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Simple Summary: In mammals, including humans, the body temperature displays a circadian
rhythm and is maintained within a narrow range to facilitate the optimal functioning of physiological
processes. Body temperature increases during the daytime and decreases during the nighttime
thus influencing the expression of the molecular clock and the clock-control genes such as immune
genes. An increase in body temperature (daytime, or fever) also prepares the organism to fight
aggression by promoting the activation, function, and delivery of immune cells. Many factors may
affect body temperature level and rhythm, including environment, age, hormones, or treatment. The
disruption of the body temperature is associated with many kinds of diseases and their severity,
thus supporting the assumed association between body temperature rhythm and immune functions.
Recent studies using complex analysis suggest that circadian rhythm may change in all aspects
(level, period, amplitude) and may be predictive of good or poor outcomes. The monitoring of body
temperature is an easy tool to predict outcomes and maybe guide future studies in chronotherapy.

Abstract: The circadian rhythm of the body temperature (CRBT) is a marker of the central biological
clock that results from multiple complex biological processes. In mammals, including humans, the
body temperature displays a strict circadian rhythm and has to be maintained within a narrow range
to allow optimal physiological functions. There is nowadays growing evidence on the role of the
temperature circadian rhythm on the expression of the molecular clock. The CRBT likely participates
in the phase coordination of circadian timekeepers in peripheral tissues, thus guaranteeing the
proper functioning of the immune system. The disruption of the CRBT, such as fever, has been
repeatedly described in diseases and likely reflects a physiological process to activate the molecular
clock and trigger the immune response. On the other hand, temperature circadian disruption has
also been described as associated with disease severity and thus may mirror or contribute to immune
dysfunction. The present review aims to characterize the potential implication of the temperature
circadian rhythm on the immune response, from molecular pathways to diseases. The origin of CRBT
and physiological changes in body temperature will be mentioned. We further review the immune
biological effects of temperature rhythmicity in hosts, vectors, and pathogens. Finally, we discuss
the relationship between circadian disruption of the body temperature and diseases and highlight
the emerging evidence that CRBT monitoring would be an easy tool to predict outcomes and guide
future studies in chronotherapy.
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1. Introduction

In mammals, including humans, the body temperature displays a circadian rhythm
and is maintained within a narrow range to facilitate the optimal functioning of physio-
logical processes [1]. Physiological body temperature is approximately 37.0 ◦C in healthy
subjects, with a nearly 1 ◦C sinusoidal circadian fluctuation [1,2]. The core body tempera-
ture is the result of a fine balance between heat production and heat loss, with the lowest
level of temperature arriving at the resting phase during the night and the highest level at
the end of the day as a consequence of the physiological metabolism (Figure 1). This process
is due to several mechanisms, including (1) conversion of chemical energy from foods
to heat metabolic [3] and mechanical energy from muscular contraction (physical efforts,
shivering) [4], (2) cellular oxidative metabolism that produces a constant and stable source
of heat, and (3) dissipation of heat through sweating or vasomotor changes that regulate
blood flow to the skin and mucous membranes [5]. Heat is lost at the skin surface by the
mechanisms of convection, radiation, and evaporation or is dissipated by the respiratory
system (breathing) [6].
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Figure 1. Origin, control, and variation of the body temperature in humans. The heat production is generated by the
metabolism and the activity resulting in an increase of body temperature during the day. Heat loss is the consequence of
sweating or vasomotor changes that regulate blood flow to the skin and mucous membranes via nerve sensors (thermal
TRP) of the temperature and coordinated by the hypothalamus. Temperature oscillation is synchronized by the SCN but
may also be generated by the brown fat driven by their cell molecular clocks. Red arrows represent the heat. The climate
environment results in a change in body temperature around 0.2 ◦C between winter and summer. SCN—suprachiasmatic
nucleus; TRP—transient receptor potential.
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Body temperature in mammals is under the control of the biological clock [1]. The
master clock that controls all biological rhythm resides in the suprachiasmatic nucleus
(SCN) of the brain [7,8]. The biological clock is cell-autonomous and in its simplest form
consists of a transcription–translation oscillator loop. In the SCN and most somatic cells,
the core molecular clock is generated by the heterodimer BMAL1:CLOCK proteins that
drive the expression of their own repressors (mainly PER and CRY proteins) [9]. The
transcription factors within each of these loops can also regulate clock-controlled genes
(Ccg). The latter express a circadian profile and regulate numerous functions including
immunity [9,10].

A close relationship is now established between body temperature, the biological clock,
and immune functions and diseases [10,11]. The present review aims to characterize the
circadian rhythm of the body temperature (CRBT) in humans and its relation to immunity
from molecular pathways to diseases. The origin and homeostatic mechanisms of CRBT
will be briefly mentioned. Reasons for body temperature disruption; immune and biological
effects of temperature variability in the host, vector, and pathogen; and the association
between circadian disruption of the body temperature and diseases will be described.

2. The Circadian Rhythm of the Body Temperature
2.1. Clock Control of the CRBT

Internal fluctuations of the body temperature are regulated by the circadian rhythm.
The latter is under the control of the SCN located in the hypothalamus, which is also the
dominant thermoregulatory controller in mammals [12,13]. Temperature is sensed by the
transient receptor potential (TRP) family of ion channels [14]. Thermal TRPs are activated
at distinct temperature thresholds and are typically expressed in sensory neurons. The
subtype TRPV3 senses heat [15], whereas cold is sensed by TRPM8 [16]. Thus, thermal
information from the skin surface, peripheral tissues, core organs, and neuraxis per se are
integrated at various levels, finally arriving at the hypothalamus. The direct control of the
SCN on the hypothalamic thermoregulatory center was never proven in humans but highly
supposed. In a model of squirrels, the CRBT was permanently prevented in animals with
sustained complete ablation of the SCN [12]. The CRBT is most likely synchronized by
the rhythmic input from the SCN acting upon the hypothalamic thermoregulatory centers.
These centers modulate the setpoint and alter the thresholds for cutaneous vasodilatation
and sweating.

More recently, Nam et al. [17] showed that the formation and metabolic functions of
the brown adipose tissue, a key organ for body temperature maintenance, are controlled
under an orchestrated circadian clock regulation. They observed the cell-intrinsic clock
machinery exerts concerted control of brown adipogenesis with consequent impacts on
adaptive thermogenesis. These data highlight a thermogenic capacity of fine-tuning brown
adipose tissue that complements the temporal mechanisms of circadian regulation of
body temperature.

