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Abstract 

Background: In high‑dimensional data analysis, the complexity of predictive models can be reduced by selecting 
the most relevant features, which is crucial to reduce data noise and increase model accuracy and interpretability. 
Thus, in the field of clinical decision making, only the most relevant features from a set of medical descriptors should 
be considered when determining whether a patient is healthy or not. This statistical approach known as feature selec‑
tion can be performed through regression or classification, in a supervised or unsupervised manner. Several feature 
selection approaches using different mathematical concepts have been described in the literature. In the field of 
classification, a new approach has recently been proposed that uses the γ‑metric, an index measuring separability 
between different classes in heart rhythm characterization. The present study proposes a filter approach for feature 
selection in classification using this γ‑metric, and evaluates its application to automatic atrial fibrillation detection.

Methods: The stability and prediction performance of the γ‑metric feature selection approach was evaluated using 
the support vector machine model on two heart rhythm datasets, one extracted from the PhysioNet database and 
the other from the database of Marseille University Hospital Center, France (Timone Hospital). Both datasets contained 
electrocardiogram recordings grouped into two classes: normal sinus rhythm and atrial fibrillation. The performance 
of this feature selection approach was compared to that of three other approaches, with the first two based on the 
Random Forest technique and the other on receiver operating characteristic curve analysis.

Results: The γ‑metric approach showed satisfactory results, especially for models with a smaller number of features. 
For the training dataset, all prediction indicators were higher for our approach (accuracy greater than 99% for models 
with 5 to 17 features), as was stability (greater than 0.925 regardless of the number of features included in the model). 
For the validation dataset, the features selected with the γ‑metric approach differed from those selected with the 
other approaches; sensitivity was higher for our approach, but other indicators were similar.
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Background
In statistics and high-dimensional data analysis, the scor-
ing and ranking of individual features may be neces-
sary for feature selection and dimension reduction [1]. 
Indeed, this approach reduces both the complexity of the 
model and the noise present in the data, which increases 
model accuracy and interpretability [2]. Feature selection 
is a data preprocessing technique that consists in gener-
ating the best possible feature subset through selecting 
the most relevant features and removing redundant or 
noisy ones. This technique speeds up classification (train-
ing and testing) and optimizes model accuracy (e.g., pre-
diction error rate).

Typically, a feature selection algorithm includes four 
steps [3]: (1) subset generation, in which candidate fea-
ture subsets are selected based on certain search methods 
(e.g., exhaustive, random, or heuristic search method); (2) 
evaluation function computation, in which the relevance 
of the selected candidate subsets is assessed; (3) identifi-
cation of a stopping criterion, in which the criterion for 
stopping the algorithm and returning the selected subset 
is specified; and, (4) result validation, in which the per-
formance of the feature selection algorithm is tested on a 
distinct dataset.

In step 1, the feature selection algorithm can use sev-
eral methods to search for candidate subsets. The most 
common are the exhaustive and heuristic search meth-
ods. These include greedy approaches whereby only local 
optimal choices are made in search space (for example, 
by adding or removing features sequentially through 
a forward and backward search) and a unidirectional 
search is conducted (the forward search starts with an 
empty feature set and the backward search with a full 
feature set). More complex heuristic search methods also 
exist. Among these is the “best-first search” approach 
[4], which is similar to the greedy approach, but differs 
from it in that it chooses the best neighbor subset among 
all evaluated ones. In this method, the user defines how 
many times the feature subset search is to be repeated. 
One should also mention the more computationally com-
plex metaheuristic approaches, such as the ant-colony 
algorithm [5] and the genetic algorithm (GA) [6]. These 
two algorithms are known to provide satisfactory solu-
tions to many optimization problems, including the trav-
elling salesman problem. A recent paper comparing the 
performance of different state-of-the-art metaheuristic 

algorithms (including GA), found that these approaches 
may constitute good alternatives for the problem of 
parameter estimation in real world applications [7].

When the number of features p in a training dataset 
is too high (say p > 100 ), it becomes impossible to test 
all possible solutions, that is, the 2p − 1 possible feature 
subsets. In this situation, feature selection becomes “NP-
hard” [2]. Since the exhaustive search for solutions is not 
feasible, heuristic strategies must be considered, even 
though they can converge to local optima. One of these 
strategies is the forward search algorithm, which gener-
ates an initial solution with the most relevant features, 
evaluates this solution, and then assesses all feature sub-
sets obtained by adding the most relevant feature from 
among the remaining ones.

In supervised learning (and especially in classification), 
the relevance of a feature is often assessed by quantify-
ing its correlation with or dependence on a target feature 
Y, or by using consistency and separability indices or 
information theory-based metrics [8]. The feature selec-
tion method tries to find the best combination of fea-
tures according to an evaluation function that quantifies 
the relevance of all features. Evaluation functions can be 
divided into five categories [9]: distance measures, infor-
mation measures, dependence measures, consistency 
measures, and classifier error rate measures. Depending 
on the evaluation function, one can use either “wrapper” 
methods [10] to evaluate selected features based on the 
performance of a given classifier or “filter” methods to 
select features without employing a classifier.

Model complexity reduction in high-dimensional data 
analysis has many applications in the medical field. One 
such application is heart rhythm characterization, which 
is of clear clinical importance. At present, the main chal-
lenge for heart rhythm characterization is the automated 
detection of atrial fibrillation (AF). Indeed, AF, which 
is characterized by an irregular and often rapid heart 
rate, is associated with a five-fold increase in the risk of 
ischemic strokes [11]. It is currently the most common 
heart rhythm disorder and the second leading cause of 
mortality worldwide [12]. However, AF diagnosis is not 
obvious, especially in stroke patients, who often present 
with silent (asymptomatic) and mostly paroxysmal [13] 
forms. Fortunately, heart rhythm can be characterized 
by electrocardiogram (ECG), which is commonly used to 
explore electric cardiac activity and to detect arrhythmia. 

Conclusion: This filter approach for feature selection in classification opens up new methodological avenues for 
atrial fibrillation detection using short electrocardiogram recordings.

Keywords: γ‑metric, Machine learning, Feature selection, Classification, Clinical decision making, Atrial fibrillation 
detection
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Automatic detection of AF is now a source of hope, 
especially with the development of connected medical 
devices.

In a recent study, Pons et al. introduced a new feature 
selection approach, which consists in selecting highly 
discriminant features from a set of features [14]. They 
examined whether this approach could be used for heart 
rhythm characterization using 1-min RR interval time 
series derived from ECG recordings. In heart rhythm 
analysis, an electrical cardiac cycle is traditionally divided 
into five waves denoted P, Q, R, S, and T, with R being 
the wave with maximal amplitude. An RR interval repre-
sents the time elapsed between two consecutive R waves 
that leads to one cardiac beat. Indeed, RR interval vari-
ability is often used as a marker of heart rhythm. The new 
approach introduced by Pons et  al. is specifically aimed 
at improving discrimination between different heart 
rhythms: normal sinus rhythm (NSR) and AF. It uses a 
new evaluation function, the γ-metric, which is defined 
as the algebraic distance between classes. The approach 
showed good performance and improved classification 
accuracy by reducing both the number of features con-
sidered in the model and the necessary length of the time 
series, even in datasets with added noise or missing data. 
Not only are these preliminary results encouraging, but 
this approach could supersede current state-of-the-art 
feature selection approaches. However, Pons et  al. [14] 
used a logistic regression as a classifier and an exhaus-
tive approach for feature selection. Moreover, both their 
training and validation datasets were extracted from the 
same PhysioNet database available on the internet.

