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ABSTRACT

Sessile drop creation in weightlessness is critical for designing scientific instruments
for space applications and for manipulating organic or biological liquids, such as whole
human blood or DNA drops. It requires perfect control of injection, spreading, and
wetting; however, the simple act of creating a drop on a substrate is more complex
than it appears. A new macroscopic model is derived to better understand this re-
lated behavior. We find that, for a given set of substrate, liquid, and surrounding gas
properties, when the ratio of surface free energies to contact line free energy is on
the macroscopic scale, the macroscopic contact angle can vary at static equilibrium
over a broad volume range. It can increase or decrease against volume depending on
the sign of this ratio up to an asymptotic value. Consequently, our model aims to ex-
plore configurations that challenge the faithful representativity of the classical Young’s
equation and extends the present understanding of wetting.

Introduction1

A sessile drop is a liquid drop deposited on a solid substrate and surrounded by a gaseous environment. Sessile drops are2

ubiquitous all around us, either in natural environment (raindrops on a surface), or in industrial processes in which liquids3

intervene. For scientific purposes, they can be processed by injecting liquid through a small hole in the substrate, as shown in4

Figure 1. The underlying scientific question is, given a set of solid-liquid-gas material properties and injected volume, what is
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Figure 1. Sketch of sessile drop injected from below through a sub-millimetric hole in the substrate.
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the macroscopic size and shape of the resulting sessile drop?6

The first answer to this question is provided by the classical Young’s equation1, Eq. (1), which was formulated roughly two
centuries ago. Nevertheless, it remains an undisputed reference for the determination of macroscopic contact angles, denoted
by θ (cf. Figure 1), according to its famous relationship:

σsg−σsl = σlg cosθ (1)

where σsg, σsl , and σlg are the interface free surface energies, and the subscripts s, l, and g represent a solid, liquid, and7

gas, respectively. The effectiveness of Young’s equation lies in its ability to translate subtle and complex molecular-scale8

physico-chemical interactions near material interfaces to the macroscopic scale in a simple manner. However, as Young’s9

equation is assumed to be general, it remains unclear why neither the contact line free energy nor gravity forms a part of10

the macroscopic contact angle relationship in this equation. One possible answer is that in most classical cases, these two11

1



parameters are negligible with respect to the surface free energies, inducing only second-order deviations as compared with the12

leading mechanisms. However, from a scientific standpoint, the question is whether there are configurations for which these13

two contributions could lead to non-negligible effects.14

Indeed, several experiments have shown some influence of volume on the macroscopic contact angle under Earth’s15

gravitational conditions2–7. These experiments show that a volume dependence exists for macroscopic sessile drops on Earth16

for several sets of liquid/substrate/surrounding gas (water on PTFE in air, alkanes on Teflon in air, etc.), provided that the sessile17

drop size remains below its capillary length. Above the latter, self-adaption of the local interface curvature to the hydrostatic18

pressure is the dominant contact line mechanism. Hence, the static macroscopic contact angle becomes independent of the drop19

volume. To explain the influence of volume on macroscopic contact angle, Boruvka and Neumann8 introduced the concept20

of line tension associated with the triple line (first introduced by Gibbs more than a century and a half ago) and suggested a21

modified version of Young’s equation to account for it4, 6, 7. However, no definitive consensus has emerged regarding a physical22

understanding of the translation of events from the microscopic to the macroscopic scale9, 10, but a recent and sounding review23

provides many inputs that enables to make its own view on this tentacular line tension topic11.24

Thus, revisiting a way to determine the macroscopic contact angle of sessile drops in a manner different from the well-25

established one could either be tremendously risky at the worst or very ambitious at best. However, this is the goal of the26

present study in order to explore configurations that challenge the faithful representativity of the classical Young’s equation.27

Indeed, a second possibility or alternate approach is to determine the macroscopic contact angle of sessile drops following28

the pioneering work of Laplace12, who, unlike Young, considered a macroscopic mechanistic approach. This resulted in29

the famous Young–Laplace equation that governs the shape of any interface separating non-miscible fluids, as it relates the30

capillary pressure to the liquid–gas surface tension and mean interface curvature. Unfortunately, this governing equation31

is a highly nonlinear differential equation that has no analytical solution in its most general form. However, in the case of32

axisymmetric sessile drops, Bashforth and Adams13 were the first to provide very accurate numerical solutions by means of33

high-order Taylor series expansions, which agreed well with the best experimental results available at that time. Based on34

this pioneering numerical work, numerous improvements have been achieved to enhance the capabilities and accuracy of the35

original calculation methods14. Notably, minimizing the total free energy of a sessile drop enables the recovery of both the36

