of R. prowazekii and B. 193 

quintana was highlighted (71). These studies represent the first evidence of R. prowazekii in 194 

Europe. The co-circulation of Y. pestis and B. quintana has also been observed in Venice and 195 

in Bondy (72,73), suggesting a coupled epidemic (Figure 2). Thus, given that many infectious 196 

diseases may be transmitted by the same mechanism, epidemic agents could be considered 197 

guilty by association (Figure 2). 198 

The discovery of two microorganisms during the same pandemic is probably indicative of the 199 

fact that both pathogens have the same mechanism of transmission, allowing us to 200 

hypothesise that Y. pestis and B. quintana were co-transmitted by body lice in Venice and 201 

Bondy.  202 

 203 
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Supposed role of lice in ancient plague outbreaks 204 

Observation of the natural infection of body lice (Pediculus humanus humanus) from 205 

plague-infected human began at the beginning of the 20th century when the spontaneous 206 

infection of head lice with plague (Pediculus humanus capitis) was found. With regard to 207 

body lice, in 1914 Swellengrebel and Otten recovered infected body lice from the clothes of a 208 

plague victim and from an inhabitant of a plagued house, and in 1935, the capacity of body 209 

lice to be infected by ingesting plague-contaminated blood was finally demonstrated (74). The 210 

first observation of human contamination by body lice was made among Andean Indians who 211 

developed pharyngeal plague after consumption of contaminated lice (75), although we do not 212 

know if the bacterial load present in infected body lice can cause this type of symptom, which 213 

was observed through the consumption of infected meat (76–78). The vectoral capacity of lice 214 

by contamination of their faeces was discovered by Blanc and Baltazard, but all these 215 

observations and experimentations were forgotten and then rediscovered (79). Indeed, in 216 

2006, our laboratory unambiguously demonstrated the plague-vector potential of body lice by 217 

faecal contamination with viable Y. pestis bacteria using a rabbit experimental model (Figure 218 

3) (80). 219 

 We also recently found Y. pestis in head and body lice during one of the last endemic 220 

outbreaks of the Democratic Republic of Congo (81,82). Experimental studies performed both 221 

in the 1950s and recently highlighted the vectoral capacity of lice for Y. pestis in rabbits 222 

(74,80,83). Interestingly, current models that integrate lice into plague transmission in the 223 

Middle Ages are able to explain the spread that could not be explained exclusively using the 224 

rat, human and rat flea model (84). All these studies could also shed light on the role played 225 

by clothing in the dispersal of Y. pestis in an epidemic context, as ancient populations were 226 

infested with lice until contemporary times (85) (Supplementary Figure 1). 227 
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 Indeed, in the past, authors wrote on the danger posed by the clothing worn plague 228 

victims when it came to the spread of the plague, especially during the epidemics of 229 

Marseilles (1720-1722) (86) and Moscow (1771) (87). These observations could 230 

foreshadowed the role of lice and their infected faeces which was demonstrated in 1909 231 

during an epidemic typhus outbreak by Nobel Prize winner Charles Nicolle (68). Further 232 

investigations may address whether such mode of transmission might apply to pneumonic 233 

plague contamination (Supplementary Figure 1).  234 

 235 

Historical interhuman transmissions of Y. pestis 236 

We re-analysed historical texts dealing with plague to consider the role of lice in the 237 

transmission of deadly infections, including plague. The very first mention of lice as putative 238 

vectors of plague was found in a treatise written by Nicolas Hartsoeker in 1722 (88). This text 239 

was written at the end of the Great Plague of Marseille (1720-1722) and refers directly to this 240 

outbreak (88). Hartsoeker argued that plague is not transmitted by the air but by the bite of 241 

microscopic insects, such as lice, which find refuge in rags, clothes and bedding. He described 242 

them as follows: “I conjecture that the plague is caused only by invisible insects which hide 243 

themselves willingly in these stuffs (tatters, goods or clothes) and make their nests inside; that 244 

these insects multiply extremely in a very short time…that these insects do not fly, or at least 245 

they do not fly very far, but that they do rather like lice that we win easily when those who are 246 

infected; that their bite is in proportion to their size, which is at least as dangerous as that of 247 

vipers; and that their numbers compensate for their smallness.” The hypothetical role of lice 248 

in the plague was also mentioned during the Moscow plague epidemic in 1771 by Russian 249 

scientists based on the role that clothing played in the contagion of the disease (86,87). It is 250 

interesting to note that the absence of reported cases of animal plague during some large 251 
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outbreaks such as Marseille (1720-1722) or Moscow (1771), revealed that there was probably 252 

a mostly interhuman transmission that pneumonic plague cannot explain, given its low 253 

transmission rate (87). Although more than 200 mammal species are susceptible to plague 254 

(89), in some cases, no major epizootics were observed during plague pandemics. (86,87) 255 

