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Abstract

Both neurophysiological and psychophysical experiments have pointed out the crucial role

of recurrent and feedback connections to process context-dependent information in the

early visual cortex. While numerous models have accounted for feedback effects at either

neural or representational level, none of them were able to bind those two levels of analysis.

Is it possible to describe feedback effects at both levels using the same model? We answer

this question by combining Predictive Coding (PC) and Sparse Coding (SC) into a hierarchi-

cal and convolutional framework applied to realistic problems. In the Sparse Deep Predictive

Coding (SDPC) model, the SC component models the internal recurrent processing within

each layer, and the PC component describes the interactions between layers using feedfor-

ward and feedback connections. Here, we train a 2-layered SDPC on two different data-

bases of images, and we interpret it as a model of the early visual system (V1 & V2). We first

demonstrate that once the training has converged, SDPC exhibits oriented and localized

receptive fields in V1 and more complex features in V2. Second, we analyze the effects of

feedback on the neural organization beyond the classical receptive field of V1 neurons

using interaction maps. These maps are similar to association fields and reflect the Gestalt

principle of good continuation. We demonstrate that feedback signals reorganize interaction

maps and modulate neural activity to promote contour integration. Third, we demonstrate at

the representational level that the SDPC feedback connections are able to overcome noise

in input images. Therefore, the SDPC captures the association field principle at the neural

level which results in a better reconstruction of blurred images at the representational level.

Author summary

One often compares biological vision to a camera-like system where an image would be

processed according to a sequence of successive transformations. In particular, this “feed-

forward” view is prevalent in models of visual processing such as deep learning. However,

neuroscientists have long stressed that more complex information flow is necessary to

reach natural vision efficiency. In particular, recurrent and feedback connections in the
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visual cortex allow to integrate contextual information in our representation of visual sti-

muli. These modulations have been observed both at the low-level of neural activity and at

the higher level of perception. In this study, we present an architecture that describes bio-

logical vision at both levels of analysis. It suggests that the brain uses feedforward and

feedback connections to compare the sensory stimulus with its own internal representa-

tion. In contrast to classical deep learning approaches, we show that our model learns

interpretable features. Moreover, we demonstrate that feedback signals modulate neural

activity to promote good continuity of contours. Finally, the same model can disambigu-

ate images corrupted by noise. To the best of our knowledge, this is the first time that the

same model describes the effect of recurrent and feedback modulations at both neural and

representational levels.

Introduction

Visual processing of objects and textures has been traditionally described as a pure feedfor-

ward process that extracts local features. These features become increasingly more complex

and task-specific along the hierarchy of the ventral visual pathway [1, 2]. This view is sup-

ported by the very short latency of evoked activity observed in monkeys (� 90 ms) in higher-

order visual areas [3, 4]. The feed-forward flow of information is sufficient to account for core

object categorization in the IT cortical area [5]. Although this feedforward view of the visual

cortex was able to account for a large scope of electrophysiological [6, 7] and psychophysical

[8] findings, it does not take advantage of the high density (� 20%) and diversity of feedback

connections observed in the anatomy [9–11].

Feedback connections, but also horizontal intra-cortical connections are known to integrate

contextual modulations in the early visual cortex [12–14]. At the neurophysiological level, it

was observed that the activity in the center of the Receptive Field (RF), called the classical RF,

was either suppressed or facilitated by neural activity in the surrounding regions (i.e. the extra-

classical RFs). These so-called ‘Center/Surround’ modulations are known to be highly stimulus

specific [15]. For example, when gratings are presented to the visual system, feedback signals

tend to suppress horizontal connectivity which is thought to better segregate the shape of the

perceived object from the ground (figure-ground segregation) [16, 17]. In contrast, when co-

linear and co-oriented lines are presented, feedback signals facilitate horizontal connections

such that local edges are grouped towards better shape coherence (contour integration) [18].

Interestingly, both figure-ground segregation and contour integration are directly derived

from the Gestalt principle of perception. In particular, contour integration is known to follow

the Gestalt rule of good continuation as mathematically formalized by the concept of associa-

tion field [19]. This association field suggests that local edges tend to align toward a co-circu-

lar/co-linear geometry. Besides being central in natural image organization [20], association

fields might also be implemented in the connectivity within the V1 area [21, 22] and play a cru-

cial role in contour perception [19, 23]. In particular, it was demonstrated that short-range

feedback connections (originating in the ventral visual area and targeting V1) play a crucial

role in the recognition of degraded images [24]. These pieces of biological evidence suggest

that feedforward models are not sufficient to account for the context-dependent behavior of

the early visual cortex and urge us to look for more complex models taking advantage of recur-

rent connections.