2.2. Measurements of the CRBT

The clock control of body temperature includes a circadian cycle consisting of an
amplitude (nearly 1 ◦C of difference from min to max values) and a period (24 h for a
complete cycle) [18]. Figure 2 depicts all parameters and the nomenclature of the CRBT.
The method of temperature monitoring is a critical issue in the study of CRBT. Temperature
can be monitored at different sites, with the choice of the site resulting in certain trade-
offs in terms of convenience and reliability. Peripheral measurements (oral, axillary, or
thoracic skin surface), which are generally more convenient, have a comparable amplitude
of temperature variation than central measurement (rectal or intestinal). However, most
likely due to the heat radiation from central to peripheral tissues, peripheral methods of
monitoring have a far higher variance and range of periods of time [18,19]. Thus, central
monitoring appears to be the most accurate monitoring to assess the CRBT [20].
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Figure 2. Circadian parameters of the body temperature. The graph represents the circadian rhythm
of the body temperature (red curve). The dashed line represents the mesor (MESOR = Midline
Estimating Scheme 24 h for a circadian rhythm). The amplitude is the difference between the mesor
and the value at the peak. The acrophase is the time-of-day of the maximum value. The bathyphase
is the time-of-day of the minimum value.

2.3. Physiological Modulations of the CRBT

Many environmental and physiological factors have been reported to influence the
CRBT in humans. The change of the CRBT may have consequences on physiological
functions (see below). This section aims to describe the physiological change in CRBT
in some specific situations (i.e., mainly seasons, age, and sex), as CRBT is known to be
associated with different immune response profiles and infectious risks [21,22]. The role
of physiological variation in temperature circadian rhythm in the immune response was
never assessed, but it could be an interesting field of research in the future.

Several studies revealed that the time of year (seasons) might be a possible source of
body temperature variability [18]. A large-scale study (n = 93,225) demonstrated robust and
consistent behavior of the human circadian cycle at the population level [23]. They showed
that over the year, body temperatures were slightly colder in winter than summer (~0.2 ◦C
difference) (Figure 1). They suggested that seasonal variation of temperature might be due
to ambient effects on body temperature that are not eliminated because they fall within the
tolerance range of the thermoregulatory system. In addition, the bathyphase (daily time
of minimum temperature) appeared to parallel sunrise times, and the acrophase (daily
time of maximum temperature) and sunset times followed opposite seasonal patterns, with
acrophase preceding nightfall in summer and following nightfall in winter.

The circadian system undergoes dramatic changes during an individual’s lifetime, par-
ticularly during early ontogenetic development and in old age [24]. There is some evidence
that daily temperature level and amplitude of temperature decrease with aging [25,26].
It was suggested that these changes may be related to less efficient intrinsic mechanisms
of thermoregulation but could also be linked to a sedentary lifestyle, chronic diseases, or
medications, and may affect other circadian functions [24].

The CRBT is different according to gender and mainly influenced by the sexual
hormones [27]. In females, the body temperatures vary in a predictable manner across the
menstrual cycle in a normally cycling individual. An increase in body temperature ranging
from 0.25–0.5 ◦C is typically observed during the ovulation period. Although females
maintain a similarly shaped circadian body temperature curve in both the follicular and
luteal phases, a decrease in amplitude occurs. Indeed, the increase in temperature value
at bathyphase with ovulation is not accompanied by the same degree of increase in peak
temperature values [28]. The intrinsic circadian period of the body temperature was shown
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to be significantly shorter in women but only in young subjects highlighting the potential
mixed effect of gender and age [29].

Changes in the circadian rhythm of body temperature can also occur during a disrup-
tive environment, illness, or medication. A large number of studies have also shown a close
association between the CRBT and sleep disorders [30]. Night workers display significant
circadian rhythm abnormalities, including disruption of the body temperature that persists
even after retirement [31,32].

3. Molecular, Immune, and Biological Effects of Temperature Variations
3.1. Transcriptional Effect of Temprature Variations

Temperature cycles have been shown to function as systemic indices that effectively drive
the phase of individual oscillators in cultured cells and tissue explants (Figure 3A) [9,11,33].
Simulated body temperature cycles of mice and even humans, with daily temperature
differences of only 3 ◦C and 1 ◦C, respectively, but also considerably longer or shorter
periods than 24 h, could gradually synchronize the expression of circadian genes in cultured
mouse fibroblasts [11]. In Drosophila, temperature cycles not only induce oscillations of
clock proteins but also synchronize behavioral rhythms, revealing an effect on physiological
functions. The temperature-induced rhythms were also observed under constant light
conditions, a situation that normally leads to molecular and behavioral arrhythmicity,
revealing a tissue-autonomous process that can override the effects of light [34]. In a mouse
model, temperature drive resistance has been demonstrated as a property of the SCN
network and not an autonomous cellular property of mammalian clocks. This differential
sensitivity to temperature allows the SCN to drive circadian rhythms in body temperature,
which can then act as a universal cue for the entrainment of cell-autonomous oscillators
throughout the body [35].
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Schematic representation of the effect of the temperature on the expression of the clock genes (e.g., Bmal1 in a model of
cultured fibroblasts). Red curves represent the expression of Bmal1 quantified by bioluminescence. Grey curves represent
the temperature cycles set in the incubator. From left to right and top to bottom, an example of cell culture maintained
at 37 ◦C showing a progressive decrease of the oscillatory expression of the clock gene (Condition 1). Then followed by
three examples of synchronization of the clock gene expression by three different conditions of temperature cycles: with
an amplitude of 2 ◦C and a period of 24 h (Condition 2), an amplitude of 4 ◦C and a period of 24 h (Condition 3), and an
amplitude of 2 ◦C and a period of 12 h (Condition 4) [11]. (B) Possible mechanisms involved in the temperature entrainment
of molecular clocks in the peripheral tissues are depicted [36]. Cold temperature-induced RNA-binding proteins CIRP
and RBM3 lengthen the 3′ untranslated region (3′-UTR) of target RNAs by suppressing their proximal polyadenylation
sites. CIRP also promotes the nuclear export and translation of Clock RNA. On the other hand, warm body temperature
transcriptionally activates Per2 expression in an HSF1-dependent manner, whereas HSP90 post-translationally stabilizes
BMAL1-CLOCK complex, a heterodimeric activator of the Per2 transcription.

The molecular mechanism involving the temperature in the clock transcriptional
loop is depicted in Figure 3B. The transcriptional effect of the temperature rhythm in-
volves the cold-inducible RNA-binding protein (CIRP), a highly conserved RNA-binding
nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian
gene expression post-transcriptionally and appears to be a widespread feature in the
temperature-dependent regulation of mammalian gene expression [37]. Heat is also in-
volved in the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor
that binds heat shock element (HSE) sequence in a daily rhythmic manner, leading to the
circadian activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock
at 40 ◦C for 150 min (simulating a fever) in the cultured liver and lung explants of mice
induced a strong increase of mPer2 expression [39], confirming the close link between CRBT
and circadian rhythm.

Inversely, the molecular clock is crucial for generating circadian rhythms, including
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main
clock genes, has been demonstrated to be essential for maintaining body temperature
rhythmicity [40].

As explained above, the transcription factors generated by the molecular clock regulate
clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that many
immune genes are under the control of the molecular clock [10]. In humans, mistimed
sleep affects the molecular regulators of circadian rhythmicity and leads to a reduction of
rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 1.0% during
forced desynchrony of sleep [41]. Many of the circadian dysregulated genes are involved
in immune pathways [42]. To our knowledge, the direct link between the CRBT and the
expression of the immune genes was not specifically shown; however, by extrapolation,
one can consider that disruption of the CRBT might most likely affect the expression of the
Ccg, including immune genes.