Young–Laplace equation and Young’s equation for the contact angle in completely independent ways15. However, most existing37

numerical methods for axisymmetric sessile drops16–19 assume knowledge of at least two geometrical quantities from among38

sessile drop volume, height, or wetted radius. Only when this information is available can these methods be used to determine39

the static contact angle for a given set of material properties or to deduce some of the latter when all geometrical quantities are40

known through experiments.41

To the best of the authors’ knowledge, no such influence of volume on macroscopic contact angle has been reported yet in42

weightlessness. Therefore, the present study focuses on the potential influence of contact line tension on macroscopic contact43

angle and on providing a better design for future experiments on weightless sessile drops. Therefore, geometrical data on44

sessile drops are not assumed to be a prerequisite and one seeks for the complementary approach with respect to classical one.45

Furthermore, it is assumed that the set of material properties is known, along with one of the geometrical target quantities of the46

sessile drop, either its volume, height, or wetted radius. Then, all other related geometrical quantities to be determined (static47

macroscopic contact angle, etc.) are predicted. In addition, some more generic, albeit related questions are addressed: What are48

the equilibrium sizes and macroscopic shape of a weightless sessile drop of a prescribed volume for a given set of properties of49

liquid, substrate, and surrounding gas materials? How do the related geometrical quantities, such as static macroscopic contact50

angle, drop wetted radius, and height evolve with respect to sessile drop volume? How does the bulk pressure in the sessile51

drop evolve in turn?52

Results53

Exploring the parameter space54

As the proposed model is proven to be capable of reproducing the volume dependence of the macroscopic contact angle (see55

the Methods section for all notations), the parameter space in weightlessness is explored. For conciseness, the focus is on56

the main feature of the model through parametric studies that investigate the influence of the three leading parameters, i.e.,57

sessile drop volume V , surface free energy ratio S , and the sign of the contact line tension σslg. These parametric studies were58

performed by solving Eqs. (7) for the macroscopic contact angle in the range ]0,π[ using the Mathematica software20. Once the59

macroscopic contact angle is computed, the three related geometrical quantities of interest—drop wetted radius, height, and60

sphere radius—can be explicitly obtained using Eq. 6(a-c).61

Influence of volume for given sets of liquid-solid-gas properties62

Let us first consider the influence of the sessile drop volume on its shape for various values of S and both signs of contact63

line tension σslg. The resulting macroscopic contact angle is plotted against all dimensionless geometrical quantities (L , h,64
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r, and R) in Figure 2, for S = 0,±1/3,±2/3,±0.99, cf. figure caption, and lσ =±10−3S , except for the case of S = 0,65

where lσ is set to ±10−3. Solid (dashed) lines represent the positive (negative) values of the S /lσ ratio. First, the limit angle66

associated with this macroscopic model, denoted as θlim in Eq. (9), always tends to π

2 [1− sign(σslg)], regardless of the sign67

of S . This suggests that when the length lσ is commensurable at the macroscopic scale, it dictates the limit behavior when68

the drop size reaches its lowest macroscopic limit. Moving slightly away from singularity, the macroscopic contact angle69

is now well-defined and continuously increases (decreases) with the sessile drop size, depending on whether σslg is positive70

(negative), up to its asymptotic limit, θ∞ = arccosS . Thus, a crossover between hydrophobic (non-wetting) and hydrophilic71

(wetting) behaviors or vice-versa only occurs if the S /lσ ratio is negative. Furthermore, the asymmetry with respect to π/2 of72

the trigonometric functions in Eq. (7) induces a strong asymmetry in the macroscopic contact angle for low drop sizes. The73

macroscopic contact angle varies monotonically with the dimensionless drop size L , height h, and wetted radius r, as shown in74

Figure 2(a-c). However, it exhibits a non-monotonic behavior with respect to the sphere radius for positive lσ (see Figure 2(d).75

Finally, as can be observed from Figure 2, the chosen definition of the reference length is optimal. It enables the depiction of76

the full picture in the smallest span range of the drop size, as compared with other dimensionless quantities, h, r, or R, which77

would require at least one more decade. Furthermore, one can notice that the widely used plot of macroscopic contact angle78

versus wetted radius, Figure 2(c), does not contain the lowest asymptotic limits fairly reproduced in Figure 2(a). On the other79

hand, Figure 2(d) interestingly indicates that positive lσ always leads to the existence of a minimal sphere radius, whose value80

depends on S . Above this minimum, any given sphere radius admits two macroscopic contact angles, as the relationship81

between these two related quantities is multi-valued.
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(a) Versus dimensionless drop size L .
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(b) Versus dimensionless drop height h.
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(c) Versus dimensionless wetted radius r.
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(d) Versus dimensionless sphere radius R.