From a computational perspective, both Predictive Coding (PC) and Sparse Coding (SC)

are good candidates to model the early visual system. On one hand, SC might be considered as

PLOS COMPUTATIONAL BIOLOGY Sparse deep predictive coding captures contour integration capabilities in V1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008629 January 26, 2021 2 / 31

VictorBoutin/InteractionMap). The two databases

used to train the algorithm are publicly available

online in the following link: STL-10 database

(http://cs.stanford.edu/~acoates/stl10) and Chicago

Face Database (https://chicagofaces.org/default/).

Funding: VB and LP received funding from the

European Union’s H2020 research and innovation

programme under the Marie Sklodowska-Curie

grant agreement n 713750, by the Regional

Council of Provence-Alpes-Côte d’Azur, A�MIDEX
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a framework to describe local computations in the early visual cortex. Olshausen & Field dem-

onstrated that a SC strategy was sufficient to account for the emergence of features similar to

the Receptive Fields (RFs) of simple cells in the mammalian primary visual cortex [25]. These

RFs are spatially localized, oriented band-pass filters [26]. Furthermore, SC could also be con-

sidered to result from a competitive mechanism. SC implements an “explaining away” strategy

[27] by selecting only the dominant causes of the sensory input. On the other hand, PC

describes the brain as a Bayesian process that consistently updates its internal model of the

world to infer the possible physical causes of a given sensory input [28, 29]. PC suggests that

top-down connections convey predictions about the activity in the lower level while bottom-

up processes transmit prediction error to the higher level. In particular, PC models were able

to describe center-surround antagonism in the retina [30] and extra-classical RFs effects

observed in the early visual cortex [29]. In addition, studies have investigated the correspon-

dence between cortical micro-circuitry and the connectivity implied by the PC theory [31, 32].

Therefore, while SC might be considered as a local mechanism modeling recurrent computa-

tion within brain areas, PC leverages top-down connections to describe interactions between

cortical areas at a more global scale.

Rao & Ballard [29] were the first to leverage Predictive Coding (PC) into a hierarchical

framework and to combine it with Sparse Coding (SC). The 2-layers PC model they have pro-

posed had few dozens of neurons (20 in the first layer and 32 in the second one) linked with

fully connected synapses and trained on patches extracted from 5 natural images. These set-

tings did not allow the authors to spatially extend their analysis to the effect of the feedback

outside of the classical RF and to train their network on a scale that is more realistic (i.e. higher

resolution images and more neurons). In contrast, recently proposed architectures in deep

learning, like autoencoders, allow to successfully tackle larger-scale problems. Both PC and

autoencoders describe the generative process that gives rise to a given observation through a

Bayes decomposition of a probabilistic model and using a hierarchy of latent representation

[33]. Both frameworks can also be regularized using a sparse constraint on the latent represen-

tation (see [34, 35] for more details on sparse autoencoders). Nevertheless, PC and autoenco-

ders are exhibiting 3 major differences. First, while the encoder/decoder are different in

autoencoders, these are tied in PC. Second, autoencoders reconstruct the input image whereas

a PC layer aims at reconstructing the previous layer latent variables (i.e. only the first layer

aims at reconstructing the input image in PC). Third, autoencoders are mostly trained by

back-propagation to minimize a unique global reconstruction error while PC is trained to

jointly minimize several local reconstruction errors. Interestingly, other convolutional PC

frameworks, formulated to solve discriminative problems, have recently emerged to propose a

local approximation of the back-propagation algorithms in the domain of classification tasks

[36].

In this paper, we use a Sparse Deep Predictive Coding (SDPC) model that combines Predic-

tive Coding and Sparse Coding into a convolutional neural network. The proposed model

leverages the latest technics used in deep learning to extend the original PC framework [29] to

larger scale (higher resolution images seen by hundreds of thousands of neurons). While the

Rao & Ballard PC model describes the contextual effects of the feedback connection in the clas-

sical RFs, we leverage the convolutional structure of our network over a larger scale to address

the question of these contextual influences outside of the classical RF (i.e. in the extra-classical

RF). The main novelty of the SDPC lies in 3 main aspects. First, the SDPC is extending to

larger scale the original PC framework while keeping a learning approach that relies on the

minimization of local reconstruction errors that could be interpreted as Hebbian learning (as

opposed to autoencoders that minimize a global loss function). Second, it includes the latest

Sparse Coding (SC) technics to constrain the latent variables (i.e. iterative soft-thresholding
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algorithms). Third, the convolutional approach adopted in the SDPC allows to extend the anal-

ysis made by Rao & Ballard to neurons located in the extra-classical RFs.