3.2. Effect of Temperature Change on Immune Function

Many variables of the human immune system exhibit distinct 24-h rhythms, such as
the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43].
Thus, circadian disruption may have a negative impact on these features. Numerous studies
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune
actors [44]. The SCN most likely conveys timing information to the immune system mainly
through autonomic and endocrine pathways involving cortisol and melatonin, or through
temperature variations. These signals promote phase coherence of peripheral clocks in the
immune system and also govern daily variations in immune function [10].

The effect of the CRBT on the immune effectors has never been directly assessed
in humans. However, the level of body temperature and its rhythm can have varying
impacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote
the activation, function, and delivery of immune cells, whereas reduced temperatures
inhibit these processes [64]. As detailed above, a change of temperature influences the
molecular clock expression. Thus, an elevation of body temperature above 38 ◦C (fever)
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is likely a trigger to activate circadian metabolic pathways, such as immune functions.
Conversely, hypothermia (<36 ◦C) has been associated with a poor prognosis in critically ill
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns and
trafficking molecule expression, primarily by exerting an anti-inflammatory influence [63].
At a molecular level, hypothermia may lead to an accumulation of the CIRP protein and
disrupt the expression of the molecular clock [36].

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a circadian
rhythm (~) under normal condition (normal CRBT) and changes (
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body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
lecular clock expression. Thus, an elevation of body temperature above 38 °C (fever) is 
likely a trigger to activate circadian metabolic pathways, such as immune functions. Con-
versely, hypothermia (<36 °C) has been associated with a poor prognosis in critically ill 
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns 
and trafficking molecule expression, primarily by exerting an anti-inflammatory influence 
[63]. At a molecular level, hypothermia may lead to an accumulation of the CIRP protein 
and disrupt the expression of the molecular clock [36]. 

On the scale of a day (or of the circadian rhythm), one hypothesis would be that an 
increase in temperature (which takes place during the day) prepares the organism to fight 
aggression specifically in the daytime (it is more probable that trauma or infection would 
occur during the day rather than the night). It has been demonstrated that an infection is 
more severe when mice are infected at the resting phase (low level of temperature) than 
during the active phase (high level of temperature) [66]. 

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a 
circadian rhythm (~) under normal condition (normal CRBT) and changes (⬈: increase or ⬊: decrease) in immune features : decrease) in immune features and functions in fever

(or heat) and hypothermia. CHS—contact hypersensitivity; GVHD—graft-versus-host disease; KO—knock-out; WT—wild type.
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nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian gene 
expression post-transcriptionally and appears to be a widespread feature in the tempera-
ture-dependent regulation of mammalian gene expression [37]. Heat is also involved in 
the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor that binds 
heat shock element (HSE) sequence in a daily rhythmic manner, leading to the circadian 
activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock at 40 °C for 
150 min (simulating a fever) in the cultured liver and lung explants of mice induced a 
strong increase of mPer2 expression [39], confirming the close link between CRBT and 
circadian rhythm. 

Inversely, the molecular clock is crucial for generating circadian rhythms, including 
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
lecular clock expression. Thus, an elevation of body temperature above 38 °C (fever) is 
likely a trigger to activate circadian metabolic pathways, such as immune functions. Con-
versely, hypothermia (<36 °C) has been associated with a poor prognosis in critically ill 
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns 
and trafficking molecule expression, primarily by exerting an anti-inflammatory influence 
[63]. At a molecular level, hypothermia may lead to an accumulation of the CIRP protein 
and disrupt the expression of the molecular clock [36]. 

On the scale of a day (or of the circadian rhythm), one hypothesis would be that an 
increase in temperature (which takes place during the day) prepares the organism to fight 
aggression specifically in the daytime (it is more probable that trauma or infection would 
occur during the day rather than the night). It has been demonstrated that an infection is 
more severe when mice are infected at the resting phase (low level of temperature) than 
during the active phase (high level of temperature) [66]. 

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a 
circadian rhythm (~) under normal condition (normal CRBT) and changes (⬈: increase or ⬊: decrease) in immune features DC migration Human (healthy) In vitro [45]
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nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian gene 
expression post-transcriptionally and appears to be a widespread feature in the tempera-
ture-dependent regulation of mammalian gene expression [37]. Heat is also involved in 
the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor that binds 
heat shock element (HSE) sequence in a daily rhythmic manner, leading to the circadian 
activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock at 40 °C for 
150 min (simulating a fever) in the cultured liver and lung explants of mice induced a 
strong increase of mPer2 expression [39], confirming the close link between CRBT and 
circadian rhythm. 

Inversely, the molecular clock is crucial for generating circadian rhythms, including 
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
lecular clock expression. Thus, an elevation of body temperature above 38 °C (fever) is 
likely a trigger to activate circadian metabolic pathways, such as immune functions. Con-
versely, hypothermia (<36 °C) has been associated with a poor prognosis in critically ill 
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns 
and trafficking molecule expression, primarily by exerting an anti-inflammatory influence 
[63]. At a molecular level, hypothermia may lead to an accumulation of the CIRP protein 
and disrupt the expression of the molecular clock [36]. 

On the scale of a day (or of the circadian rhythm), one hypothesis would be that an 
increase in temperature (which takes place during the day) prepares the organism to fight 
aggression specifically in the daytime (it is more probable that trauma or infection would 
occur during the day rather than the night). It has been demonstrated that an infection is 
more severe when mice are infected at the resting phase (low level of temperature) than 
during the active phase (high level of temperature) [66]. 

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a 
circadian rhythm (~) under normal condition (normal CRBT) and changes (⬈: increase or ⬊: decrease) in immune features APC and T-cell interactions Human (healthy) In vitro [45,46]
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nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian gene 
expression post-transcriptionally and appears to be a widespread feature in the tempera-
ture-dependent regulation of mammalian gene expression [37]. Heat is also involved in 
the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor that binds 
heat shock element (HSE) sequence in a daily rhythmic manner, leading to the circadian 
activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock at 40 °C for 
150 min (simulating a fever) in the cultured liver and lung explants of mice induced a 
strong increase of mPer2 expression [39], confirming the close link between CRBT and 
circadian rhythm. 

Inversely, the molecular clock is crucial for generating circadian rhythms, including 
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
lecular clock expression. Thus, an elevation of body temperature above 38 °C (fever) is 
likely a trigger to activate circadian metabolic pathways, such as immune functions. Con-
versely, hypothermia (<36 °C) has been associated with a poor prognosis in critically ill 
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns 
and trafficking molecule expression, primarily by exerting an anti-inflammatory influence 
[63]. At a molecular level, hypothermia may lead to an accumulation of the CIRP protein 
and disrupt the expression of the molecular clock [36]. 

On the scale of a day (or of the circadian rhythm), one hypothesis would be that an 
increase in temperature (which takes place during the day) prepares the organism to fight 
aggression specifically in the daytime (it is more probable that trauma or infection would 
occur during the day rather than the night). It has been demonstrated that an infection is 
more severe when mice are infected at the resting phase (low level of temperature) than 
during the active phase (high level of temperature) [66]. 