Figure 2. Macroscopic contact angle versus dimensionless geometrical quantities (L , h, r and R), for S =−0.99 (blue),
−2/3 (cyan), −1/3 (green), 0 (yellow), 1/3 (orange), 2/3 (red) and 0.99 (magenta). The solid (dashed) lines represent the
plots of positive (negative) S /lσ .

82

The definition of Wθ is derived from the closely related behavior of the relative variation in the macroscopic contact83
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angle over its span range, defined as ϑ = θ−θ∞

θlim−θ∞
. The latter is plotted against the dimensionless drop size in Figure 3(a) and84

emphasizes the asymmetry between the positive and negative values of the S /lσ ratio. Furthermore, this log–log scale plot85

clearly indicates that there are three distinctive regions with specific behaviors. The first is at the upper-left corner of the86

plot, where curves asymptote either the ordinate axis for negative lσ or the unity horizontal line for positive one. Therefore,87

it is a connecting region to θlim, which spreads over very different drop size ranges, depending on θlim. In the opposite plot88

corner, in the region of the largest drop sizes, the final asymptotic 1/L behavior occurs. Between these two extreme regions89

lies the transition region, whose extension strongly depends on the S /lσ ratio. These specific behaviors enable us to derive90

related functions, fco, fpa, defined in Eq. (10c–10d), which are at the core of the proposed definition of Wθ . To appreciate how91

representative is the proposed model, the computed macroscopic contact angle θ is plotted against the proposed dimensionless92

number Wθ in Figure 3(b) for all considered volumes, S and lσ values. The collapse of data in this plot indicates that Wθ93

accurately represents the macroscopic contact angle dependence on sessile drop volume and material properties of the system,94

and it is actually able to characterize it.
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(a) Relative macroscopic contact angle ϑ versus dimension-
less drop size L .
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Figure 3. Macroscopic contact angle versus (a) dimensionless drop size L and (b) dimensionless contact angle Wθ , for
S =−0.99 (blue), −2/3 (cyan), −1/3 (green), 0 (yellow), 1/3 (orange), 2/3 (red) and 0.99 (magenta). The solid (dashed)
lines represent the plots for positive (negative) S /lσ .

95

The plots in Figure 4 display how the various dimensionless geometrical quantities related to the spherical cap model96

(wetted radius, height and spherical cap radius) evolve both with respect to the dimensionless drop size and to the proposed97

dimensionless number Wθ . The dimensionless sessile drop radius (wetted radius, r) is plotted against the dimensionless drop98

size L in Figure 4(a) and against the dimensionless contact angle Wθ in Figure 4(b). For positive lσ , contact line tension99

induces wetting; thus, it starts with an asymptotic value that is approximately one order of magnitude greater than the smallest100

drop size. Its initial slope is horizontal with respect to both the dimensionless drop size and the contact angle. Then, it evolves101

in the transition region in a quasi-logarithmic manner and reaches the region of its asymptotic linear behavior. The higher the102

value of S , the higher the wetted radius at a given drop size. In contrast, for negative lσ , the dimensionless drop radius evolves103

linearly with drop size above the transition region. The plot of sessile drop radius against the dimensionless contact angle Wθ104

expands this underlying behavior, as shown in Figure 4(b).105

The dimensionless height of the sessile drop (h) is plotted against the dimensionless drop size L in Figure 4(c) and106

dimensionless contact angle Wθ in Figure 4(d). The height clearly exhibits symmetric behavior compared with the drop wetted107

radius with respect to the sign of the contact line tension lσ . Indeed, positive values of the latter induce wetting, which translates108

into greater spreading and consequently a smaller drop height at a given drop size. Thus, the higher the S /lσ ratio, the smaller109

the sessile drop height for a given sessile drop size.110

Finally, the dimensionless sphere radius (R) is another geometric quantity of interest, as it determines the sessile drop bulk111

pressure for a given liquid–gas surface tension, as per the Young–Laplace equation. It is plotted against the dimensionless drop112

size L in Figure 4(e) and dimensionless contact angle Wθ in Figure 4(f). Unlike the dimensionless drop radius and height,113

the dimensionless sphere radius exhibits a peculiar behavior for positive lσ . It exhibits a minimum value that increases with114