We first briefly introduce the 2-layered SDPC network used to conduct all the experiments

of the paper, and we show the results of the training of the SDPC on two different databases.

Next, we investigate the feedback effects at the “neural” level. We show how feedback signals

in SDPC account for a reshaping of V1 neural population both in terms of topographic organi-

zation and activity level. Then, we probe the effect of feedback at the “representational” level.

In particular, we investigate the ability of feedback connections to denoise input images.

Finally, we discuss the results obtained with the SDPC model in the light of the psychophysical

and neurophysiological findings observed in neuroscience.

Results

In our mathematical description of the proposed model, italic letters are used as symbols for

scalars, bold lowercase letters for column vectors and bold uppercase letters for MATRICES. j
refers to the complex number such that j2 = −1.

Brief description of the SDPC

Given a hierarchical generative model for the formation of images, the core objective of hierar-

chical Sparse Coding (SC) is to retrieve the parameters and the internal states variables (i.e.

latent variables) that best explain the input stimulus. As any perceptual inference model, hier-

archical SC attempts to solve an inverse problem (Eq 1), where the forward model is a hierar-

chical linear model [37]:

x ¼ DT
1
γ1 þ �1 s:t: k γ1k0 < a1 and γ1 > 0

γ1 ¼ DT
2
γ2 þ �2 s:t: k γ2k0 < a2 and γ2 > 0

::

γL� 1 ¼ DT
LγL þ �L s:t: k γLk0 < aL and γL > 0

8
>>>>>>><

>>>>>>>:

ð1Þ

The number of layers of our model is denoted L and x is the sensory input (i.e. image). The

sparsity at each layer is enforced by a constraint on the ℓ0 pseudo-norm of the internal state

variable γi. Note that this operator is termed pseudo-norm as it is counting the number of

strictly positive scalars and does not depend on their amplitude. Finally, ϵi and Di are respec-

tively the prediction error (i.e. reconstruction error) and the weights (i.e. the parameters) at

each layer i.
To tighten the link with neuroscience, we impose γi to be non-negative such that the ele-

ment of the internal state variables could be interpreted as firing rates. In addition, we include

convolutional synaptic weights, as the underlying weight sharing mechanism is well modeling

the position invariance of features within natural images. It allows us to interpret γi as a retino-

topic map describing the neural activity at layer i, and we call it the activity map. Mathemati-

cally speaking, our activity maps are 3D tensors. An activity map, γi of size [nf, wm, hm] could

be interpreted as a collection of nf 2D maps of dimension (wm, hm). In a convolutional setting,

Di of size [nf, nc, w, h] could be viewed as a collection of nf features of size nc × w × h. The

width and height of the features are denoted by w and h, respectively. Di is called a dictionary.

In terms of neuroscience, Di could be viewed as the synaptic weights between 2 layers whose

activity is represented by γi−1 and γi. In this article all the matrix-vector products correspond

to discrete 2D spatial convolutions (see Eq 2 for the mathematical definition of the discrete 2D

convolution). To facilitate the reading of the mathematical equation, we have purposely abused
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the notations by replacing all the 2D convolutions operator by matrix-vector products (in

‘Model and methods we explain the mathematical equivalence between convolutions and

matrix-vector products).

γi� 1 ¼ DT
i � γi

with γi� 1½j; k; l� ¼
Xnc

m¼1

Xw

p¼1

Xh

q¼1

DT
i ½j;m; p; q� � γi� 1½m; k � p; l � q�

s:t: k � p 2 ⟦1;wm⟧ and l � q 2 ⟦1; hm⟧

ð2Þ

In Eq 3, we define the effective dictionary, Deff
i , as the back-projection of Di into the visual

space (see S7 Fig for an illustration).

DeffT
i ¼ DT

1
::DT

i� 1
DT

i
ð3Þ

The effective dictionaries could also be interpreted as a set of Receptive Fields (RFs). Note that

RFs in the visual space get bigger for neurons located in deeper layers (that is, on layers further

away from the sensory layer). To visualize the information represented by each layer, we back-

project γi into the visual space (see Eq 18). We call this projection a “representation” and it is

denoted by γeff
i .

One possibility to solve the problem defined by Eq 1 in a neuro-plausible way is to use the

Sparse Deep Predictive Coding (SDPC) model. The SDPC model combines local computa-

tional mechanisms to learn the weights and infer internal state variables. It leverages recurrent

and bi-directional connections (feedback and feedforward) through the Predictive Coding

(PC) theory. In this paper, we aim at modeling the early visual cortex using a 2-layered version

of the SDPC. Consequently, we denote the first and second layers of the SDPC as the V1 and

V2 models, respectively. Our V1 and V2 models are driven by the joint minimization of the L1

and L2 loss function (see Eq 4). In the section ‘Model and methods’, the Eq 15 described a gen-

eralized version of the loss function.