Finally, regarding ancient historical texts about second pandemic plague outbreaks, the great 256 

majority of reported cases were bubonic (43). Bubo (meaning “swelling of lymph glands” in 257 

Latin, coming from the ancient Greek word boubṓn which means “groin or swelling in the 258 

groin”) is an adenitis and was common during the 15th century (Supplementary figure 2). 259 

During the Plague of Marseille (one of the most documented plague episodes), 260 

lymphadenopathies were given different names according to their location on the body, 261 

thereby lymphadenopathy of the glands around the ears was named “parotid”. 262 

Lymphadenopathies on inguinal and axillary parts of the body were known as “buboes”, and a 263 

lymphadenopathy located on other parts of the body was known as abscesses (90). In the 264 

modern semiology of the plague, these three terms are grouped under the term “buboes”. 265 

During the second pandemic, buboes were primarily reported on the inguinal parts of the body 266 

or on axillary parts of the body depending on the source (43,86); these locations are 267 

compatible with human lice bites (Supplementary Figure 3, Figure 4). The most common 268 

location of bubo, the groin, offers a refuge for body lice in the underwear (Supplementary 269 

Figure 3, Figure 4) rather than popliteal adenitis, which may occur after fleabites to the legs. 270 

At this time, underwear commonly covered the thighs. In the modern era, scratching lesions 271 

following plague infection are usually found in the underwear area. After the second 272 

pandemic, human body lice become rarer thanks to better hygiene among the populations, 273 

however, on rare occasions, body lice may have been involved in plague transmission during 274 

the third pandemic, as evidenced by the bubonic outbreaks in Glasgow (91) in 1900 and in the 275 

Democratic Republic of Congo in 2010 (82).  276 
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The future of plague in the context of louse-borne diseases 277 

The disappearance of massive Y. pestis, B. recurrentis and R. prowazekii outbreaks in 278 

countries with a high level of hygiene is most likely evidence of the dramatic disappearance 279 

of body lice and anthropophilic fleas (P. irritans), another potential vector for interhuman 280 

transmission of plague (40). Indeed, rats are still common in rich countries where body lice 281 

are scarce, and plague foci persist in poor countries reporting the largest number of plague 282 

cases, such as Congo and Madagascar (92,93). However, sporadic cases have been reported in 283 

the USA and northern Africa (94,95). The recent discovery and sequencing of B. recurrentis 284 

from the 15th century in northern Europe, at a time where plague was endemic (96) offers 285 

evidence of the circulation of both pathogens and body lice in the late medieval period. 286 

Indeed, B. recurrentis was circulating at the same time as R. prowazekii but in different 287 

locations (68). Moreover, B. recurrentis is transmitted by lice faeces, similar to R. prowazekii 288 

and B. Quintana (97). A zoonotic agent, such as the murine soft tick-transmitted Borrelia 289 

duttonii (98), may become an interhuman-transmitted pathogen, such as B. recurrentis, after a 290 

louse becomes contaminated when feeding on a patient with bacteraemia. Thus, B. recurrentis 291 

is probably a model organism for lice transmitted pathogens, and circulation of plague 292 

probably has more to do with human hygiene and the presence of body lice than to the 293 

transmission of the bacterium as a purely zoonotic pathogen. Moreover, the pla gene, which is 294 

considered a key factor in Y. pestis transmission, is unspecific and has been found in some 295 

strains of Citrobacter koseri isolated from rats or in Escherichia coli (99,100); this gene 296 

coding for a protease can partially explain human pandemics, but the success of Y. pestis as a 297 

zoonotic agent is rather due to the murine toxin, the ymt gene (89). 298 

We can now construct a scenario for the passage of pathogens detected in wild 299 

animals, vectorized by arthropods which occasionally bite humans and are responsible for 300 

zoonosis (Figure 5). Among these pathogens, B. quintana can remain for years in human 301 
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organisms and populations (101). Similarly, typhus can relapse in the form of Brill-Zinsser 302 

disease as long as 40 years after the initial infection with R. prowazekii; indicating that 303 

humans can host the pathogen and transmit it through lice throughout their lifetimes 304 

(102,103). B. recurrentis is also an endemic relapsing fever pathogen persisting in the human 305 

body (104). However, because Y. pestis is not a persisting pathogen in the human organism 306 

and populations, plague is the only lice-borne transmitted disease that manifests itself in 307 

successive waves, resulting in multiple introductions in Europe due to the lack of a human 308 

reservoir (57). 309 

Lice can considerably amplify the spread of the microbe, leading to the creation of a 310 

hypervirulent clone with a reduced genome size and massive interhuman transmission (105). 311 