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a 
circadian rhythm (~) under normal condition (normal CRBT) and changes (⬈: increase or ⬊: decrease) in immune features TNF and IL-12 production Mice (WT) In vivo and in vitro [36,46]

Biology 2021, 10, x 7 of 16 
 

nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian gene 
expression post-transcriptionally and appears to be a widespread feature in the tempera-
ture-dependent regulation of mammalian gene expression [37]. Heat is also involved in 
the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor that binds 
heat shock element (HSE) sequence in a daily rhythmic manner, leading to the circadian 
activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock at 40 °C for 
150 min (simulating a fever) in the cultured liver and lung explants of mice induced a 
strong increase of mPer2 expression [39], confirming the close link between CRBT and 
circadian rhythm. 

Inversely, the molecular clock is crucial for generating circadian rhythms, including 
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
lecular clock expression. Thus, an elevation of body temperature above 38 °C (fever) is 
likely a trigger to activate circadian metabolic pathways, such as immune functions. Con-
versely, hypothermia (<36 °C) has been associated with a poor prognosis in critically ill 
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns 
and trafficking molecule expression, primarily by exerting an anti-inflammatory influence 
[63]. At a molecular level, hypothermia may lead to an accumulation of the CIRP protein 
and disrupt the expression of the molecular clock [36]. 

On the scale of a day (or of the circadian rhythm), one hypothesis would be that an 
increase in temperature (which takes place during the day) prepares the organism to fight 
aggression specifically in the daytime (it is more probable that trauma or infection would 
occur during the day rather than the night). It has been demonstrated that an infection is 
more severe when mice are infected at the resting phase (low level of temperature) than 
during the active phase (high level of temperature) [66]. 

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a 
circadian rhythm (~) under normal condition (normal CRBT) and changes (⬈: increase or ⬊: decrease) in immune features IL-2 CD4+ T-cell production Human (healthy) In vitro [47]
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nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian gene 
expression post-transcriptionally and appears to be a widespread feature in the tempera-
ture-dependent regulation of mammalian gene expression [37]. Heat is also involved in 
the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor that binds 
heat shock element (HSE) sequence in a daily rhythmic manner, leading to the circadian 
activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock at 40 °C for 
150 min (simulating a fever) in the cultured liver and lung explants of mice induced a 
strong increase of mPer2 expression [39], confirming the close link between CRBT and 
circadian rhythm. 

Inversely, the molecular clock is crucial for generating circadian rhythms, including 
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
lecular clock expression. Thus, an elevation of body temperature above 38 °C (fever) is 
likely a trigger to activate circadian metabolic pathways, such as immune functions. Con-
versely, hypothermia (<36 °C) has been associated with a poor prognosis in critically ill 
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns 
and trafficking molecule expression, primarily by exerting an anti-inflammatory influence 
[63]. At a molecular level, hypothermia may lead to an accumulation of the CIRP protein 
and disrupt the expression of the molecular clock [36]. 

On the scale of a day (or of the circadian rhythm), one hypothesis would be that an 
increase in temperature (which takes place during the day) prepares the organism to fight 
aggression specifically in the daytime (it is more probable that trauma or infection would 
occur during the day rather than the night). It has been demonstrated that an infection is 
more severe when mice are infected at the resting phase (low level of temperature) than 
during the active phase (high level of temperature) [66]. 

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a 
circadian rhythm (~) under normal condition (normal CRBT) and changes (⬈: increase or ⬊: decrease) in immune features IFN-γ CD8+ T-cell production Mice (WT) In vitro [48]
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nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian gene 
expression post-transcriptionally and appears to be a widespread feature in the tempera-
ture-dependent regulation of mammalian gene expression [37]. Heat is also involved in 
the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor that binds 
heat shock element (HSE) sequence in a daily rhythmic manner, leading to the circadian 
activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock at 40 °C for 
150 min (simulating a fever) in the cultured liver and lung explants of mice induced a 
strong increase of mPer2 expression [39], confirming the close link between CRBT and 
circadian rhythm. 

Inversely, the molecular clock is crucial for generating circadian rhythms, including 
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
lecular clock expression. Thus, an elevation of body temperature above 38 °C (fever) is 
likely a trigger to activate circadian metabolic pathways, such as immune functions. Con-
versely, hypothermia (<36 °C) has been associated with a poor prognosis in critically ill 
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns 
and trafficking molecule expression, primarily by exerting an anti-inflammatory influence 
[63]. At a molecular level, hypothermia may lead to an accumulation of the CIRP protein 
and disrupt the expression of the molecular clock [36]. 

On the scale of a day (or of the circadian rhythm), one hypothesis would be that an 
increase in temperature (which takes place during the day) prepares the organism to fight 
aggression specifically in the daytime (it is more probable that trauma or infection would 
occur during the day rather than the night). It has been demonstrated that an infection is 
more severe when mice are infected at the resting phase (low level of temperature) than 
during the active phase (high level of temperature) [66]. 

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a 
circadian rhythm (~) under normal condition (normal CRBT) and changes (⬈: increase or ⬊: decrease) in immune features Ab-dependent complement-mediated lysis Mice (healthy) In vitro [49]
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nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian gene 
expression post-transcriptionally and appears to be a widespread feature in the tempera-
ture-dependent regulation of mammalian gene expression [37]. Heat is also involved in 
the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor that binds 
heat shock element (HSE) sequence in a daily rhythmic manner, leading to the circadian 
activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock at 40 °C for 
150 min (simulating a fever) in the cultured liver and lung explants of mice induced a 
strong increase of mPer2 expression [39], confirming the close link between CRBT and 
circadian rhythm. 

Inversely, the molecular clock is crucial for generating circadian rhythms, including 
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
lecular clock expression. Thus, an elevation of body temperature above 38 °C (fever) is 
likely a trigger to activate circadian metabolic pathways, such as immune functions. Con-
versely, hypothermia (<36 °C) has been associated with a poor prognosis in critically ill 
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns 
and trafficking molecule expression, primarily by exerting an anti-inflammatory influence 
[63]. At a molecular level, hypothermia may lead to an accumulation of the CIRP protein 
and disrupt the expression of the molecular clock [36]. 

On the scale of a day (or of the circadian rhythm), one hypothesis would be that an 
increase in temperature (which takes place during the day) prepares the organism to fight 
aggression specifically in the daytime (it is more probable that trauma or infection would 
occur during the day rather than the night). It has been demonstrated that an infection is 
more severe when mice are infected at the resting phase (low level of temperature) than 
during the active phase (high level of temperature) [66]. 