The present paper proposes a filter approach for feature 
selection in classification that uses the γ-metric intro-
duced by Pons et al. as an evaluation function as well as 
the support vector machine (SVM) model to [15] solve 
the supervised classification problem. This approach 
was applied to AF detection using electrocardiogram 
recordings derived from two independent datasets (with 
the validation dataset containing real electrocardiogram 
data). The classification performance of the approach was 
evaluated.

Methods
This section covers the following topics: the ECG data-
sets used for the analysis; the mode of computation of the 
γ-metric and its use as a filter approach for feature selec-
tion; the measure of consistency used to assess feature 
selection stability; the SVM model used as a classifier; 
and the strategy for feature selection used for AF detec-
tion considered as a classification task.

Description of the datasets
Two ECG datasets were used in our study: a training 
dataset and a validation dataset.

Training dataset
The training dataset was extracted from the PhysioNet 
website [16], the open Massachusetts Institute of Tech-
nology-Beth Israel Hospital (MIT-BIH) NSR database 
(nsrdb), the MIT-BIH NSR RR interval database (nsr2db), 
and the MIT-BIH AF database (afdb). It contained 
50,  028 1-min RR interval time series, 47,  128 of which 
corresponded to NSR rhythms and 2,900 to AF rhythms. 
No identifying information was used in the analysis.

Validation dataset
The validation dataset was obtained from the Depart-
ment of Cardiology and Rhythmology of Marseille Uni-
versity Hospital Center (Timone Hospital), France. A 
total of 105 patients undergoing continuous 24-hour 
Holter monitoring between 20 December 2016 and 26 
February 2017 were considered for inclusion in the study. 
All ECG recordings were anonymized and no personal 
information was available except for age and gender. Pre-
processing and quality check of RR interval time series 
consisted in tagging and excluding time series that con-
tained misdetected R peaks (RR interval < 200ms) and/
or undetected R peaks (RR interval > 3s). This procedure 
was aimed at ensuring the ECG signal quality (noise, sig-
nal interruption) of analyzed recordings and at assessing 
robustness of R peak detection against R peak detection 
algorithm limits. Premature ventricular and atrial con-
tractions, which were present in the analyzed recordings 
of both AF and NSR patients, were not impacted by this 
preprocessing procedure. Patients with heart rhythm 
disorders other than AF were excluded from the analy-
sis ( n = 59 ). Of the remaining 46 patients, 6 AF patients 
were excluded because their AF episodes were deemed 
too short to be informative and analyzable (duration less 
than one minute), 2 AF patients due to unreliable annota-
tions, and 4 NSR patients because their recordings con-
tained inconsistent information (1 patient had a reported 
age of 0 years and 3 had time series with a recording start 
date posterior to the start date of the NSR episode). In 
the end, 34 patients were included the analysis, 11 of 
whom had AF (providing 11, 131 1-min RR interval time 
series) and 23 had NSR (yielding 30, 530 1-min RR inter-
val time series). The flowchart presented in Fig.  1 sum-
marizes the preprocessing procedure.

For both datasets, 1-min RR interval time series were 
derived from ECG recording using a customized R-peak 
detector. RR intervals were expressed in milliseconds (ms). 
The methodology developed by Pons et al. [14] was applied 
to generate 32 candidate features: i) derivatives of time 
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series were considered from order 0 to 10; and ii) means 
(denoted m0, ...,m10 ) and standard deviations (denoted 
sd0, ..., sd10 ) were computed for each time series. The fol-
lowing time domain measures were then computed: (1) 
the standard deviation of the averages of 5-s RR intervals 
(SDANN); (2) the mean of all the standard deviations of 
5-second RR intervals (SDNNidx); (3) the standard devia-
tion of successive differences (SDSD); (4) the standard 
deviation of all RR intervals (SDNN); (5) the root-mean-
square of successive differences (RMSSD); (6) the per-
centage of differences between successive RR intervals 
greater than 50ms (pNN50); (7) the length of the inter-
val, as determined by the difference between the first and 
third quantiles of the RR time series (IRRR); (8) the inte-
gral of the density of the RR interval histogram divided by 
its height (HRV.index); (9) the triangular interpolation of 
the RR interval histogram (TINN); and (10) the median 
of the absolute differences between adjacent RR intervals 
(MADRR). These classic indicators, which cover several 
domains of heart rate variability, are of primary interest in 

this field of analysis. They were computed using RHRV R 
package (Heart Rate Variability Analysis of ECG Data) [17].

Feature selection with the γ‑metric
Consider a set S of n observations {Xi}i=1,...,n , characterized 
by p features, where Xi ∈ S ⊂ R

p for i = 1, ..., n . Let S be 
divided into K classes such that we have an integer vector 
Y  where Yi = 1, ...,K , ∀i = 1, ..., n . For each k ∈ {1, ...,K } , 
W k ,p is the covariance matrix of the corresponding sub-
sample of observations belonging to class k:

where Wk,p is a diagonalizable p× p symmetrical positive 
semi-definite matrix in which all eigenvalues {�k ,j}j=1,...,p 
are positive ( ∀j = 1, ..., p , �k ,j ≥ 0 ). Let {uk,j}j=1,...,p be 
the normalized eigenvectors associated with eigenvalues 
{�k ,j}j=1,...,p . These eigenvectors represent the direction of 
the p axes of length 

√

�k ,j  in a p-dimensional ellipse cen-
tered in µk , which is the mean vector of observations in 

(1)Wk,p = cov
({

Xi|Yi = k
})

,

Fig. 1 Flowchart of data preprocessing. Grey boxes show the number of patients retained at each stage. Orange boxes provide details on the 
reasons for patient exclusion. The red and blue boxes at the bottom show the number of NSR and AF patients retained for further analysis
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class k. Each class k ( k ∈ {1, ...,K } ) is thus represented by 
an ellipse in Rp.

The γ-metric is a separability measure based on the 
sum of the distances between each pair of classes. This 
measure uses positive values in the case of class sepa-
rability and negative values in the case of class over-
lapping. More intuitively, each class of individuals is 
represented by an ellipse in Rp , and the γ-metric rep-
resents the sum of the distances between the centroids 
of each pair of ellipses minus the distances between the 
centroids and the borders of these two ellipses. When 
the distance between two centroids is less than the 
sum of the distances separating these centroids from 
their respective borders, then the value of the γ-metric 
becomes negative. Let there be k1, k2 ∈ {1, ...,K } such 
that k1 < k2 , then the algebraic distance dk1,k2 between 
the pair of classes k1  = k2 along the mean-mean axis 
given by µk1µk2 = µk2 − µk1 can be defined as follows:

(2)dk1,k2 =
1

αk1,k2

(

∥

∥µk1µk2

∥

∥− (dk1,k1k2 + dk2,k1k2)),

where αk1,k2 is a normalization factor defined as:

and dk1,k1k2 and dk2,k1k2 are defined as:

where µ̃2
k1,j

 (respectively µ̃2
k2,j

 ) represents the coordinates 
of the normalized vector µk1µk2 expressed in the orthog-
onal basis formed by the eigenvectors of ellipse k1 
(respectively k2 ). If Uk1 (respectively Uk2 ) is the matrix 
whose columns correspond to the eigenvectors of 
ellispoid k1 (respectively k2 ), then the normalized mean-
mean vector µ̃k1 (respectively µ̃k2 ) can be written as:

(3)αk1,k2 =

√

√

√

√

p
∑

j=1

�k1,j +

√

√

√

√

p
∑

j=1

�k2,j ,

(4)

dk1,k1k2 =
1

√

∑p
j=1

µ̃
2
k1,j

�k1,j

and dk2,k1k2 =
1

√

∑p
j=1

µ̃
2
k2,j

�k2,j

,

Fig. 2 Ellipses obtained in the case of a two‑dimensional space for two classes of observations. Each class k is generated using a different 

multivariate normal distribution N (µk ,�k) . The first graph (a) is obtained considering µ1 = t

(

0

0

)

 , µ2 =

(

1.5

−1.5

)

 , �1 =

(

0.3 0.1

0.1 0.9

)

 and 

�2 =

(

0.8 0

0 0.8

)

 , resulting in a positive value of the γ‑metric. The second graph (b) is obtained considering µ1 =

(

0.1

0.1

)

 , µ2 =

(

1.1

0

)

 , 

�1 =

(

0.4 − 0.1

−0.1 0.5

)

 and �2 =

(

0.9 0

0 1.2

)

 , resulting in a negative value of the γ‑metric
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In other words, dk1,k1k2 represents the distance between 
µk1 and the border of the ellipse, and any point on this 
border is determined by drawing a segment between 
µk1 and the border of the ellipse in the same direction 
as µk1µk2 . Similarly, dk2,k1k2 is the distance between µk2 
and the border of the ellipse, and any point on this bor-
der is determined by drawing a segment between µk2 and 
the border of the ellipse in the same direction as vector 
−µk1µk2.

Finally, the γ-metric for a set of K classes of observations 
in S ⊂ R

p is defined as follows:

The above computations were performed using R and are 
available on GitHub [18] with all codes and data. Figure 2 
illustrates the γ-metric in two scenarios: the first using a 
positive value of the γ-metric, the second using a negative 
value. A step-by-step mathematical derivation of Eq. 4 is 
provided in the Additional file 1.

Feature selection stability assessment
Feature selection stability is defined as the ability of a feature 
selection algorithm to find the same subsets of features in sim-
ilar datasets [19] or, more generally, in datasets drawn from the 
same distribution [20]. In this study, feature selection stability 
was assessed using the Kuncheva index (KI, [21]).

Let F = {f1, f2, ..., fp} be a set of p features. Feature selec-
tion consists in selecting a subset S ⊂ F containing the 
p′ ≤ p most relevant features based on the values of a 
given evaluation function. Let s = {S1, S2, ..., Sω} be a set 
of ω feature subsets obtained through ω runs of a fea-
ture selection algorithm performed on various datasets. 
Assuming that all elements in s are of the same size (i.e 
|Si| = p′,∀i ∈ {1, ...,ω} ), KI can be defined as:

This consistency index ranges from −1 to 1, with values 
close to 1 representing high feature selection stability and 
values close to −1 representing instability. By convention, 
the consistency index is null for p′ = p . Values of ω were 
assessed by analyzing their effect on the computation of 
the stability index. The value that corresponded to the 
stabilization of KI values was retained.

(5)

µ̃k1 = Uk1
−1 µk1µk2

||µk1µk2 ||2
and µ̃k2 = Uk2

−1 µk1µk2

||µk1µk2 ||2
.

(6)γp =

K
∑

k1=1

∑

k1<k2

dk1,k2 .

(7)KI(s) =
2

ω(ω − 1)

ω−1
∑

i=1

ω
∑

j=i+1

|Si ∩ Sj|p− p′2

p′(p− p′)
.

Support vector machine
The problem of discriminating between NSR and AF 
rhythms was treated as a supervised binary classification 
problem (the target variable was encoded ‘0’ for obser-
vations corresponding to NSR rhythms and as ‘1’ for 
observations corresponding to AF rhythms). Given the 
imbalance in our datasets (with AF times-series account-
ing for 5.79% of the training dataset and for 26.72% of the 
validation dataset), the support vector machine (SVM) 
[15] model seemed appropriate for our purpose of clas-
sifying heart rhythms. Indeed, SVM is a well-known clas-
sification model in high dimensional data analysis that 
does not require any assumption on the distribution of 
target values in the study sample [22]. In our study, the 
SVM classifier with linear kernel was used to measure the 
prediction performance of the γ-metric feature selection 
approach.

Briefly put, SVM is a machine learning model that 
can be used for both regression and classification. It 
works by identifying a hyperplane that distinctly classi-
fies data points in a p-dimensional space (where p is the 
number of features). Although several hyperplanes can 
be selected, the SVM algorithm selects the one with the 
largest distance to the nearest training-data points of 
any class. This optimal hyperplane is then treated as a 
decision boundary, such that new data points falling on 
either side of this boundary are attributed to a different 
class. The model can be seen as an optimization problem 
in which the smallest distance between the hyperplane 
and the data points must be maximized. The distance 
between the hyperplane and the closest data points is 
called the margin, and the closest data points are called 
support vectors.

Given a training dataset of n points of the form 
{(x1, y1), ..., (xn, yn)} ⊂ R

p × {−1, 1} , we wish to find the 
maximum-margin hyperplane (or optimal separating 
hyperplane) that divides the group of points xi , where 
yi = 1 from the group of points xi where yi = −1 . The 
form of the hyperplane equation can be written as:

where θ = (θ1, ..., θp)
⊤ ∈ R

p and b ∈ R . For a new data 
point x the decision rule will be:

Thus, given the training dataset, we wish to find h as 
follows:

(8)h(x) = θ⊤x + b,

(9)ŷ =

{

1 if h(x) ≥ 0

−1 otherwise
.

(10)ykh(xk) ≥ 0, ∀k ∈ {1, ..., n} ⇔ yk(θ
⊤xk + b) ≥ 0, ∀k ∈ {1, ..., n},
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where M = 1
�θ� is the margin solution of 

min
1≤k≤n

yk (θ
⊤xk + b) . The hyperplane is the solution of the 

following optimization problem:

By setting �θ� = 1
M , we obtain the following formulation 

of the optimization problem:

Strategy for feature selection in atrial fibrillation detection
In addition to the γ-metric, three other variable impor-
tance scores were computed for each individual feature. 
Two were derived from the Random Forest (RF) algo-
rithm [23]: the first was the mean decrease in Gini index 
(MDG), which is obtained by replacing each split in each 
tree of the forest with its surrogate split; the second was 
the mean decrease in accuracy (MDA), which is obtained 
by randomly shuffling feature values in the out-of-bag 
data. Both the MDA and the MDG were computed using 
randomForest R package [24]. The third variable impor-
tance score was the AUC. This score is obtained using an 
intuitive approach: each individual feature is entered in a 
classification model (SVM in our case); a receiver operat-
ing characteristic (ROC) curve analysis is then conducted 
for each predictor; and the area under the ROC curve 
(AUC) is used as a measure of variable importance. The 
AUC was computed using caret R package [25].

The proposed strategy for feature selection in atrial 
fibrillation detection consists of four steps summarized 
as follows: 

1 Computation of variable importance scores ( γ-met-
ric, MDA, MDG, AUC) for each individual feature of 
the training dataset using 150 bootstrap replications. 
Features were ranked in descending order for each 
variable importance score. The KI was measured 
using the 150 rankings obtained for each variable 
importance score.