S . Therefore, since the capillary pressure evolves as 1/R, this minimum value is associated with an extreme bulk pressure in115

the sessile drop, which is of practical interest to design weightless experiments. Conversely, for negative lσ , the sphere radius116
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(c) h vs dimensionless drop size L .
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(e) R vs dimensionless drop size L .
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Figure 4. Plots of related sessile drop dimensionless quantities: (a-b) wetted radius, (c-d) drop height, (e-f) sphere radius, for
S =−0.99 (blue), −2/3 (cyan), −1/3 (green), 0 (yellow), 1/3 (orange), 2/3 (red) and 0.99 (magenta). The solid (dashed)
lines represent the plots for positive (negative) S /lσ .
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continuously increases with decreasing drop size.117

Some sessile drop shapes are shown in Figure 5 in the axisymmetric (r,z) frame for several sample volumes, six values of118

S , and a negative S /lσ ratio. These shapes clearly display a continuous evolution of the static macroscopic contact angle119

with respect to S and sessile drop volume. The latter is small (few degrees) owing to the limited volume range that can be120

distinctively represented in the same figure; however, it is perceptible.
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Figure 5. Influence of sessile drop volume on its shape in the small to medium range (V = 5 (dark blue), 25 (brown), 50
(purple), 100 (orange), 150 (green), 200 (yellow) and 250 (light blue)) for six values of S and negative S /lσ .

121

Influence of material properties for given drop volume122

The sessile drop shapes of four given volumes (V = 10, 102, 103, and 104) are plotted in Figure 6 for seven values of S (in the123

range S ∈ [−0.99,0.99], with six uniform increments). For the considered drop volumes, which are greater than those for124

which line tension dominates alone, the influence of volume on the macroscopic contact angle is stronger for negative values of125

S than for positive ones. Therefore, in this case, the higher the sessile drop volume, the stronger the influence of S on its126

shape.127

Discussion128

A new macroscopic mechanical model was derived to compute the shape of weightless sessile drops in static equilibrium.129

Our initial motivation was to understand more clearly the repeatability issues encountered while creating sessile drops in130

weightlessness by injecting liquid through a small hole in a substrate21, 22. The derived model is based on the classical131

Young–Laplace equation, Eq.(4), supplemented with a constitutive relationship for the pressure difference across the liquid–gas132

interface, Eq. (5). Assuming a flat, smooth, and homogeneous solid substrate, the model considers both the surface densities133

of the free energy at the solid–liquid and liquid-gas interfaces, along with the line density of energy along the contact line.134

The ± sign in Eq. (5) accounts for the contact angle hysteresis associated with an advancing or receding contact line. First,135

the resulting governing equation, Eq. (7), clearly indicates that the volume affects the macroscopic contact angle only when136

(σsg−σsl)/σslg, the ratio of the difference in the substrate surface tensions to the contact line one, is commensurable on the137

macroscopic scale.138
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Figure 6. Influence of S on sessile drop shape for four volumes and seven values of S , ranging from −0.99 (dark blue) to
0.99 (light blue), separated by six equidistant steps.
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The volume dependence of the macroscopic contact angle results from the solution of the derived governing equation,
Eq.(7). Indeed, unlike in Boruvka and Neumann’s line tension model4, 6–8, no a priori explicit dependence of the macroscopic
contact angle on the drop radius was introduced in the proposed model. Therefore, the main outcome of the present mechanistic
macroscopic model is that neither the classical Young’s equation1 nor the modified Young’s equation proposed by Boruvka and
Neumann8 are appropriate for determining the macroscopic contact angle of weightless sessile drops. The evidence of this
assertion is contained in Eq. 2, which is the governing equation for the macroscopic contact angle derived from our weightless
model with respect to the drop wetted radius r (instead of drop volume V , that results in Eq. (7)). It reads:

(2−3cosθ + cos3
θ)+ sin2

θ

(
S +

2
r

σslg

σlg
−1− tan2

(
θ

2

))
= 0 (2)