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a 
circadian rhythm (~) under normal condition (normal CRBT) and changes (⬈: increase or ⬊: decrease) in immune features Lymphocyte adhesion and trafficking Human/Mice (healthy) In vitro [50]

~ Blood and tissue leukocyte number Human (healthy)/Mice
(WT/KO) In vitro and in vivo [51,52]

~ Neutrophils ICAM-1 expression Mice (WT/KO) In vitro and in vivo [52]
~ Cytokine production Human (arthritis) In vivo and in vitro [53]

~ Phagocytic activity Human (healthy)/Mice
(WT/siRNA) In vivo and in vitro [54,55]

~ Natural killer-cell activity Human (healthy) In vitro [56]
~ Whole-blood transcriptome Human (healthy) In vivo and in vitro [41]
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nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian gene 
expression post-transcriptionally and appears to be a widespread feature in the tempera-
ture-dependent regulation of mammalian gene expression [37]. Heat is also involved in 
the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor that binds 
heat shock element (HSE) sequence in a daily rhythmic manner, leading to the circadian 
activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock at 40 °C for 
150 min (simulating a fever) in the cultured liver and lung explants of mice induced a 
strong increase of mPer2 expression [39], confirming the close link between CRBT and 
circadian rhythm. 

Inversely, the molecular clock is crucial for generating circadian rhythms, including 
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
lecular clock expression. Thus, an elevation of body temperature above 38 °C (fever) is 
likely a trigger to activate circadian metabolic pathways, such as immune functions. Con-
versely, hypothermia (<36 °C) has been associated with a poor prognosis in critically ill 
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns 
and trafficking molecule expression, primarily by exerting an anti-inflammatory influence 
[63]. At a molecular level, hypothermia may lead to an accumulation of the CIRP protein 
and disrupt the expression of the molecular clock [36]. 

On the scale of a day (or of the circadian rhythm), one hypothesis would be that an 
increase in temperature (which takes place during the day) prepares the organism to fight 
aggression specifically in the daytime (it is more probable that trauma or infection would 
occur during the day rather than the night). It has been demonstrated that an infection is 
more severe when mice are infected at the resting phase (low level of temperature) than 
during the active phase (high level of temperature) [66]. 

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a 
circadian rhythm (~) under normal condition (normal CRBT) and changes (⬈: increase or ⬊: decrease) in immune features DC tissue infiltration Rat (WT) In vivo and in vitro [57]
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nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian gene 
expression post-transcriptionally and appears to be a widespread feature in the tempera-
ture-dependent regulation of mammalian gene expression [37]. Heat is also involved in 
the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor that binds 
heat shock element (HSE) sequence in a daily rhythmic manner, leading to the circadian 
activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock at 40 °C for 
150 min (simulating a fever) in the cultured liver and lung explants of mice induced a 
strong increase of mPer2 expression [39], confirming the close link between CRBT and 
circadian rhythm. 

Inversely, the molecular clock is crucial for generating circadian rhythms, including 
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
lecular clock expression. Thus, an elevation of body temperature above 38 °C (fever) is 
likely a trigger to activate circadian metabolic pathways, such as immune functions. Con-
versely, hypothermia (<36 °C) has been associated with a poor prognosis in critically ill 
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns 
and trafficking molecule expression, primarily by exerting an anti-inflammatory influence 
[63]. At a molecular level, hypothermia may lead to an accumulation of the CIRP protein 
and disrupt the expression of the molecular clock [36]. 

On the scale of a day (or of the circadian rhythm), one hypothesis would be that an 
increase in temperature (which takes place during the day) prepares the organism to fight 
aggression specifically in the daytime (it is more probable that trauma or infection would 
occur during the day rather than the night). It has been demonstrated that an infection is 
more severe when mice are infected at the resting phase (low level of temperature) than 
during the active phase (high level of temperature) [66]. 

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a 
circadian rhythm (~) under normal condition (normal CRBT) and changes (⬈: increase or ⬊: decrease) in immune features TNF and IL-12 production Mice (WT with ischemic

stroke) In vivo and in vitro [58]
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nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian gene 
expression post-transcriptionally and appears to be a widespread feature in the tempera-
ture-dependent regulation of mammalian gene expression [37]. Heat is also involved in 
the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor that binds 
heat shock element (HSE) sequence in a daily rhythmic manner, leading to the circadian 
activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock at 40 °C for 
150 min (simulating a fever) in the cultured liver and lung explants of mice induced a 
strong increase of mPer2 expression [39], confirming the close link between CRBT and 
circadian rhythm. 

Inversely, the molecular clock is crucial for generating circadian rhythms, including 
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
lecular clock expression. Thus, an elevation of body temperature above 38 °C (fever) is 
likely a trigger to activate circadian metabolic pathways, such as immune functions. Con-
versely, hypothermia (<36 °C) has been associated with a poor prognosis in critically ill 
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns 
and trafficking molecule expression, primarily by exerting an anti-inflammatory influence 
[63]. At a molecular level, hypothermia may lead to an accumulation of the CIRP protein 
and disrupt the expression of the molecular clock [36]. 

On the scale of a day (or of the circadian rhythm), one hypothesis would be that an 
increase in temperature (which takes place during the day) prepares the organism to fight 
aggression specifically in the daytime (it is more probable that trauma or infection would 
occur during the day rather than the night). It has been demonstrated that an infection is 
more severe when mice are infected at the resting phase (low level of temperature) than 
during the active phase (high level of temperature) [66]. 

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a 
circadian rhythm (~) under normal condition (normal CRBT) and changes (⬈: increase or ⬊: decrease) in immune features IL-10 production Mice (WT with ischemic

stroke) In vivo and in vitro [58]

Biology 2021, 10, x 7 of 16 
 

nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian gene 
expression post-transcriptionally and appears to be a widespread feature in the tempera-
ture-dependent regulation of mammalian gene expression [37]. Heat is also involved in 
the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor that binds 
heat shock element (HSE) sequence in a daily rhythmic manner, leading to the circadian 
activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock at 40 °C for 
150 min (simulating a fever) in the cultured liver and lung explants of mice induced a 
strong increase of mPer2 expression [39], confirming the close link between CRBT and 
circadian rhythm. 

Inversely, the molecular clock is crucial for generating circadian rhythms, including 
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
lecular clock expression. Thus, an elevation of body temperature above 38 °C (fever) is 
likely a trigger to activate circadian metabolic pathways, such as immune functions. Con-
versely, hypothermia (<36 °C) has been associated with a poor prognosis in critically ill 
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns 
and trafficking molecule expression, primarily by exerting an anti-inflammatory influence 
[63]. At a molecular level, hypothermia may lead to an accumulation of the CIRP protein 
and disrupt the expression of the molecular clock [36]. 

On the scale of a day (or of the circadian rhythm), one hypothesis would be that an 
increase in temperature (which takes place during the day) prepares the organism to fight 
aggression specifically in the daytime (it is more probable that trauma or infection would 
occur during the day rather than the night). It has been demonstrated that an infection is 
more severe when mice are infected at the resting phase (low level of temperature) than 
during the active phase (high level of temperature) [66]. 