L1 ¼
1

2
k x � DT

1
γ1 k

2

2
þ
kFB
2
k γ1 � DT

2
γ2 k

2

2
þl1k γ1 k1

L2 ¼
1

2
k γ1 � DT

2
γ2 k

2

2
þl2k γ2 k1

8
>>>>><

>>>>>:

ð4Þ

In Eq 4, λi is a scalar that controls the sparsity level within each layer. Note that we have

relaxed the ℓ0-norm regularization in Eq 1 by replacing it with a ℓ1-norm constraint in Eq 4.

The parameter kFB is used to increase the strength of the representation error coming from

V2. We thus call kFB ‘the feedback strength’ as it allows us to tune how close the V1 neural

activity is from its prediction made by V2. Last but not least, when the parameter kFB is set to

0, the SDPC becomes a stacking of independent LASSO sub-problems [38, 39] and is not rely-

ing anymore on the Predictive Coding (PC) framework. Consequently, we also use the kFB

parameter to evaluate the effect of the PC on the first layer representation. At a first glance, it

seems to be sub-optimal to use kFB 6¼ 1 in the loss function defined in Eq 4 to solve Eq 1. How-

ever we will see in the rest of the manuscript, that higher feedback strength provide the SDPC

with several advantages both in terms of neuroscience interpretation (see section ‘Effect of the

feedback at the neural level’) and in terms of computation (see section ‘Effect of the feedback

at the representational level’). In Eq 4, γ1 corresponds to the activity-map in V1 and γ2 to V2’s
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activity-map. We refer to the V1 space as the retinotopic space described by γ1, and it is sym-

bolized with a small coordinate system centered in OV1 (see Fig 1).

The joint optimization of the loss function described in Eq 4 is performed using an alterna-

tion of inference and learning step. The inference step involves finding the activities (i.e. γi)
that minimize Li using Eq 5. In this equation, the sparsity constraint is achieved using a soft-

thresholding operator, denoted T að�Þ (see Eq 16 in section ‘Model and methods’ for the math-

ematical definition of the soft-thresholding operator).

γtþ1
i ¼ T Zci li

ðγt
i � Zci

@Li

@γt
i

Þ

¼ T Zci li
ðγt

i þ ZciDiðγ
t
i� 1
� DT

i γ
t
iÞ � kFB � Zciðγ

t
i � DT

iþ1
γt
iþ1
ÞÞ

ð5Þ

Once the inference procedure has reached a fixed point (see Eq 17 in section ‘Model and

methods’ for more details on the criterion we use to define a fixed point), the SDPC learns the

synaptic weight using Eq 6.

Dtþ1

i ¼ Dt
i � ZLi

@Li

@Di

¼ Dt
i þ ZLiγ

T
i ðγi� 1 � Dt

iTγiÞ

ð6Þ

In both Eqs 5 and 6, the variables γt
i and Dt

i denote the neural activity and the synaptic

weight at time step t, respectively. Zci is defining the time step of the inference process and ZLi
is the learning rate of the learning process. We train the SDPC on 2 different datasets: a face

database and a natural images database.

In this paper, we aim at modeling the early visual cortex using a 2-layered version of SDPC

(see Fig 1). Consequently, we denote the first and second layer of the SDPC as the V1 and V2

model, respectively. All presented results are obtained with a SDPC network trained with a

feedback strength equal to 1 (i.e kFB = 1). Once trained, and when specified, we vary the feed-

back strength to evaluate its effect on the inference process. Note that we have also experi-

mented to equate the feedback strength during learning and inference, and the results

obtained are extremely similar to those obtained when the feedback strength was set to 1 dur-

ing the SDPC training. For both databases, all the presented results are obtained on a testing

set that is different from the training set (except when we describe the training in the section

Fig 1. Architecture of a 2-layered SDPC model. In this model, γi represents the activity of the neural population and

ϵi is the representation error (also called prediction error) at layer i. The synaptic weights of the feedback and

feedforward connection at each layer (DT
i and Di respectively) are reciprocal. The level of sparseness is tuned with the

soft-thresholding parameter λi. The scalar kFB controls the strength of the feedback connection represented with a blue

arrow.

https://doi.org/10.1371/journal.pcbi.1008629.g001
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entitled ‘SDPC learns localized edge-like RFs in V1 and more specific RFs in V2’). All network

parameters and database specifications are listed in the ‘Model and methods’ section.