Interestingly, this governing equation expressed in drop wetted radius, Eq. 2, evidences that in weightlessness the macroscopic139

contact angle does not evolve as simply as in the 1/r Boruvka and Neumann’s model, but in much more subtle highly140

nonlinear way. Indeed, upon approaching the very small drop volumes for which line tension dominates, the obtained behavior141

significantly deviates from the 1/r slope because of the highly non-linear trigonometric functions involved in the spherical142

cap model. These latter dominate the sessile drop shape at the lower limits of macroscopic volumes, as depicted in Figures 2143

and 3(a).144

Furthermore, the proposed model reproduces the influence of volume on the macroscopic contact angle of a sessile drop,145

which has been reported in several ground experimental studies2, 3, 6. Interestingly, in weightlessness, the influence of volume146

on the macroscopic contact angle exists over a much wider range of drop size, as no capillary length exists, unlike under Earth’s147

gravity conditions. Indeed, unlike in the latter, it is not obscured by any hydrostatic pressure effect on the local interface148

curvature, as no capillary length exists in weightlessness. This enabled us to perform extended parametric studies on volume149

size effects. The proposed macroscopic model has a lower bound volume at which only line tension dictates the limit behavior,150

hydrophobicity (hydrophilicity), depending on whether its sign is negative (positive). Indeed, when the drop size reaches the151

lowest macroscopic limit, the related macroscopic contact angle approaches its limit value, θlim = π

2 [1− sign(σslg)], regardless152

of the sign of S . No lower sessile drop volume can be considered, as the present macroscopic model reaches its limit of153

physical representativity. At this lower limit, the driving mechanisms that act at microscopic scales, such as meniscus curvature,154

are not accounted for. Upon increasing the drop volume from this lower bound, the macroscopic contact angle continuously155

evolves with respect to the drop volume toward its asymptotic infinite value, θ∞ = arccosS . Notably, this infinite limit value156

coincides exactly with that from the classical Young’s equation, Eq. (1), although the latter is not involved in the present model.157

Therefore, the volume dependence of the macroscopic contact angle is maximum for negative values of (σsg−σsl)/σslg and158

increases with the magnitude of |S |. Furthermore, a crossover between hydrophobic (non-wetting) and hydrophilic (wetting)159

behaviors or vice versa always occurs for a specific sessile drop volume, Vco = 1/ |S |3, when (σsg−σsl)/σslg is negative, i.e.,160

when the line tension and surface tension act in opposite directions.161

Furthermore, the macroscopic contact angle can vary at static equilibrium over a broad volume range and it can increase or162

decrease against volume depending on the sign of the surface to line ratio of free energies until it reaches its asymptotic value.163

Finally, the injection pressure is not a relevant control parameter for creating in a well-controlled way sessile drops of a target164

volume by injecting liquid through a small hole in the substrate. Indeed, the injection pressure evolves in a strongly non-linear165

manner with sessile drop volume: it continuously decreases against drop volume for negative S /lσ cases, whereas conversely,166

it first increases and then decreases (please refer to Figure 4(e)). Thus, feedback control systems based on pressure only are167

likely to be unstable, so the authors recommend enslaving the injection mass flow rate to drop volume instead of drop pressure.168

Actually, a constant injection pressure would result in a continuously accelerating injection flow rate, which makes inertia terms169

to become more and more prevalent, and prevent to achieve at the end of the injection stage a sessile drop of prescribed target170

volume. Moreover, since it exists some macroscopic contact angle hysteresis from advancing and receding contact line modes,171

getting back from an oversized drop to an accurate target volume becomes even much trickier.172

Future research must focus on experiments in weightlessness on sessile drops for much larger volume ranges than those that173

exist under Earth’s gravity conditions. Indeed, the present weightless model clearly indicates that the macroscopic contact174

angle asymptotically converges towards the value of the Young’s equation in the limit of large volumes. So, in this limit175

weightless experiments can provide reference data for the surface tension values (σsg, σls, and σlg), which are crucial for176

accurate predictive modelling. Then, considering on the other hand the lower volume range, one can evaluate in turn the line177

tension value σslg, enabling us to assess the validity of the volume dependence of the macroscopic contact angle. Finally, one178

can check the model predictions on limit volumes for both hydrophilic and hydrophobic cases. If such experiments confirm the179