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a 
circadian rhythm (~) under normal condition (normal CRBT) and changes (⬈: increase or ⬊: decrease) in immune features DC maturation Mice (WT with tumor) In vivo and in vitro [59]

Biology 2021, 10, x 7 of 16 
 

nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian gene 
expression post-transcriptionally and appears to be a widespread feature in the tempera-
ture-dependent regulation of mammalian gene expression [37]. Heat is also involved in 
the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor that binds 
heat shock element (HSE) sequence in a daily rhythmic manner, leading to the circadian 
activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock at 40 °C for 
150 min (simulating a fever) in the cultured liver and lung explants of mice induced a 
strong increase of mPer2 expression [39], confirming the close link between CRBT and 
circadian rhythm. 

Inversely, the molecular clock is crucial for generating circadian rhythms, including 
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
lecular clock expression. Thus, an elevation of body temperature above 38 °C (fever) is 
likely a trigger to activate circadian metabolic pathways, such as immune functions. Con-
versely, hypothermia (<36 °C) has been associated with a poor prognosis in critically ill 
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns 
and trafficking molecule expression, primarily by exerting an anti-inflammatory influence 
[63]. At a molecular level, hypothermia may lead to an accumulation of the CIRP protein 
and disrupt the expression of the molecular clock [36]. 

On the scale of a day (or of the circadian rhythm), one hypothesis would be that an 
increase in temperature (which takes place during the day) prepares the organism to fight 
aggression specifically in the daytime (it is more probable that trauma or infection would 
occur during the day rather than the night). It has been demonstrated that an infection is 
more severe when mice are infected at the resting phase (low level of temperature) than 
during the active phase (high level of temperature) [66]. 

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a 
circadian rhythm (~) under normal condition (normal CRBT) and changes (⬈: increase or ⬊: decrease) in immune features T-cell-activating function Mice (WT with tumor) In vivo and in vitro [59]
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nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian gene 
expression post-transcriptionally and appears to be a widespread feature in the tempera-
ture-dependent regulation of mammalian gene expression [37]. Heat is also involved in 
the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor that binds 
heat shock element (HSE) sequence in a daily rhythmic manner, leading to the circadian 
activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock at 40 °C for 
150 min (simulating a fever) in the cultured liver and lung explants of mice induced a 
strong increase of mPer2 expression [39], confirming the close link between CRBT and 
circadian rhythm. 

Inversely, the molecular clock is crucial for generating circadian rhythms, including 
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
lecular clock expression. Thus, an elevation of body temperature above 38 °C (fever) is 
likely a trigger to activate circadian metabolic pathways, such as immune functions. Con-
versely, hypothermia (<36 °C) has been associated with a poor prognosis in critically ill 
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns 
and trafficking molecule expression, primarily by exerting an anti-inflammatory influence 
[63]. At a molecular level, hypothermia may lead to an accumulation of the CIRP protein 
and disrupt the expression of the molecular clock [36]. 

On the scale of a day (or of the circadian rhythm), one hypothesis would be that an 
increase in temperature (which takes place during the day) prepares the organism to fight 
aggression specifically in the daytime (it is more probable that trauma or infection would 
occur during the day rather than the night). It has been demonstrated that an infection is 
more severe when mice are infected at the resting phase (low level of temperature) than 
during the active phase (high level of temperature) [66]. 

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a 
circadian rhythm (~) under normal condition (normal CRBT) and changes (⬈: increase or ⬊: decrease) in immune features IFN-γ T-cell production Mice (endotoxemic) In vivo and in vitro [60]
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nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian gene 
expression post-transcriptionally and appears to be a widespread feature in the tempera-
ture-dependent regulation of mammalian gene expression [37]. Heat is also involved in 
the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor that binds 
heat shock element (HSE) sequence in a daily rhythmic manner, leading to the circadian 
activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock at 40 °C for 
150 min (simulating a fever) in the cultured liver and lung explants of mice induced a 
strong increase of mPer2 expression [39], confirming the close link between CRBT and 
circadian rhythm. 

Inversely, the molecular clock is crucial for generating circadian rhythms, including 
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
lecular clock expression. Thus, an elevation of body temperature above 38 °C (fever) is 
likely a trigger to activate circadian metabolic pathways, such as immune functions. Con-
versely, hypothermia (<36 °C) has been associated with a poor prognosis in critically ill 
patients [65]. In animal models, hypothermia affects lymphocyte recirculation patterns 
and trafficking molecule expression, primarily by exerting an anti-inflammatory influence 
[63]. At a molecular level, hypothermia may lead to an accumulation of the CIRP protein 
and disrupt the expression of the molecular clock [36]. 

On the scale of a day (or of the circadian rhythm), one hypothesis would be that an 
increase in temperature (which takes place during the day) prepares the organism to fight 
aggression specifically in the daytime (it is more probable that trauma or infection would 
occur during the day rather than the night). It has been demonstrated that an infection is 
more severe when mice are infected at the resting phase (low level of temperature) than 
during the active phase (high level of temperature) [66]. 

Table 1. Effect of the temperature level on the immune functions. This table lists the immune parameters that describe a 
circadian rhythm (~) under normal condition (normal CRBT) and changes (⬈: increase or ⬊: decrease) in immune features Lymphocyte tissue infiltration Mice (WT with acute GVHD) In vivo and in vitro [61]
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nuclear protein that is upregulated at lower temperatures. CIRP modulates circadian gene 
expression post-transcriptionally and appears to be a widespread feature in the tempera-
ture-dependent regulation of mammalian gene expression [37]. Heat is also involved in 
the mechanism. Heat shock factor 1 (HSF1) is a circadian transcription factor that binds 
heat shock element (HSE) sequence in a daily rhythmic manner, leading to the circadian 
activation of HSF1 target promoters, including Per2 [38]. Thus, a heat shock at 40 °C for 
150 min (simulating a fever) in the cultured liver and lung explants of mice induced a 
strong increase of mPer2 expression [39], confirming the close link between CRBT and 
circadian rhythm. 

Inversely, the molecular clock is crucial for generating circadian rhythms, including 
body temperature. In a mouse model, the non-coding cis-element of Per2, one of the main 
clock genes, has been demonstrated to be essential for maintaining body temperature 
rhythmicity [40]. 

As explained above, the transcription factors generated by the molecular clock regu-
late clock-control genes (Ccg) [9]. In several animal models, there is strong evidence that 
many immune genes are under the control of the molecular clock [10]. In humans, mis-
timed sleep affects the molecular regulators of circadian rhythmicity and leads to a reduc-
tion of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 
1.0% during forced desynchrony of sleep [41]. Many of the circadian dysregulated genes 
are involved in immune pathways [42]. To our knowledge, the direct link between the 
CRBT and the expression of the immune genes was not specifically shown; however, by 
extrapolation, one can consider that disruption of the CRBT might most likely affect the 
expression of the Ccg, including immune genes. 

3.2. Effect of Temperature Change on Immune Function 
Many variables of the human immune system exhibit distinct 24-h rhythms, such as 

the number of circulating leukocytes or levels of pro- and anti-inflammatory cytokines [43]. 
Thus, circadian disruption may have a negative impact on these features. Numerous studies 
have addressed the influence of sleep–wake cycles on the circadian rhythm of the immune 
actors [44]. The SCN most likely conveys timing information to the immune system mainly 
through autonomic and endocrine pathways involving cortisol and melatonin, or through 
temperature variations. These signals promote phase coherence of peripheral clocks in the 
immune system and also govern daily variations in immune function [10]. 