2 Feature ranking in descending order according to the 
median value of each variable importance score for 
the 150 bootstrap replications.

3 SVM fitting of each feature ranking using 5-fold cross 
validation repeated 10 times on the training dataset. 
At each iteration, only the remaining feature with 
the highest variable importance value was included. 
For each variable importance score, 32 models were 
yielded. The first model contained only the most rel-

(11)
maxθ ,b M,

s.t. yk(θ
⊤xk + b) ≥ M, k = 1, ..., n.

(12)
minθ ,b

1
2
�θ�2

s.t. yk(θ
⊤xk + b) ≥ 1, k = 1, ..., n.

evant feature according to the metric used, and the 
last one contained all the features.

4 Computation of the classification performances of 
each model on the testing folds of the 5-fold cross-
validation repeated 10 times on the training dataset. 
Mean accuracy, specificity, sensitivity, and Matthews 
correlation coefficient (MCC) [26] with their stand-
ard deviations were considered. Performance results 
are reported in Table 3.

Finally, prediction performance was evaluated for each 
feature selection approach by computing median accu-
racy, specificity, sensitivity, and MCC with 1000 boot-
strap replications of the independent validation dataset. 
For each performance indicator, interquartile ranges 
were computed as a measure of dispersion. Results are 
reported in Table 4.

Results
Demographic data and ECG recording duration for the 
34 patients of the validation dataset are given in Table 1. 
Mean age was 62.62 years (68.64 in the AF group and 
59.74 in the NSR group). Slightly more than half of the 
patients were male (36.4% in the AF group and 60.9% in 
the NSR group), and mean duration of ECG recordings 
was 20.47 hours (16.92 hours in the AF group and 22.17 
hours in the NSR group). No significant difference was 
found between the AF and NSR groups.

Table  2 presents the means and standard deviations 
for each feature of the validation dataset for both the AF 
and NSR groups. It also shows the p-value between the 
two groups that corresponds to an unpaired bilateral Stu-
dent’s means comparison test in case of normal distribu-
tion and to a Wilcoxon’s mean comparison test in case of 
non-normal distribution. The training dataset contained 
50, 028 1-min RR interval time series and the validation 
dataset contained 41,  661. There was an imbalance in 

Table 1 Descriptive statistics of the patients with ECG 
recordings. Continuous features (age, ECG recording duration) 
are expressed as means and standard deviations, and categorical 
features (gender) are expressed as absolute and relative 
frequencies

The p-value corresponds to a Student’s t-test (respectively χ2 test) used for 
continuous (respectively categorical) features

AF (N = 11) NSR (N = 23) Total (N = 34) p‑value

Age (mean (sd)) 68.64(15.98) 59.74(11.66) 62.62(13.63) 0.074

Gender (Male 
(%))

4(36.4) 14(60.9) 18(52.9) 0.331

ECG record‑
ing duration 
(mean (sd))

16.92(9.18) 22.17(2.62) 20.47(6.03) 0.243
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both the training and validation datasets due to a much 
higher proportion of NSR patients (94.2% in the training 
dataset and 73.3% in the validation dataset). No signifi-
cant differences were observed for features m8 , m9 , and 
m10 of the validation dataset, as shown in Table 2.

Figure  3 shows the variable importance values of 
each feature of the training dataset obtained using the γ
-metric (top-left panel), MDA (top-right panel), MDG 
(bottom-left panel), and AUC (bottom-right panel) 
approaches. When using the γ-metric approach, the 
three most discriminant features were sd1 , sd2 , and sd3 . 
This finding supports the study by Pons et al. [14], who 
found values that fell within the confidence intervals of 
our predictions, confirming the ability of the γ-met-
ric approach to retrieve the most discriminant features. 
When using the MDA approach, the three most discri-
minant features were sd3 , sd2 , and sd4 . When using the 
MDG and AUC approaches, the three most discriminant 
features were sd3 , sd2 , and m3.

The third column in Table  3 shows the stability per-
formance of the four feature selection approaches, as 
measured by the KI values obtained for each model using 
the training dataset (the name of the feature selected at 
each step is specified in the second column). For a num-
ber of selected features p < 16 (i.e., less than half of the 

initial features), the KI values obtained using the γ-met-
ric approach were higher than those obtained using 
RF-based (MDA and MDG) approaches. This superior-
ity of the γ-metric approach was no longer observed for 
p > 16 , with the AUC approach then yielding the highest 
KI values (results not shown).

Figure  4 presents the mean test accuracy, specific-
ity, sensitivity, and MCC values for each model fitted on 
the 10 replicates of the 5-fold cross validation applied 
to the training dataset (models with one to 32 features). 
The γ-metric approach outperformed the three other 
approaches for all indicators, especially for p′ ≤ 16 . 
Maximal accuracy for the γ-metric approach (99.98%) 
was observed for p′ = 13 features. Likewise, maximal 
MCC for the γ-metric approach (0.998) was observed 
for p′ = 13 . Specificity and sensitivity increased until 
p′ = 16 , and remained constant with higher number of 
features for all four approaches. Table  3 presents these 
same values for models with one to 16 features. In most 
cases, the γ-metric approach outperformed the other 
approaches in terms of accuracy, specificity, sensitivity, 
and MCC. Of the two RF-based approaches, the MDA 
approach showed the best indicators.

Figure  5 presents the median accuracy, specificity, 
sensitivity, and MCC values for each model calculated 

Fig. 3 Variable importance scores of each feature obtained using the γ‑metric (top‑left panel), MDA (top‑right panel), MDG (bottom‑left panel) and 
AUC (bottom‑right panel) feature selection approaches
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on boostrap samples of the validation dataset (models 
with one to 32 features). Table  4 presents these same 
values for models with one to 16 features. Surpris-
ingly, maximal accuracy was observed for the γ-met-
ric approach for p′ = 1 (using only feature sd2 ). This 
approach outperformed all others for p′ = 13 with an 
accuracy of 89.8%, corroborating our earlier test set 
results obtained through 5-fold cross validation. It also 
outperformed all other approaches for the MCC indi-
cator, with a value of 0.73 for p′ = 13 . However, the γ
-metric approach did not have the highest specificity; 
moreover, the lowest specificity was 94.45 for p′ = 6 . 
On the other hand, sensitivity values for the γ-metric 
approach corroborated our earlier test set results, with 
the highest sensitivity observed for p′ ≤ 18.

The γ-metric feature selection approach, which is a 
filter method, had the shortest running time at 0.31  s. 
The other three feature selection approaches are wrap-
per methods, and therefore involve a learning phase. 
The MDG and MDA approaches were applied simul-
taneously and had the longest running time at 65.17 s. 
The AUC approach, which was applied using an SVM 
classification model, had a running time of 3.09 s. Aver-
age running times were computed using 10 bootstrap 

samples from the training dataset with Intel(R) Xeon(R) 
W-2104 CPU at 3.20GHz, on a 64-bits system.

Discussion
In this paper, we described a filter approach for feature 
selection in classification using an evaluation func-
tion, the γ-metric, which assesses separability between 
classes. We compared this feature selection approach to 
state-of-the-art approaches using two independent data-
sets containing 1-min RR interval time series of heart 
rhythms (NSR and AF) in a context of supervised binary 
classification.