predictions of the proposed model, they will potentially have an impact on the current physical understanding of sessile drops,180

even under Earth gravity conditions. If the sessile drop volume influences the macroscopic contact angle in weightlessness,181

it should also have the same effect under Earth gravity. However, this is somehow blurred or screened by the self-adaption182

of the local interface curvature to the hydro-static pressure, which becomes the dominant contact line mechanism as soon as183
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the drop size exceeds some fraction of its capillary length. Therefore, the authors believe that the present weightless model184

could nevertheless predict some representative results either in micro-gravity or Earth gravity conditions, provided the relative185

perturbation induced by the hydro-static pressure with respect to capillary one does not exceed few percent (below 10%),186

according to a first order perturbation technique. Hence, the validity of the classical Young’s equation1 for the macroscopic187

contact angle is affected to some extent by the volume dependence previously reported in ground experiments2, 4–7.188

Methods189

A new model190

Let us consider the static mechanical equilibrium of a weightless sessile drop of a given volume and with a fixed set of191

properties for the liquid, substrate, and surrounding gas. To prevent unnecessary modeling complexity and related issues, the192

solid substrate is assumed to be flat, smooth, and homogeneous. To create this sessile drop by injecting liquid through a small193

hole in the substrate (monotonously advancing contact line), the supplied injection pressure should overcome the free energies194

associated with the curved liquid–gas interface, wetting a certain amount of substrate area at the liquid–solid interface, and the195

advancing contact line, respectively.196

Governing equations197

Assuming a sufficiently slow injection flow rate, such that inertia and viscous dissipation terms are negligible with respect to
the surface and line free energies, the mechanical work associated with liquid injection for a sessile drop of volume V is:∫

V
[pi(v)− pe]dv =

∫
Alg

σlg da+
∫

Asl

(σsl−σsg)da+
∫

Lslg

σslg dl (3)

where pi and pe are the liquid drop bulk pressure and surrounding gas pressure, respectively; σlg, σsg, and σsl are the liquid–gas,198

solid–gas, and liquid–solid surface densities of the surface free energy, respectively; and Alg and Asl are the liquid–gas and199

solid–liquid interface areas, respectively. Finally, σslg is the line density of the three-phase zone free energy associated with the200

macroscopic contact line, defined as the perimeter of the wetted surface, Lslg.201

To proceed in this weightless static mechanical equilibrium, it is noteworthy that the bulk pressure in the liquid drop202

and surrounding gas pressure are both constant, so their difference behaves accordingly; this results in a constant curvature203

of the liquid–gas interface. Consequently, the weightless sessile drops are spherical caps. This geometrical feature and its204

associated trigonometric relationships are crucial for deriving any analytical expression that relates the mechanical equilibrium205

to quantities associated with the macroscopic shape of the sessile drop in a closed form: volume (V ), wetted radius (r), height206

(h) and static macroscopic contact angle (θ ).207

A static equilibrium results in a normal and tangential macroscopic force balance at the solid–liquid and liquid–gas
interfaces, respectively. Its normal component to the substrate leads to the Young–Laplace equation:

pi− pe = 2σlg
sinθ

r
=

2σlg

R
(4)

where R is the radius of the resulting spherical cap.208

To derive a well-posed governing equation, a constitutive relationship was introduced for the bulk pressure of weightless
sessile drop. Therefore, assume that any difference in chemical potential between the liquid, solid substrate, and surrounding
gas produces adhesive or repulsive forces at the molecular scale acting along their respective solid–liquid, liquid–gas, and
three-phase zone. Then, these forces can translate into pressure in the bulk of the liquid drop. Assuming thermodynamic
equilibrium, both the surface and line densities of free energy become constant, enabling the formal integration of Eq. (3).
Then, dividing the integrated equation by the consistent drop volume leads to the proposed local constitutive relationship for
the bulk pressure:

pi− pe =
σlg π(r2 +h2)+(σsl−σsg)πr2±σslg 2πr

Vci
(5)

where the ± in front of the contact line free energy (σslg) is associated with the contact angle hysteresis, with a positive
(negative) sign for an advancing (receding) contact line. Moreover, the consistent volume integration is such that the final
governing equation satisfies the surface-to-volume ratio for any spherical cap, that is, Vci = 3V/2. Equating the bulk pressure
differences from Eq. (4) and Eq. (5) and replacing R, r, and h with their respective trigonometric relationships defined in
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Eq. (6),