The effect of the CRBT on the immune effectors has never been directly assessed in 
humans. However, the level of body temperature and its rhythm can have varying im-
pacts on immunity (Table 1) [42,45–63]. Elevated body temperatures generally promote 
the activation, function, and delivery of immune cells, whereas reduced temperatures in-
hibit these processes [64]. As detailed above, a change of temperature influences the mo-
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On the scale of a day (or of the circadian rhythm), one hypothesis would be that an
increase in temperature (which takes place during the day) prepares the organism to fight
aggression specifically in the daytime (it is more probable that trauma or infection would
occur during the day rather than the night). It has been demonstrated that an infection is
more severe when mice are infected at the resting phase (low level of temperature) than
during the active phase (high level of temperature) [66].

The effects of temperature variability on immune function have been only assessed in a
few studies conducted on plants and animal models, which suggest an ancestral molecular
mechanism. In a similar manner to mammals, plants present a gene circuit with negative
feedback to maintain and regulate the clock over a 24-h period. Moreover, similar to
mammals, their circadian clock can be entrained by the environment such as light, nutrients,
or temperature [67]. Plants are exposed to their environment and significant changes in
ambient air temperature according to the day/night and seasons. Change in climatic
temperature is often associated with changes in other abiotic factors, such as light and
humidity, but there is evidence for temperature-mediated modulation of defense responses.
The molecular effect in plants of temperature involves a group of proteins encoded by
the R genes. The temperature R-mediated response is involved in the modulation of host
resistance against viral and fungal pathogens in different models of plants [68]. Besides,
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ectotherm animals are organisms that have internal physiological sources of heat relatively
small or quite negligible importance in controlling body temperature. Such organisms (for
example, frogs) rely on environmental heat sources and are very sensitive to rapid changes
in air temperature. In an amphibian model, animals exposed to repeated cycles (of 24 h
period) of temperature fluctuations (1–3 weeks) had a 70% greater plasma activity against
Pseudomonas aeruginosa and a 50% increase in Escherichia coli-killing capacity compared
with the control group maintained at a constant temperature [69]. In this model, the levels
of circulating immune cells were not affected by temperature fluctuations, suggesting
a molecular qualitative effect rather than a quantitative change in immune parameters.
Crayfish, another ectothermic animal, exposed to temperature cycles (of 24-h periods)
not only exhibited a significant increase in resistance to Aeromonas hydrophila but also a
circadian variation of hemocyte count compared with animals maintained at a constant
temperature [70]. For mice exposed to 12:12-h light:dark schedule, T-lymphocytes showed
a strong association with body temperature rhythm, suggesting a likely temperature control
on lymphocyte function [71]. The influence of body temperature level on immune functions
has been so far well studied in humans, but it would be interesting in future studies to focus
specifically on the effect of temperature variability (or disruption of normal CRBT) and its
effects on the molecular clock and the immune response rather than simply analyzing a
temperature level.

3.3. Effect of Temperature Variations on Microbes

It is now well-established that microorganisms, such as parasites or bacteria, express
circadian rhythm [72,73]. Cyanobacteria are a group of photosynthetic bacteria in which
circadian rhythms are endogenously generated by a unique KaiABC protein clock [74].
The KaiABC complex and the circadian rhythm it generates is entrained to the ambient
light:dark cycle through photosynthetic changes in the ATP/ADP ratios [75]. The univer-
sal analysis of BLAST showed that this circadian clock was present less abundantly in
other bacteria and archaea, and responsibility for circadian behavior remains uncertain,
especially in non-photosynthetic bacteria [76]. Besides, it has been demonstrated that
temperature variability may entrain circadian rhythm in microbes. Trypanosoma brucei,
an extracellular parasite (the causative agent of human sleeping sickness) has circadian
transcriptomic oscillations that are entrained by temperature cycles. Almost all of the
temperature-entrained transcript oscillations (96%) were absent under light:dark cycle con-
ditions, suggesting a non-autonomous and non-photonic entrain mechanism [77]. Recently,
the enteric proteobacterium Klebsiella aerogenes, a human gastrointestinal commensal, has
been shown to express an endogenously generated circadian rhythm that can be entrained
to changes in ambient temperature in a model of bioluminescent culture [78]. Bacteria
were entrained by different periods and amplitudes of temperature with stable phase
relationships. The authors hypothesized that the Klebsiella aerogenes circadian clock entrains
to its host via detection of and phase shifting to the daily pattern of the CRBT.

Recently, evidence has emerged revealing oscillations of fecal microbiota during
the 24-h cycle—the gut microbiome exhibits compositional and functional structures at
different times of day [79,80]. Although exposed to environmental changes, such as nutrient
availability [81] and the level of host-derived immunity [80], the CRBT could be considered
an important circadian parameter influencing the gut microbiome.

3.4. Effect of Temperature Variations on Vectors

Ecological research has revealed that environmental factors, such as fluctuating tem-
peratures, can strongly affect insect and invertebrate’s immunity [82]. Butterflies (Lycaena
tityrus) exposed to temperatures fluctuating around cooler (17.7 ◦C) and warmer (23.7 ◦C)
than normal temperatures experience significantly higher phenoloxidase activity and
higher total hemocyte numbers compared with butterflies housed at a constant temper-
ature [83]. The overall effect of temperature on the ability of a vector to resist infection
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depends on the effects on elements of vector immune function and physiology; it might
also be related to direct effects of temperature on the microbe itself as exposed above.

4. Circadian Disruption of the Temperature and Diseases
4.1. Fever and Hypothermia

Pyrexia (also named fever) is the altering upward of the thermoregulatory set point,
often secondary to the systemic inflammatory response to a stimulus, such as infection.
As explained above the elevation of body temperature generally promotes a beneficial
response, such as the activation, function, and traffic of immune cells [65]. In septic patients
subsequently admitted to ICU, fever is associated with lower mortality and shorter hospital
stays, suggesting the beneficial effect of an increase of body temperature in infection [84].
Inversely, a high peak of body temperature in critically ill patients without brain injury is
also an independent predictor of mortality [85]. A high level of body temperature could
indeed be a marker of an excessive inflammatory response and a rupture of immune
homeostasis that can be harmful to the patient [86]. Fever may also be a predictor of
poor outcome in other non-septic diseases, such as brain injury patients, acute pulmonary
embolism, cardiogenic shock, or the postoperative phase of gastric cancers [87–91].

Conversely, hypothermia is often associated with a less effective immune response
and a worse prognosis than fever [64,66]. Moreover, in the last few decades, prophylactic
hypothermia has been suggested to be neuroprotective in many neurological diseases by,
in particular, a reduction of the inflammatory response. However, recent literature did
not demonstrate any effect of induction of hypothermia as compared with normothermia,
and the potential benefit of such a strategy is most likely related to the prevention of
fever [92,93].