This γ-metric feature selection approach showed sat-
isfactory results and outperformed almost all other 
approaches both in terms of classification performance 
(which was computed using test sets obtained through 
cross-validation applied to the training dataset as well as 
validation sets obtained through bootstrap resampling 
applied to the validation dataset) and feature selection 
stability (which was computed using bootstrap resam-
pling applied to the training dataset). While there was 
an imbalance in our two datasets (as the prevalence of 
NSR is much higher than that of AF), this problem was 
accounted for by using the SVM model as a classifier and 
the MCC [26] as a classification performance index.

Fig. 4 Classification performance (mean accuracy, specificity, sensitivity, and MCC values) computed on 10 replicates of 5‑fold cross validation 
applied to the training dataset in function of the number of features and for each feature selection approach ( γ‑metric, MDA, MDG, and AUC)
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The main advantage of the proposed approach is its 
filtering process. Unlike wrapper methods [10], which 
evaluate the selected features using the performance of 
a given classifier, filter methods are model-agnostic and 
select features without employing a classifier, which is 
less greedy in terms of running time.

This study also examined the stability of the feature 
selection performed by the γ-metric approach. In the 
field of classification, very large and very small sample 
sizes have presented a major challenge for research-
ers in recent years because they can lead to instability. 

Assessing the stability of our feature selection algorithm, 
and not just its classification performance, seemed to us 
important in this context. A taxonomy of feature selec-
tion stability indices has already been proposed in the 
literature [27]. While other indices such as the weighted 
consistency index and the average Tanimoto index are 
available for more general cases (for instance, when the 
number of selected features is variable), we chose to use 
the KI because it implies that the feature subsets obtained 
with different approaches all have the same size.

With the development of connected medical devices, 
automatic AF detection has become a source of hope, as 
it can be used to detect the onset of fibrillation early on 
and therefore to provide appropriate medical care. As our 
study indicates, whatever the variable importance score 
computed for each individual feature ( γ-metric, MDA, 
MDG, AUC), sd2 and sd3 are the most discriminant of 
the 32 candidate features covering different domains of 
heart rate variability. As such, they are of primary inter-
est for heart rhythm characterization. The classification 
performance of the γ-metric feature selection approach 
was found to be stable even with only five features ( sd2 , 
sd3 , sd1 , pNN50, and sd4 ). Not only do our results sup-
port those of Pons et al. [14], but they confirm the advan-
tages of the γ-metric approach for a wider range of 
features. Moreover, our algorithm performed well despite 
the imbalance in our datasets, an imbalance that reflects 
conditions in the real world where NSR is more prevalent 
than AF.

The γ-metric feature selection approach was found to 
be very efficient for heart rhythm characterization using 
ECG recordings. However, extrapolation to other fields 
of application should only be made with caution. While 
Pons et al. thoroughly examined the robustness of the γ
-metric approach using perturbated data and induced 
RR interval time series [14], we compared the approach 
to other feature selection tools using more clear-cut data 
(AF versus NSR). This means that our algorithm was 
presented with a relatively easy classification problem, 
as shown by the high accuracy values. Accordingly, we 
should not expect to obtain similar results in more com-
plex classification tasks, for instance when dealing with 
unusual heart rhythms and ECG dynamics (high density 
of polymorphic ectopic beats, slow AF, conduction dis-
orders, large R waves, etc.) or with more heterogeneous 
datasets as found in oncology.

In our study, the SVM model was used as a classifier 
[15]. No other classifier was considered because our aim 
was to compare feature selection approaches in terms of 
classification performance, and stability, not to compare 

Table 2 Descriptive analysis of the features of the validation 
dataset

For each patient, we computed the mean value of the features derived from 
each of his or her 1-min RR interval. Each line corresponds to the mean values 
and standard deviations of all patients in the AF and NSR groups. The p-value 
corresponds to a Student’s t-test in case of normal of normal distribution and to 
a Mann–Whitney U test in case of non-normal distribution

Features AF (N = 11) NSR (N = 23) p‑value

m0 0.769 (0.248) 0.873 (0.114) 0.028

m1 −0.036 (0.016) −0.002 (0.002) 0.000

m2 0.109 (0.061) 0.006 (0.007) 0.000

m3 −0.273 (0.188) −0.019 (0.023) 0.000

m4 0.656 (0.536) 0.065 (0.085) 0.000

m5 −1.633 (1.508) −0.252 (0.356) 0.000

m6 4.331 (4.453) 1.104 (1.602) 0.002

m7 −13.642 (16.670) −5.073 (7.710) 0.015

m8 53.254 (91.939) 24.687 (38.695) 0.071

m9 −288.073 (666.902) −124.233 (203.657) 0.243

m10 1901.032 (5304.157) 648.314 (1122.787) 0.690

sd0 0.142 (0.037) 0.047 (0.019) 0.000

sd1 0.270 (0.069) 0.042 (0.020) 0.000

sd2 0.714 (0.296) 0.097 (0.057) 0.000

sd3 2.163 (1.235) 0.297 (0.240) 0.000

sd4 7.190 (5.080) 1.077 (1.071) 0.000

sd5 25.866 (21.270) 4.355 (4.916) 0.000

sd6 99.809 (91.928) 18.842 (23.025) 0.001

sd7 411.791 (416.661) 85.683 (111.063) 0.005

sd8 1822.127 (2043.844) 404.282 (549.422) 0.008

sd9 8773.333 (11,389.615) 1976.371 (2815.619) 0.026

sd10 46,563.114 (73,918.526) 9916.219 (14,751.188) 0.042

SDNN 141.717 (37.248) 46.580 (18.907) 0.000

SDANN 60.200 (24.675) 35.914 (14.735) 0.010

SDNNIDX 131.858 (32.635) 25.081 (12.269) 0.000

pNN50 74.878 (6.375) 10.601 (11.328) 0.000

SDSD 195.287 (47.089) 35.023 (18.044) 0.000

RMSSD 193.983 (46.599) 34.779 (17.902) 0.000

IRRR 185.401 (54.637) 57.067 (26.341) 0.000

MADRR 123.929 (30.981) 17.391 (11.339) 0.000

TINN 247.492 (27.711) 114.821 (33.433) 0.000

HRV.index 15.839 (1.773) 7.349 (2.140) 0.000
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classifiers. By contrast, in their study, Pons et al. [14] used 
an unregularized logistic regression classifier trained on 
a dataset containing 22 features. Our approach could be 
improved by using other benchmark classifiers, particu-
larly those that are employed in machine learning tasks: 
classification and regression trees (CART [28]) and their 
RF extensions [23] or gradient boosting machine [29]. 
These supervised learning approaches can serve as classi-
fication methods for this kind of study; they also provide 
variable importance scores that can be used for feature 
selection.

There was an imbalance in our datasets, as the percent-
age of NSR patients was much higher in both datasets 
(94.2% in the training dataset and 73.3% in the valida-
tion dataset). While the SVM model works fine on sparse 
and imbalanced data, and while accuracy values obtained 
for the two datasets were significantly greater than the 
percentage of observations in the most occurring class 
(NSR), this imbalance may have biased our estimates 
[30]. One solution to the problem of imbalance may be to 
assign different weights to individuals depending on the 

class they belong to, with weights attributing a greater 
misclassification penalty to individuals in the least occur-
ring class (AF). Another solution may be to over-sample 
observations in the least occurring class, or, conversely, 
to under-sample observations in the most occurring 
class. Lastly, one could use the Synthetic Minority Over-
sampling Technique (SMOTE) [31], a method that com-
bines over-sampling with under-sampling to improve 
the performance of the classifier. We did not use the 
weighted SVM or SMOTE in our study, as the perfor-
mance results obtained with the current SVM version 
were satisfactory in terms of prediction and stability. As 
such, we were able to use the exact same model for each 
feature selection approach considered, which was impor-
tant for comparability purposes. For similar reasons of 
comparability, we did not run a hyper-parameter tuning 
of the SVM model, nor did we use other kernels. Future 
studies should compare the results obtained with differ-
ent versions of the SVM model using other kernels (lin-
ear, polynomial, Gaussian, radial, etc.) to better account 
for non-linear effects.