SDPC learns localized edge-like RFs in V1 and more specific RFs in V2

In this subsection, we present the results of the training of the Sparse Deep Predictive Coding

(SDPC) model on both the natural images and the face databases with a feedback strength kFB

equal to 1 (Fig 2). First-layer Receptive Fields (RFs) exhibit two different types of filters: low-

frequency filters, and higher frequency filters that are localized, band-pass and similar to

Gabor filters (Fig 2B and 2F). The low-frequency filters are mainly encoding for textures and

colors whereas the higher frequency ones describe contours. Second layer RFs (Fig 2D and

2G) are built from a linear combination of the first layer RFs. For both databases, the second

layer RFs are bigger than those in the first layer (approximately 3 times bigger for both data-

bases). We note that for the face database the second layer RFs present curvatures and specific

face features, whereas on the natural images database they only exhibit longer oriented edges.

This difference is mainly coming from the higher variety of natural images: the identity of

Fig 2. Results of training SDPC on the natural images (left column) and on the face database (right column) with

a feedback strength kFB = 1. (A): Randomly selected input images from the natural images database (denoted x in the

text). The two databases are pre-processed with Local Contrast Normalization [40] and whitening. (B) & (F): 16

randomly selected first-layer Receptive Fields (RFs) from the 64 RFs composing DeffT
1

(note that DeffT
1
¼ DT

1
, see Eq 3).

The RFs are ranked by their activation probability in a descending order. The RF size of neurons located on the first

layer is 9 × 9 px for both databases. (C): Reconstruction of images corresponding to the input images shown in (A)

from the representation in the first layer, denoted γeff
1

(note that γeff
1
¼ DT

1
γ1, see Eq 18). (D) & (G): 32 sub-sampled

RFs out of 128 RFs composing DeffT
2

(note that DeffT
2
¼ DT

1
DT

2
, see Eq 3), ranked by their activation probability in

descending order. The size of the RF from neurons located on the second layer is 22 × 22 px on the natural images

database (D) and 33 × 33 px on the face database (G). (E): Reconstruction of images corresponding to the input images

shown in (A) from the representation in the second layer, denoted γeff
2

(note that γeff
2
¼ DT

1
DT

2
γ2, see Eq 18).

https://doi.org/10.1371/journal.pcbi.1008629.g002
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objects, their distances, and their angles of view are more diverse than in the face database. On

the contrary, as the face database is composed only of well-calibrated, centered faces, the

SDPC model is able to extract curvatures and features that are common to all faces. In particu-

lar, we observe on the face database the emergence of face-specific features such as eyes, nose

or mouth that are often selected by the model to describe the input (second layer RFs are

ranked by their activation probability in descending order in Fig 2D and 2G). All the 64 first

layer RFs and the 128 second layer RFs learned by the SDPC on both databases are available in

the Supporting information section (S1 Fig for natural images and S2 Fig for face database).

The first layer reconstruction (Fig 2C) is highly similar to the input image (Fig 2A). In the sec-

ond layer reconstructions (Fig 2E), the details like textures and colors are faded and smoothed

in favor of more pronounced contours. In particular, the contours of the natural images recon-

structed by the second layer of the SDPC are sketched with a few oriented lines.

Effect of the feedback at the neural level

We now vary the strength of the feedback connection to assess its impact on neural representa-

tions when an image is presented as a stimulus. The strength of the feedback, kFB, is a scalar

ranging from 0 to 4. When kFB is set to 0, the feedback connection is suppressed. In other

words, the neural activity in the first layer is independent of the neural activity in the second

layer. Inversely, when kFB = 4, the feedback signals are strongly amplified such that it reinforces

the interdependence between the neural activities of both layers. As a consequence, varying

feedback strength should also affect the activity in the first layer. The objective of this subsec-

tion is to study the effect of the feedback on the organization of V1 neurons (i.e. the first layer

of the SDPC).

SDPC feedback recruits more neurons in the V1 model. In the first experiment, we

monitor the median number of active neurons in our V1 model when varying the feedback

strength on both databases. The medians are computed over 1200 images of natural images

database (Fig 3A) and 400 images of the face database (Fig 3B). In this paper, we use the

median ± median absolute deviation instead of the classical mean ± standard deviation to

avoid assuming that samples are normally distributed [41]. For the same reason, all the statisti-

cal tests are performed using the Wilcoxon signed-rank test. It will be denoted WT(N = 1200,

p< 0.01) when the null hypothesis is rejected. In this notation, N is the number of samples

and p is the corresponding probability value (p-value). In contrast, we will formalize the test

by WT(N = 1200, p = 0.3) when the null hypothesis cannot be rejected.