Change of temperature level is often associated with diseases, which confirms the
clinical link between temperature and host response.

4.2. Disruption of the CRBT and Trauma

Acute trauma or burn patients are a specific subgroup of the critically ill population
due to sudden injury and dramatic changes in homeostasis producing a high systemic
inflammatory response, which may result in a change of the temperature course and be
associated with fever [94]. Moreover, severe trauma provokes a stress-induced activa-
tion of the hypothalamic–pituitary–adrenocortical axis [95]. Significant circadian rhythm
alterations of melatonin and cortisol were reported in this population most likely as the con-
sequence of the systemic response and reported as a marker of severity [96,97]. Disruption
of the CRBT was reported in severe trauma as well. Two studies, including ours, assessed
continuous body temperature measurement in severe trauma patients. Body temperature is
easier to collect than biomarkers and allows continuous data collection at a high frequency.
Thus, precise circadian rhythm variables including the frequency of oscillation (period) and
the amplitude may be easily assessed by mathematical modeling. In severely brain-injured
patients, Blume et al. provided evidence for an association between periods of temperature
closer to 24-h and a good neurological outcome [98]. Our study on severe trauma showed a
correlation between lower body temperature and mortality and, interestingly, a correlation
between higher amplitude in body temperature and mortality [99]. This finding correlates
with a study suggesting a poor prognosis in the patients experiencing high peaks of body
temperature [85] that could be a marker of excessive circadian activation and non-adapted
systemic inflammatory response. Interestingly, this result was mainly found in patients
with traumatic brain injury. Consequently, we hypothesized that traumatic brain injury
could be a more direct way of molecular clock disruption in the SCN as already shown in a
rat model [99,100].

4.3. Disruption of the CRBT and Infection

It is nowadays well-established that infections are closely related to circadian rhythms
in terms of susceptibility, clinical presentation, and severity [101]. Interactions between
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circadian and immune systems are bidirectional, such that immune factors can influence
circadian timing by acting on the biological clock in the SCN and clocks in peripheral
tissues [9,10]. The relation between sepsis and circadian disruption in humans was particu-
larly well-described in ICU patients [102]. The first study of body temperature rhythms
in 15 ICU patients found that despite significant rhythm in a period of 24-h in 80% of
the patients, the position of acrophase (peak time) of the rhythm varied markedly both
between patients and within patients. They observed also a tendency for the amplitude of
the temperature rhythm to be greater when the patients were unconscious and in those
who did not survive the ICU stay. [103]. These findings are in line with our study in severe
trauma patients [99] and the hypothesis that high amplitude could be a marker of severity
and probably excessive circadian activation. Gazendam et al. showed that 17 of 21 ICU
patients had the circadian phase position (peak time) that fell earlier or later than the
normative range (i.e., around 6 pm) [104]. In another study in ICU patients, based on
recurrence quantification analysis, a method of nonlinear data analysis (chaos theory) for
the investigation of dynamical systems, authors found a decrease in temperature ampli-
tude below normal range at ICU admission in septic patients and lower severity of disease
and better clinical outcomes in patients with higher temperature amplitude [105]. These
data suggest that the circadian rhythms may be a good mechanism of adaptation when
correctly solicited.

The CRBT was less studied in non-ICU infectious diseases in humans. Sothern et al.
reported that temperature acrophases (peak) obtained by monitoring oral temperature in
individuals infected with HIV were more variable than those of healthy subjects [106]. In
animals, some studies found an association between disruption of the CRBT and infectious
diseases such as in African cattle infected with trypanosomes and tick-borne infections, or
monkeys infected with simian immunodeficiency virus. The measure of rectal temperature,
which is commonly used to assess pyrexia during clinical diagnosis of bovine Indigenous
Nkedi Zebu cattle, was found increased only in the afternoon [107]. Moreover, in monkeys
infected with simian immunodeficiency virus, authors found a progressive decrease in
the temperature amplitude and a significant delay of the acrophase compared with non-
infected monkeys [108].

4.4. Disruption of the CRBT and Cancer

In cancer patients, some old studies monitored oral or skin temperatures in patients
with advanced cancer. Individual analyses showed large differences in the circadian
rhythm of temperature among subjects with poor performance, highlighting the association
between circadian disruption and disease severity [109–111].

Chemotherapy has been also demonstrated to be associated with circadian disruption
of body temperature [112,113]. Circadian timing of anti-cancer medications has been
shown to improve treatment tolerability up to fivefold and double efficacy in experimental
and clinical studies [114] and highlights the potential role of temperature monitoring in
personalized chronotherapeutic [115].

4.5. Disruption of the CRBT and Inflammatory Diseases

Inflammatory diseases are subject to systemic inflammation, and the importance of
circadian rhythm in the pathophysiology of asthma, inflammatory arthritis, or inflam-
matory bowel disease has been reported many times [116–118]. One study in psoriasis
patients assessed body temperature and showed variable acrophases (peak time) and
desynchronization with other markers of circadian rhythm compared with control healthy
subjects [119].

Interestingly, two studies in asthma patients revealed the negative effect of airway
cooling and nocturnal asthma, and the association between diurnal temperature variation
above 10 ◦C and childhood asthma exacerbation [120,121]. These findings highlight the
potential effect of environmental temperature changes on our immunity and may be
one mechanism to explain the seasonal change of our immunity [122]. Nevertheless, it
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is important to note that these studies had investigated the environmental temperature
variation and not the CRBT.

5. Conclusions

This review illustrates the potential implication of the CRBT in the immune response
and the link between circadian disruption of the CRBT and diseases.

The CRBT is a marker of the central biological clock that results from metabolic heat
production and is regulated by complex biological clock processes. Body temperature is
easy to measure compared with other markers, such as cortisol or melatonin; however,
central measurements seem more reliable in the study of circadian rhythms. The CRBT may
be affected by many different factors, including environment, age, hormones, or treatment,
and thus could be considered potentially involved in modifying immune functions in such
contexts. It is now well-established that CRBT affects the expression of the molecular clock
and in this way modifies the expression of all clock-controlled genes. Body temperature
changes may positively affect immunity and can promote the activation, function, or traffic
of immune cells; these changes are also associated with better resistance to infection in
animal models. In humans, several pieces of evidence suggest that the disruption of CRBT
is associated with many kinds of diseases and their severity, thus supporting the assumed
association between CRBT and immune functions.

Most studies have focused on finding the presence or absence of a normal, 24-h
circadian rhythm. However, recent studies using complex analysis suggest that circadian
rhythm may change in all aspects (level, period, amplitude) and may be predictive of
good or poor outcomes [99,105]. It would make sense that an adaptation of rhythms
is physiological and necessary to trigger the immune response in response to stimuli.
Therefore, it will be necessary for future studies to understand the different circadian
disruption types by using appropriate models.

Finally, in the era of personalized medicine, and given the importance of circadian
rhythm in the immune response, the monitoring of the CRBT appears to be an easy tool to
predict outcomes and guide future studies in chronotherapy.
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