R =

[
3V

π(2−3cosθ + cos3 θ)

]1/3

(6a)

h
r
= tan(θ/2) (6b)

r =

[
6V

π tan( θ

2 )[3+ tan2( θ

2 )]

]1/3

(6c)

the following governing equation for the weightless macroscopic contact angle θ of the advancing contact line is finally
obtained:[(

2−3cosθ + cos3
θ
) 1

3

(
tan
(

θ

2

)[
3+ tan2

(
θ

2

)]) 2
3
−2

2
3

(
1+ tan2

(
θ

2

)
−S

)]
V

1
3

+

(
tan
(

θ

2

)[
3+ tan2

(
θ

2

)]) 1
3
= 0

(7)

S and V are two dimensionless numbers that determine the macroscopic contact angle in weightlessness. They are related to
the physical parameters of the problem, as follows:

S =
σsg−σsl

σlg
(8a)

V =
V

l3
re f

(8b)

lre f =

(
16π

3

) 1
3
|lσ | (8c)

where lσ =
σslg
σlg

and lre f are the physical reference lengths of the weightless sessile drop. However, another scale associated
with the volume of the derived macroscopic model can also be defined:

lmac = lim
θ→θlim

V
1
3 , with θlim = 0+ if σslg > 0, otherwise θlim = π

− (9)

According to this definition, the minimal macroscopic length lmac is the size of the weightless sessile drop above which a209

macroscopic contact angle can be determined using Eq. (7). Conversely, below lmac, we expect the presented macroscopic210

model to be irrelevant.211

The expression of Eq. (7) is dimensionless, which reveals the direct influence of the S V
1
3 product on the macroscopic

contact angle. Therefore, this is a key component in the definition of a dimensionless number, which quantifies the static
macroscopic contact angle of a weightless sessile drop. The first method introduced herein is defined as follows:

Wθ =

[
2
π

arccosS + sign(σslg)−1
]
[(1− s) fco + s fpa]+ sign(σslg) (10a)

s = [1+ tanh(aL +b)]/2 (10b)

fco = exp

(
−
[
L −1

c

]d
)

(10c)

fpa =
e

f L +g
+

1
L

(10d)

L =V
1
3 /lmac (10e)

The proposed definition of Wθ , Eq.(10a), is tailored to lie within [−1,1] and to indicate the hydrophobic, neutral, or hydrophilic212

behavior of the weightless sessile drop for negative, null, or positive values, respectively. Moreover, it represents the signed213

dimensionless distance to cross-over behavior. To meet all these requirements, we introduce a sigmoid function, defined as214

s in Eq.(10b), which is built on the hyperbolic tangent for generating a smooth transition between the contrasting behaviors215

encountered at the limit angle and away from it. L is the dimensionless drop length for characterizing the macroscopic216
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contact angle in weightlessness. fco and fpa, account for the specific behaviors encountered over the entire variation range. fco217

connects to the limit angle θlim at L = 1, and fpa enables the transition from this connecting region to the asymptotic region218

of hyperbolic 1/L behavior. All constants (a, b, c, d, e, f , and g) depend on S , lσ , and sign(σslg), which are the physical219

parameters of the problem.220

Model validation using published experimental data221

Before discussing the proposed model, it is important to validate it using existing experimental results. Unfortunately, to222

the best of the authors’ knowledge, none of the published experimental results on weightlessness include any quantifiable223

dependence of the macroscopic contact angle on volume. Therefore, the results obtained using the proposed model are plotted224

in Figure 7 against the experimental data obtained considering Earth’s gravity conditions.
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Figure 7. Comparison of proposed model with published experimental data. Legend: blue triangles – Herzberg and Marian2

(table 1), orange solid line – present model (S =−0.96 and lσ = 0.25mm); orange dots – Ponter and Yekta-Fard3 (figure 4),
blue solid line – present model (S =−0.77 and lσ = 0.035mm); purple triangles – Li and Neumann6 (figure 3, lower plot),
orange solid line – present model (S = 0.26 and lσ =−0.015mm); green diamonds – Li and Neumann6 (figure 3, middle
plot), black solid line – present model (S = 0.42 and lσ =−0.015mm); red squares – Li and Neumann6 (figure 3, top plot),
yellow solid line – present model (S = 0.47 and lσ =−0.015mm).