Fig 3. Percentage of active neurons in the first layer of the SDPC model. (A) On the natural images database. (B)

On the face database. We record the percentage of active neurons with a feedback strength kFB varying from 0 (no

feedback) to 4 (strong feedback). The height of the bars represent the median percentage of active neurons and the

error bars are computed using the median absolute deviation over 1200 and 400 images of the testing set for the

natural images and face database, respectively.

https://doi.org/10.1371/journal.pcbi.1008629.g003
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For both databases, we observe that the percentage of active neurons increases with the

strength of the feedback. In particular, we note a strong increase in the number of activated

neurons when we restore the feedback connection (from kFB = 0 to kFB = 1): +8.7% and +4.7%

for natural images and face databases, respectively. Incrementally amplifying the feedback

strength above 1 further increases the number of active neurons in the first layer even if the

effect is sublinear. All the increases in the percentage of recruited neurons with the feedback

strength are significant as quantified with a Wilcoxon signed-rank test (WT) between all pairs

of feedback strength: WT(N = 1200, p< 0.01) for natural images database and WT(N = 400,

p< 0.01) for the face database. For each database, we notice that the inter-stimuli variability,

as illustrated by error-bars, is lower when the feedback connection is removed: 0.80% with kFB

= 0 versus 2.55% with kFB = 1 for the natural images database and 0.25% with kFB = 0 versus

0.85% with kFB = 1 for the face database. These results lead us to 2 different conclusions: (1)

The feedback connection tends to recruit more neurons in our model of V1, (2) the feedback

signal is dependent of the input stimuli and leads to differentiated effect of the feedback

strength.

Interaction map to visualize the neural organization. The V1 activity-map (γ1) being a

high-dimensional tensor, it is a priori difficult to visualize its internal organization. Following

our mathematical convention, the activity maps are 3-dimensional tensors of size [nf, wm, hm],

in which the first dimension is describing the feature space (denoted θ), and the 2 last dimen-

sions are related to spatial positions (x and y respectively). One could interpret the activity

maps as a collection of nf 2-dimensional maps describing each feature’s activity in the retinoto-

pic space. Said differently, the scalar γ1[j, k, l] is quantifying how strongly correlated is the fea-

ture j (mathematically described by DT
1
½j; :; :; :�) with the input image (i.e. x) at the spatial

location of coordinate (k, l). Consequently, we denote θ the space that describes the nf features,

and we call it the feature space. In practice, we extracted one angle per RF to describe its orien-

tation by fitting the first layer features (i.e. those presented in Fig 2B and 2F) with Gabor filters

[42]. Note that textural and low-frequency filters which are poorly fitted are simply filtered-

out (we remove 13 out of 64 filters). We use the extracted angles to discretized the feature

space: y 2 fykg
nf
k¼0. Similarly, we describe a space of spatial coordinate (x, y) such that x 2 ⟦1,

wm⟧ and y 2 ⟦1, hm⟧. One concise way to describe the V1 representation is to formalize it using

the complex number notation denoted γC
1

(see Eq 7).

8y 2 fykg
nf
k¼0; 8x 2 ⟦1;wm⟧; 8y 2 ⟦1; hm⟧; γC

1
½y; x; y� ¼ γ1½ y; x; y� ejy

s:t: j 2 C and j2 ¼ � 1

ð7Þ

We decompose the computation of the interaction map into 3 steps (see Fig 4 for an illus-

tration of the computation of the interaction map).

• Step 1 is to extract small neighborhoods around the 10 most strongly activated neurons for

each orientation. First, we choose a feature (i.e. an orientation, denoted θc), and we identify

the position of the 10 neurons that are the most strongly responsive to the selected orienta-

tion. Second, we extract a spatial neighborhoods of size 9 × 9 centered on each of these 10

neurons (we thus extract 10 different neighborhoods). We set the size of the neighborhood

to be the same than the one of the V2 features (i.e. D2) so that we can capture the feedback

effect coming from V2. At this stage, we have a 10 cropped versions of γ1 which are centered

on neurons strongly responsive to a given orientation. This orientation is called the central

preferred orientation (still denoted θc). We use the notation (xc, yc) to describe the spatial

coordinates of neurons belonging to the cropped version of γ1
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• Step 2 is to normalize the activity of the neurons in each of 10 cropped versions of γ1 gener-

ated at Step 1. To normalize activity, we use the marginal activity, as defined by the mean

neighborhood in a spatially shuffled version of the V1 activity-map. Said differently, the mar-

ginal activity, denoted γ1[θ, x*c, y*c], is a spatial average over the activity of neurons that

respond to one given orientation θ. The variables (x*c, y*c) represent the V1-space outside

of this neighborhood. We call a the normalized activity and its computation is defined in

Eq 8.

a½ y; xc; yc� ¼
γ1½ y; xc; yc� � γ1½ y; x�c; y�c�

γ1½ y; x�c; y�c�
ð8Þ

Intuitively, for a given (θ, xc, yc), a[θ, xc, yc] is positive if the activity inside the neighborhood

is above the marginal activity and negative in the opposite case.