Thus, R. prowazekii, which is well identified in flying squirrels in the United States, is likely 312 

to occasionally transmit infections to humans via its arthropods, resulting in a situation where 313 

a new typhus cycle can begin. Causative agents of recurrent tick-borne borreliosis, such as B. 314 

duttonii or B. crocidurae, have a very high genetic homogeneity. B. recurrentis clearly 315 

appears as an emerging clone of B. duttonii with a reduced genome (98). In some cases, B. 316 

duttonii is transmitted to humans (106), and human-to-human transmission could lead to the 317 

selection of a hypervirulent clone with a reduced genome size in epidemics of pediculosis. We 318 

have shown that B. quintana is also a zoonosis affecting cats (107). The transmission of B. 319 

quintana from cats to humans can be made through fleas, and its further spread by lice can 320 

occur on a considerable scale, for which we have an experimental model. However, B. 321 

quintana has been found in individuals who died approximately 2,000 years B.C. in Europe; 322 

at a time when cat fleas were probably not the main vector (64,108). In Poland, B. quintana 323 

was propagated on a large scale in volunteers to feed lice for typhus-producing lice colonies 324 

to produce the Weigl vaccine, as previously reviewed (109). The hyper-specialisation of B. 325 

quintana and its high level of transmission have been associated with a decrease in the size of 326 
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its genome compared to that of B. henselae (110).  Finally, the same model can be suggested 327 

for plague which is a zoonotic agent that can affect several animals (murids, camels, sheep, 328 

and cats (89), and rat fleas are likely to bite humans during epizootics. Although the majority 329 

of plague cases result from the ectoparasite-borne transmission of Y. pestis, nevertheless the 330 

pathogen can also be efficiently transmitted by contaminated food (76–78). In situations of 331 

epidemics of pediculosis, such as those in eastern Congo (92), this sporadic form can be 332 

followed by a micro-outbreak. In special situations, body lice epidemics may occur. This type 333 

of epidemic occurred in the concentration camps during the Second World War. It was also 334 

observed during the civil war in Rwanda and Burundi as well as in eastern Congo where 335 

100% of the refugee population was infested with lice and where two epidemics—epidemic 336 

typhus and trench fever—developed simultaneously (67). The nature and persistence of 337 

epidemics of pediculosis outside the contemporary era are very difficult to evaluate, as very 338 

few texts allow them to be analysed; however, it is likely that during these epidemics of 339 

pediculosis, several pathogens were transmitted. In addition to the cases that are authentically 340 

attributable to plague, with the presence of buboes, cases of severe fever sometimes 341 

associated with jaundice (such as cases infected with B. recurrentis) are likely to indicate one 342 

of several epidemics that are transmitted by lice. 343 

 344 

Conclusion 345 

In summary, current paleomicrobiological data provide an understanding of past pandemics 346 

transmitted by lice, which have probably been the vector, along with mosquitoes, of the most 347 

deadly and widespread pandemics in human history. The discovery of B. recurrentis from the 348 

15th century in northern Europe highlights the vast circulation of human body lice during this 349 

period in this area and suggests that the louse was a competent vector, probably linked with 350 
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plague-related pandemics in the late Mediaeval era, as currently proposed by field studies, 351 

experimental studies and models. Moreover, the co-circulation of plague with other louse-352 

borne diseases suggests that multiple pathogens may have been identified as plague. 353 

Furthermore, modelling of ancient plague epidemics shows that transmission by rats and rat 354 

fleas is not consistent with major outbreaks during the second pandemic. Finally, all these 355 

elements combined with the rediscovery and demonstration of the efficiency of lice as a 356 

plague vector provide substantial evidence on which to base a new theory around Y. pestis 357 

transmission in Medieval Europe. We currently have sufficient evidence demonstrating that 358 

lice played a major role in plague transmission and spread following the same schema as other 359 

louse-borne diseases. This proposed paradigm change allows for a better understanding of 360 

past and future epidemics.   361 
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Figure legends: 377 

Figure 1. Timescale of paleomicrobiological data related to louse-borne pathogens from 378 

100.000 BP to the 19th century.  379 

Figure 2. Map of detection of presumably co-transmitted ancient louse-borne bacteria in 380 

Europe from 11th to 19th century. 381 

 382 

Figure 3. Schematic view of Y. pestis lice-to-human transmission mechanisms 383 

 384 

Figure 4. Repartition of pediculosis on human body. 385 

Pediculosis is caused by human lice biting, here we reconstructed pediculosis body repartition 386 

documented from more than 500 photography of modern pediculosis cases taken by medics of 387 

the Mediterranean infection institute.  388 

 389 

 Figure 5. Schematic scenario showing how zoonotic agents might become agents 390 

transmitted among human population via body-lice. Green: natural zoonotic sources of 391 

opportunist parasite. Blue: Secondary inter-human spreading via body lice ectoparasite, or 392 

primary lice-borne pathogens (B. reccurentis) 393 

 394 

 395 

 396 

 397 

 398 

 399 
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