225

Although a broad range of fluids, substrates, and surrounding gases are involved in the five selected experimental results2, 3, 6,226

fitting the S and lσ parameters of the proposed model to the lower drop size experimental points in each of the considered227

cases enables us to determine the influence of volume on the macroscopic contact angle satisfactorily. Interestingly, the results228

of the proposed weightlessness model deviate from those of Earth gravity experiments as soon as the drop size reaches some229

fraction of its capillary length (water / air fluids: λc ≈ 2.6 mm, ethylene glycol / air fluids: λc ≈ 2.0 mm, respectively). This230

occurs because the influence of volume no longer exists under gravity conditions, whereas it persists in weightlessness. A231

sharp departure is observed for the most hydrophobic case of water on a polyethylene substrate2 for a drop radius exceeding232

r = 1.7 mm (drop volume from Table 1 in Herzberg and Marian2 translated into drop radius, as shown in Eq. (6c)). Moreover,233

this case is that of highest slope among the five considered cases (S = −0.96). For the second hydrophobic case of water234

on Polytetrafluorethylene (PTFE), a milder deviation occurs between the present model and experimental results from Ponter235

and Yekta-Fard3 above a comparable radius of r > 1.7 mm. For both hydrophobic cases considered here, fairly consistent lσ236

have been introduced to fit experimental results from Herzberg and Marian2 and Ponter and Yekta-Fard3, lσ = 0.25mm and237

0.035mm, respectively. On the other hand, for the three hydrophilic cases, either for Dodecane on FC-721 substrate and Zonyl238

FSC one, or Ethylene Glycol on DDOAB substrate6, only a slight volume dependence of the macroscopic contact angle is239

observed, which results in a minute slope for the three cases. This explains why only minor deviations can be observed for240

drop radii beyond r = 4 mm, cf. Figure 7. Moreover, very small lσ have been introduced to fit the experimental values from6
241

comparatively to those introduced for the two hydrophobic cases, a same lσ =−0.015mm in the three cases.242
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Figure legends293

Figure 1: Sketch of sessile drop injected from below through a sub-millimetric hole in the substrate.294

Figure 2: Macroscopic contact angle versus dimensionless geometrical quantities (L , h, r and R), for S =−0.99 (blue),295

−2/3 (cyan), −1/3 (green), 0 (yellow), 1/3 (orange), 2/3 (red) and 0.99 (magenta). The solid (dashed) lines represent the296

plots of positive (negative) S /lσ .297

Figure 3: Macroscopic contact angle versus (a) dimensionless drop size L and (b) dimensionless contact angle Wθ , for298

S =−0.99 (blue), −2/3 (cyan), −1/3 (green), 0 (yellow), 1/3 (orange), 2/3 (red) and 0.99 (magenta). The solid (dashed)299

lines represent the plots for positive (negative) S /lσ .300

Figure 4: Plots of related sessile drop dimensionless quantities: (a-b) wetted radius, (c-d) drop height, (e-f) sphere radius,301

for S =−0.99 (blue), −2/3 (cyan), −1/3 (green), 0 (yellow), 1/3 (orange), 2/3 (red) and 0.99 (magenta). The solid (dashed)302

lines represent the plots for positive (negative) S /lσ .303

Figure 5: Influence of sessile drop volume on its shape in the small to medium range (V = 5 (dark blue), 25 (brown), 50304

(purple), 100 (orange), 150 (green), 200 (yellow) and 250 (light blue)) for six values of S and negative S /lσ .305

Figure 6: Influence of S on sessile drop shape for four volumes and seven values of S , ranging from −0.99 (dark blue) to306

0.99 (light blue), separated by six equidistant steps.307

Figure 7: Comparison of proposed model with published experimental data. Legend: blue triangles – Herzberg and Marian2
308

(table 1), orange solid line – present model (S =−0.96 and lσ = 0.25mm); orange dots – Ponter and Yekta-Fard3 (figure 4),309

blue solid line – present model (S =−0.77 and lσ = 0.035mm); purple triangles – Li and Neumann6 (figure 3, lower plot),310

orange solid line – present model (S = 0.26 and lσ = −0.015mm); green diamonds – Li and Neumann6 (figure 3, middle311

plot), black solid line – present model (S = 0.42 and lσ =−0.015mm); red squares – Li and Neumann6 (figure 3, top plot),312

yellow solid line – present model (S = 0.47 and lσ =−0.015mm).313
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