Fig. 5 Classification performance (median accuracy, specificity, sensitivity, and MCC values) computed by bootstrap with 1000 replications 
applied to the validation dataset in function of the number of features and for each feature selection approach ( γ‑metric, MDA, MDG, and AUC). 
Interquartile ranges were computed over the bootstrap estimations of the performance indicators as a measure of dispersion



Page 12 of 17Michel et al. BMC Med Inform Decis Mak  2021, 21(Suppl 4):130

Table 3 Classification performances (mean accuracy, specificity, sensitivity, and MCC values with their standard deviations) computed 
on 10 replicates of 5‑fold cross validation applied to the training dataset

Feature selection (Training dataset) Classification performances (Training dataset)

Dim Added feature KI Accuracy Specificity Sensitivity MCC

γ-metric

1 sd2 1.000 0.9993 (0.000228) 0.9997 (0.000172) 0.9933 (0.000030) 0.994 (0.0021)

2 sd3 1.000 0.9996 (0.000164) 0.9997 (0.000127) 0.9963 (0.000024) 0.997 (0.0015)

3 sd1 1.000 0.9996 (0.000181) 0.9998 (0.000134) 0.9963 (0.000025) 0.997 (0.0017)

4 pNN50 0.971 0.9997 (0.000174) 0.9999 (0.000139) 0.9962 (0.000019) 0.997 (0.0016)

5 sd4 1.000 0.9996 (0.000197) 0.9999 (0.000104) 0.9960 (0.000026) 0.997 (0.0018)

6 RMSSD 0.926 0.9998 (0.000133) 0.9999 (0.000080) 0.9973 (0.000018) 0.998 (0.0012)

7 SDSD 0.918 0.9998 (0.000143) 0.9999 (0.000093) 0.9972 (0.000017) 0.998 (0.0013)

8 m2 1.000 0.9997 (0.000145) 0.9999 (0.000085) 0.9969 (0.000023) 0.998 (0.0013)

9 m3 1.000 0.9997 (0.000145) 0.9999 (0.000086) 0.9968 (0.000021) 0.997 (0.0013)

10 m1 1.000 0.9997 (0.000151) 0.9999 (0.000100) 0.9966 (0.000026) 0.997 (0.0014)

11 SDNNIDX 0.981 0.9998 (0.000132) 1.0000 (0.000065) 0.9971 (0.000021) 0.998 (0.0012)

12 sd5 0.995 0.9998 (0.000152) 1.0000 (0.000065) 0.9971 (0.000024) 0.998 (0.0014)

13 m4 1.000 0.9998 (0.000154) 1.0000 (0.000061) 0.9974 (0.000022) 0.998 (0.0014)

14 MADRR 0.990 0.9998 (0.000136) 0.9999 (0.000072) 0.9973 (0.000021) 0.998 (0.0012)

15 sd6 0.967 0.9998 (0.000132) 1.0000 (0.000065) 0.9973 (0.000021) 0.998 (0.0012)

16 m5 1.000 0.9998 (0.000134) 0.9999 (0.000091) 0.9973 (0.000018) 0.998 (0.0012)

Mean decrease accuracy

1 sd3 1.000 0.9995 (0.000209) 0.9998 (0.000151) 0.9955 (0.002087) 0.996 (0.0019)

2 sd2 0.876 0.9996 (0.000162) 0.9998 (0.000136) 0.9962 (0.002022) 0.996 (0.0015)

3 sd4 0.902 0.9996 (0.000175) 0.9998 (0.000127) 0.9963 (0.002363) 0.997 (0.0016)

4 m3 0.852 0.9996 (0.000220) 0.9998 (0.000144) 0.9963 (0.003057) 0.997 (0.0020)

5 sd5 0.868 0.9996 (0.000179) 0.9999 (0.000130) 0.9963 (0.002221) 0.997 (0.0016)

6 m2 0.886 0.9996 (0.000151) 0.9998 (0.000114) 0.9962 (0.002100) 0.997 (0.0014)

7 sd6 0.883 0.9997 (0.000171) 0.9999 (0.000114) 0.9963 (0.002735) 0.997 (0.0016)

8 m4 0.858 0.9997 (0.000122) 0.9999 (0.000100) 0.9966 (0.001843) 0.997 (0.0011)

9 sd7 0.838 0.9997 (0.000161) 0.9999 (0.000094) 0.9966 (0.002583) 0.997 (0.0015)

10 sd1 0.815 0.9997 (0.000177) 0.9999 (0.000120) 0.9966 (0.002512) 0.997 (0.0016)

11 sd8 0.802 0.9997 (0.000171) 0.9999 (0.000109) 0.9965 (0.002426) 0.997 (0.0016)

12 sd9 0.796 0.9997 (0.000161) 0.9999 (0.000081) 0.9965 (0.002487) 0.997 (0.0015)

13 m1 0.801 0.9997 (0.000156) 0.9999 (0.000119) 0.9965 (0.002089) 0.997 (0.0014)

14 sd10 0.824 0.9997 (0.000191) 0.9999 (0.000102) 0.9965 (0.002697) 0.997 (0.0018)

15 m5 0.851 0.9997 (0.000144) 0.9999 (0.000090) 0.9965 (0.002118) 0.998 (0.0013)

16 SDSD 0.853 0.9998 (0.000151) 0.9999 (0.000070) 0.9971 (0.002154) 0.998 (0.0014)

Mean decrease gini

1 sd3 0.634 0.9996 (0.000210) 0.9998 (0.000128) 0.9955 (0.002808) 0.996 (0.0019)

2 sd2 0.778 0.9996 (0.000176) 0.9998 (0.000112) 0.9964 (0.002226) 0.997 (0.0016)

3 m3 0.790 0.9996 (0.000157) 0.9998 (0.000101) 0.9964 (0.002343) 0.997 (0.0014)

4 m4 0.883 0.9997 (0.000154) 0.9998 (0.000118) 0.9966 (0.002061) 0.997 (0.0014)

5 sd4 0.886 0.9997 (0.000164) 0.9998 (0.000147) 0.9966 (0.001517) 0.997 (0.0015)

6 m2 0.911 0.9997 (0.000173) 0.9998 (0.000136) 0.9966 (0.002243) 0.997 (0.0016)

7 m5 0.910 0.9997 (0.000206) 0.9999 (0.000113) 0.9964 (0.002639) 0.997 (0.0019)

8 sd5 0.915 0.9997 (0.000135) 0.9999 (0.000106) 0.9964 (0.002013) 0.997 (0.0012)

9 sd1 0.914 0.9997 (0.000168) 0.9999 (0.000113) 0.9965 (0.002046) 0.997 (0.0015)