• Step 3 is the actual computation of the interaction map. The interaction map, denoted �a, is

computed as the weighted average over all the orientations of the adjusted activity vector

(see Eq 9). We denote �θ and j�aj the resulting orientation and activity of the interaction map,

respectively (see Eq 10).

�a½xc; yc� ¼
1

n

Xyn

y¼y1

a½y; xc; yc� � e
jy ð9Þ

¼ j�a½xc; yc�j � ej
�y ½xc ;yc � ð10Þ

Fig 4. Illustration of the procedure to generate interaction map. In this illustrative example we consider a V1

representation with only 4 feature maps (represented in the upper-left box). Step 1 is to extract a neighborhood (of size

3x3 in the illustration only) around the most strongly activated neuron (represented with a red square in the

illustration) for a given central preferred orientation (denoted θc). Step 2 is to normalize the neural activity in the

extracted neighborhood using the marginal activity (see Eq 8). Step 3 is to compute the resulting orientation and

activity at every position of the neighborhood using a circular mean (see Eqs 11 and 12 respectively). To keep a concise

figure we have illustrated the computation of the central edge of the interaction map only. For simplification, the

illustration shows only 1 neighborhood extraction whereas the interaction maps shown in the paper are computed by

averaging neighborhoods centered on the 10 most strongly activated neurons.

https://doi.org/10.1371/journal.pcbi.1008629.g004
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We use a circular weighted average to compute the resulting orientation (see Eq 11) and

activity (see Eq 12) of the interaction map.

�θ½xc; yc� ¼ atan2
1

n

Xyn

y¼y1

a½y; xc; yc�sinðyÞ;
1

n

Xyn

y¼y1

a½y; xc; yc�cosðyÞ

 !

ð11Þ

j�a½xc; yc�j ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xyn

y¼y1

a½y; xc; yc�cosðyÞ

 !2

þ
Xyn

y¼y1

a½y; xc; yc�sinðyÞ

 !2
v
u
u
t ð12Þ

The atan2 operator in Eq 11 denotes a generalization of the arctangent operator that returns

positive angle for counterclockwise angle and opposite for clockwise angle.

At the end of Step 3, we then have generated 10 interaction maps (one for each of the 10

most strongly activated neurons) for a given central preferred orientation. Next, we iterate

from Step 1 to Step 3, over 1200 natural images and we average the corresponding interaction

maps. At this point, we then have an interaction map for one given central preferred orienta-

tion. We then repeat this process for all central preferred orientations and for different feed-

back strengths ranging from 0 to 4.

SDPC feedback signals reorganize the interaction map of the V1 model. We investigate

the effect of feedback on the neural organization in our V1 model when the Sparse Deep Pre-

dictive Coding (SDPC) is trained on natural images. To conduct such an analysis, we used the

concept of interaction map, as introduced previously.

For all feedback strengths and different central preferred orientations, we observe that the

interaction maps are highly similar to association fields [19]: most of the orientations of the

interaction map are co-linear and/or co-circular to the central preferred orientation (see Fig 5

for one example of this phenomenon and S3 Fig for more examples with kFB = 1). In addition,

interaction maps exhibit a strong activity in the center and towards the end-zone of the central

preferred orientation. We define the end-zone as the region covering the axis of the central

Fig 5. Example of a 9 × 9 interaction map of a V1 area centered on neurons strongly responding to a central

preferred orientation of 30˚. (A) Without feedback. (B) With a feedback strength equal to 1. These interaction maps

are obtained when the SDPC is trained on natural images. At each location identified by the coordinates (xc, yc) the

angle is �θ½xc; yc� (see Eq 11) and the color scale is j�a½xc; yc�j (see Eq 12). The color scale being saturated toward both

maximum and minimum activity, all the activities above 0.8 or below 0.3 have the same color, respectively dark or

white.

https://doi.org/10.1371/journal.pcbi.1008629.g005
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preferred orientation, and the side-zone as the area covering the orthogonal axis of the central

preferred orientation. The activity of the interaction map in the side-zone is lower compared

to the activity in the end-zone. We notice qualitatively that the orientations of the interaction

maps are less co-linear to the central preferred orientation when feedback is suppressed (i.e.

kFB = 0). In other words, when feedback is active, the interaction map looks more organized

compared to the interaction map generated without feedback (see Fig 5 for a striking example

of this phenomenon).