10 sd6 0.929 0.9997 (0.000162) 0.9999 (0.000115) 0.9966 (0.002147) 0.997 (0.0015)

11 m1 0.931 0.9997 (0.000176) 0.9999 (0.000109) 0.9962 (0.002669) 0.997 (0.0016)

12 sd7 0.912 0.9997 (0.000151) 0.9999 (0.000108) 0.9965 (0.002256) 0.997 (0.0014)
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Similarly, multi-layer neural networks may be a 
good alternative to more traditional machine learning 
models. Indeed, these networks use non-linear acti-
vation functions (rectified linear, hyperbolic tangent, 
and sigmoid activation functions being the most com-
mon) that can lead to significantly better performance 
results. A recent literature review [32] has described 
different applications of deep learning models in 
healthcare using physiological data; it has concluded 
by recommending these models to improve diagnostic 
performance. In the field of automatic atrial detection, 
the use of convolutional neural networks [33] seems to 
yield more accurate and robust results. Another study 
has described the advantages of using deep neural net-
works in the field of AF detection when considering 
more than three classes (for example, NSR, AF, and 
noise) [34]. More recently, a method based on deep 

learning and feature extraction (MultiFusionNet, [35]) 
has been proposed that outperforms most recent algo-
rithms. The main advantage of this method is that it 
combines extracted features with raw data to train the 
deep classifier, which can be construed as a form of 
feature selection. Future evaluations of the γ-metric 
feature selection approach should consider using such 
methods.

In the future, studies should be conducted to evalu-
ate the performance of the γ-metric feature selection 
approach for a greater number of classes. In particular, it 
would be interesting to determine the impact of using a 
greater number of classes on the selected variables along 
with error rates and stability indices. In the field of auto-
mated AF detection, this approach could cover several 
pathological conditions and, consequently, and could 
therefore help improve clinical decision making.

Table 3 (continued)

Feature selection (Training dataset) Classification performances (Training dataset)

Dim Added feature KI Accuracy Specificity Sensitivity MCC

13 m6 0.919 0.9997 (0.000128) 0.9999 (0.000091) 0.9963 (0.001798) 0.997 (0.0012)

14 sd8 0.922 0.9997 (0.000170) 0.9999 (0.000085) 0.9963 (0.002337) 0.997 (0.0016)

15 sd9 0.912 0.9997 (0.000156) 0.9999 (0.000082) 0.9962 (0.002653) 0.997 (0.0014)

16 sd10 0.880 0.9997 (0.000143) 0.9999 (0.000102) 0.9962 (0.002302) 0.997 (0.0013)

AUC 

1 sd3 1.000 0.9995 (0.000193) 0.9998 (0.000149) 0.9955 (0.002061) 0.996 (0.0018)

2 sd2 0.861 0.9996 (0.000163) 0.9998 (0.000114) 0.9964 (0.002626) 0.997 (0.0015)

3 m3 0.802 0.9996 (0.000182) 0.9998 (0.000132) 0.9963 (0.002337) 0.997 (0.0017)

4 sd4 0.857 0.9996 (0.000184) 0.9998 (0.000122) 0.9963 (0.002353) 0.997 (0.0017)

5 m2 0.879 0.9996 (0.000191) 0.9998 (0.000109) 0.9962 (0.002470) 0.997 (0.0018)

6 sd5 0.897 0.9996 (0.000165) 0.9998 (0.000110) 0.9963 (0.002512) 0.997 (0.0015)

7 m4 0.924 0.9997 (0.000150) 0.9998 (0.000129) 0.9966 (0.002119) 0.997 (0.0014)

8 sd1 0.970 0.9997 (0.000172) 0.9998 (0.000136) 0.9966 (0.002388) 0.997 (0.0016)

9 sd6 0.978 0.9997 (0.000115) 0.9999 (0.000093) 0.9966 (0.002001) 0.997 (0.0011)

10 m1 0.907 0.9997 (0.000186) 0.9999 (0.000097) 0.9965 (0.002535) 0.997 (0.0017)

11 sd7 0.924 0.9997 (0.000149) 0.9999 (0.000087) 0.9966 (0.001939) 0.997 (0.0014)

12 m5 0.941 0.9997 (0.000154) 0.9999 (0.000098) 0.9964 (0.002420) 0.997 (0.0014)

13 sd8 0.995 0.9997 (0.000138) 0.9999 (0.000082) 0.9964 (0.002398) 0.998 (0.0013)

14 sd9 1.000 0.9997 (0.000135) 0.9999 (0.000087) 0.9964 (0.001707) 0.997 (0.0012)

15 sd10 0.947 0.9997 (0.000159) 0.9999 (0.000094) 0.9964 (0.002237) 0.997 (0.0015)

16 RMSSD 0.951 0.9998 (0.000162) 0.9999 (0.000094) 0.9970 (0.002176) 0.998 (0.0015)

Results are presented according to the number of features (from 1 to 16) and to the KI calculated on 150 replications of the ranking given by the four feature selection 
approaches ( γ-metric, MDA, MDG, and AUC)
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Table 4 Classification performances (median accuracy, sensitivity, specificity, and MCC values with their interquartile ranges) 
computed by bootstrap with 1000 replications applied to the validation dataset

Features Classification performances (Validation dataset)

Dim Added feature Accuracy Specificity Sensitivity MCC

γ-metric

1 sd2 0.9108 (0.0019) 0.9518 (0.0016) 0.7983 (0.0054) 0.768 (0.0051)

2 sd3 0.8973 (0.0020) 0.9502 (0.0017) 0.7520 (0.0051) 0.730 (0.0053)

3 sd1 0.8972 (0.0019) 0.9502 (0.0017) 0.7518 (0.0054) 0.730 (0.0052)

4 pNN50 0.8945 (0.0022) 0.9449 (0.0018) 0.7565 (0.0055) 0.724 (0.0054)

5 sd4 0.8945 (0.0020) 0.9448 (0.0017) 0.7563 (0.0054) 0.724 (0.0051)

6 RMSSD 0.8933 (0.0020) 0.9445 (0.0018) 0.7531 (0.0051) 0.721 (0.0052)

7 SDSD 0.8935 (0.0021) 0.9446 (0.0018) 0.7533 (0.0058) 0.721 (0.0054)

8 m2 0.8944 (0.0021) 0.9456 (0.0018) 0.7543 (0.0057) 0.724 (0.0053)

9 m3 0.8941 (0.0020) 0.9464 (0.0018) 0.7509 (0.0057) 0.722 (0.0052)

10 m1 0.8931 (0.0021) 0.9448 (0.0018) 0.7512 (0.0056) 0.720 (0.0052)

11 SDNNIDX 0.8983 (0.0021) 0.9492 (0.0016) 0.7586 (0.0056) 0.733 (0.0054)

12 sd5 0.8980 (0.0021) 0.9500 (0.0017) 0.7552 (0.0057) 0.732 (0.0052)

13 m4 0.8980 (0.0019) 0.9490 (0.0016) 0.7583 (0.0058) 0.733 (0.0050)

14 MADDR 0.8961 (0.0020) 0.9474 (0.0016) 0.7551 (0.0056) 0.728 (0.0054)

15 sd6 0.8957 (0.0021) 0.9474 (0.0018) 0.7542 (0.0052) 0.727 (0.0054)

16 m5 0.8955 (0.0021) 0.9465 (0.0018) 0.7554 (0.0055) 0.726 (0.0054)

Mean decrease accuracy

1 sd3 0.8930 (0.0022) 0.9517 (0.0017) 0.7317 (0.0059) 0.718 (0.0060)

2 sd2 0.8972 (0.0021) 0.9502 (0.0017) 0.7517 (0.0051) 0.730 (0.0055)

3 sd4 0.8972 (0.0019) 0.9506 (0.0017) 0.7509 (0.0053) 0.730 (0.0053)

4 m3 0.8975 (0.0020) 0.9514 (0.0014) 0.7498 (0.0055) 0.731 (0.0051)

5 sd5 0.8970 (0.0020) 0.9513 (0.0017) 0.7484 (0.0054) 0.729 (0.0053)

6 m2 0.8979 (0.0019) 0.9512 (0.0017) 0.7520 (0.0052) 0.732 (0.0051)

7 sd6 0.8977 (0.0020) 0.9514 (0.0016) 0.7506 (0.0059) 0.731 (0.0052)

8 m4 0.8971 (0.0021) 0.9504 (0.0017) 0.7510 (0.0057) 0.730 (0.0053)

9 sd7 0.8976 (0.0019) 0.9512 (0.0017) 0.7505 (0.0057) 0.731 (0.0051)

10 sd1 0.8978 (0.0020) 0.9511 (0.0016) 0.7516 (0.0059) 0.731 (0.0051)

11 sd8 0.8981 (0.0021) 0.9515 (0.0016) 0.7516 (0.0060) 0.732 (0.0055)

12 sd9 0.8977 (0.0021) 0.9522 (0.0016) 0.7482 (0.0057) 0.731 (0.0053)

13 m1 0.8972 (0.0020) 0.9510 (0.0016) 0.7499 (0.0058) 0.730 (0.0052)

14 sd10 0.8970 (0.0020) 0.9514 (0.0016) 0.7475 (0.0055) 0.729 (0.0054)

15 m5 0.8978 (0.0021) 0.9522 (0.0016) 0.7487 (0.0055) 0.732 (0.0054)

16 SDSD 0.8989 (0.0020) 0.9532 (0.0017) 0.7499 (0.0054) 0.734 (0.0053)

Mean decrease gini

1 sd3 0.8931 (0.0022) 0.9516 (0.0017) 0.7321 (0.0058) 0.718 (0.0056)

2 sd2 0.8973 (0.0021) 0.9503 (0.0017) 0.7517 (0.0051) 0.730 (0.0054)

3 m3 0.8977 (0.0019) 0.9509 (0.0016) 0.7517 (0.0054) 0.731 (0.0051)

4 m4 0.8972 (0.0021) 0.9506 (0.0017) 0.7512 (0.0056) 0.730 (0.0053)

5 sd4 0.8973 (0.0019) 0.9507 (0.0016) 0.7507 (0.0052) 0.730 (0.0051)

6 m2 0.8983 (0.0019) 0.9509 (0.0016) 0.7541 (0.0050) 0.733 (0.0051)

7 m5 0.8975 (0.0020) 0.9510 (0.0017) 0.7507 (0.0060) 0.731 (0.0052)

8 sd5 0.8977 (0.0020) 0.9510 (0.0017) 0.7515 (0.0057) 0.731 (0.0053)

9 sd1 0.8975 (0.0020) 0.9504 (0.0017) 0.7528 (0.0056) 0.731 (0.0051)

10 sd6 0.8974 (0.0020) 0.9513 (0.0016) 0.7497 (0.0059) 0.731 (0.0052)

11 m1 0.8964 (0.0020) 0.9504 (0.0016) 0.7486 (0.0060) 0.728 (0.0055)

12 sd7 0.8970 (0.0021) 0.9513 (0.0017) 0.7478 (0.0060) 0.729 (0.0054)
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Conclusion
The present study proposed and evaluated a filter 
approach for feature selection in classification using 
an evaluation function, the γ-metric. This approach 
yielded encouraging results for its application in AF 
detection. Indeed, AF is frequently paroxysmal and/or 
asymptomatic; moreover, its prevalence increases with 
age and it is one of the leading causes of stroke. Devel-
oping efficient automated tools for early AF detection 
could help physicians better manage this disorder, 
including via the administration of oral anticoagulation 
treatment which has proven to be highly efficacious for 
stroke prevention. In this perspective, feature selection 
combined with classification could offer new strategies 
for quasi real-time diagnosis using other types of big 
data, in particular physiological data obtained with con-
nected health objects and mobile health applications.
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Table 4 (continued)

Features Classification performances (Validation dataset)

Dim Added feature Accuracy Specificity Sensitivity MCC

13 m6 0.8974 (0.0020) 0.9529 (0.0015) 0.7456 (0.0060) 0.730 (0.0052)

14 sd8 0.8977 (0.0021) 0.9531 (0.0015) 0.7459 (0.0056) 0.731 (0.0053)

15 sd9 0.8978 (0.0021) 0.9537 (0.0016) 0.7447 (0.0056) 0.731 (0.0055)

16 sd10 0.8981 (0.0020) 0.9536 (0.0017) 0.7459 (0.0055) 0.732 (0.0052)

AUC 

1 sd3 0.8930 (0.0022) 0.9517 (0.0017) 0.7317 (0.0059) 0.718 (0.0056)

2 sd2 0.8973 (0.0020) 0.9502 (0.0017) 0.7317 (0.0059) 0.730 (0.0053)

3 m3 0.8977 (0.0019) 0.9509 (0.0016) 0.7516 (0.0055) 0.731 (0.0051)

4 sd4 0.8975 (0.0020) 0.9514 (0.0017) 0.7501 (0.0056) 0.731 (0.0053)

5 m2 0.8974 (0.0020) 0.9515 (0.0016) 0.7490 (0.0054) 0.730 (0.0052)

6 sd5 0.8977 (0.0019) 0.9515 (0.0017) 0.7502 (0.0051) 0.731 (0.0052)

7 m4 0.8976 (0.0020) 0.9507 (0.0016) 0.7520 (0.0059) 0.731 (0.0052)

8 sd1 0.8974 (0.0021) 0.9506 (0.0017) 0.7518 (0.0056) 0.731 (0.0053)

9 sd6 0.8971 (0.0019) 0.9504 (0.0017) 0.7512 (0.0057) 0.730 (0.0052)

10 m1 0.8965 (0.0020) 0.9508 (0.0016) 0.7473 (0.0060) 0.728 (0.0051)

11 sd7 0.8967 (0.0021) 0.9504 (0.0016) 0.7496 (0.0059) 0.729 (0.0054)

12 m5 0.8970 (0.0021) 0.9513 (0.0017) 0.7478 (0.0060) 0.729 (0.0054)

13 sd8 0.8971 (0.0020) 0.9519 (0.0015) 0.7470 (0.0057) 0.730 (0.0052)

14 sd9 0.8974 (0.0020) 0.9525 (0.0016) 0.7464 (0.0055) 0.730 (0.0054)

15 sd10 0.8978 (0.0021) 0.9522 (0.0016) 0.7486 (0.0055) 0.731 (0.0054)

16 RMSSD 0.8991 (0.0020) 0.9526 (0.0018) 0.7522 (0.0055) 0.735 (0.0051)

Results are presented according to the number of features (from 1 to 16) selected by each feature selection approach ( γ-metric, MDA, MDG, and AUC). Interquartile 
ranges were computed on the bootstrap estimations of the performance indicators as a measure of dispersion
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