We next quantify this organizational difference we observed when we turn-on the feedback

connection. For a given feedback strength kFB, we introduce two ratios to assess the change of

the co-linearity (rθco� linðkFB)) and co-circularity (rθco� cirðkFBÞ) w.r.t. to their respective measure

without feedback (see Eqs 23 and 24 in section Model and methods for mathematical details).

We report these two ratios for the end-zone (Fig 6A) and the side-zone (Fig 6B). For all kFB

> 0, we observe that neurons located in the end-zone and in the side-zone are more co-linear

to the central preferred orientation when the feedback connection is turned on. Indeed, all the

bars in the left-block of Fig 6A and 6B are always above the baseline (as computed as the co-

linearity / co-circularity when the feedback is turned off). This increase of co-linearity w.r.t. to

the baseline is highly significant as measured with the Wilcoxon signed-rank test (WT(N = 51,

p< 1e − 3)). We also observe that the increase of co-linearity is more pronounced in the side-

zone (co-linearity bars in Fig 6A exhibit lower values than those in Fig 6B). In addition, we

note that increasing the feedback strength has a significant effect on the co-linearity in the

side-zone as quantified by all pair-wise statistical tests (WT(N = 51, p< 1e − 2)). In contrast,

increasing the feedback strength has no effect on the co-linearity in the end-zone. We observe

that the feedback is not changing the co-circularity for neurons located in both the end-zone

and the side-zone. Indeed, all the bars in the right-block of Fig 6A and 6B are near the baseline.

Our analysis suggests that the feedback signal tends to modify neural selectivity towards co-lin-

earity in both the end-zone and the side-zone.

SDPC feedback signals modulate the activity within the interaction map. To study the

effect of the feedback on the level of activity within the interaction map, we introduce the ratio

ra(kFB) between the activity with a certain feedback strength and the activity when the feedback

is suppressed (see Eq 25 in section Model and methods). Coloring the interaction map using a

color scale proportional to ra(kFB) allows us to identify which part of the map is more activated

with the feedback. First, we observe qualitatively that the interaction map in the end-zone is

more strongly activated when the feedback connection is active. On the contrary, the side-

Fig 6. Relative co-linearity and co-circularity of the V1 interaction map w.r.t. to feedback. (A) In the end-zone. (B)

In the side-zone. For each plot, the left and right block of bars represents the relative co-linearity (i.e. rθco� lin ðkFB)) and

co-circularity (i.e. rθco� cir ðkFB)) with a feedback strength ranging from 1 to 4 w.r.t. their respective value without

feedback (see Eqs 23 and 24). Bars’ heights represent the median over all the orientations, and error bars are computed

as the median absolute deviation. The baseline represents co-linearity / co-circularity when kFB = 0.

https://doi.org/10.1371/journal.pcbi.1008629.g006
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zone exhibited weaker activities when feedback is turned on (see Figs 7 and S4 for examples of

this phenomenon with kFB = 1). Note also that the activity in the center of the interaction map,

which corresponds to the classical Receptive Field (RF) area, is lowered when feedback is

active.

We now generalize, refine and quantify these qualitative observations. We include a third

region of interest, the classical RF, to confirm the decreasing activity observed qualitatively at

this location. We report the median of the ratio ra(kFB) over all central preferred orientations,

for the end-zone, the side-zone, and the classical RF. This analysis is repeated for a feedback

strength ranging from 1 to 4 (see Fig 8). We observe an increase of the activity in the end-zone

of the interaction map with feedback compared to the end-zone of the interaction without

feedback (see Fig 8A). This increase is significant as quantified by all pair-wise statistical Wil-

coxon signed-rank tests with the baseline (WT(N = 51, p< 1e − 3)). For larger feedback

strengths, we observe a higher activity in the end-zone which is also significant (all pair-wise

statistical tests between all feedback strengths (WT(N = 51, p< 0.01)). For example, in the

end-zone, the median activity over all the central preferred orientations is 16% and 25% higher

with a respective feedback strength of 1 and 4 compared to the median when feedback is sup-

pressed. This suggests that the feedback signals excite neurons in the end-zone of the interac-

tion map. In contrast, we observe a slight decrease of activity in the side-zone of the

interaction map with feedback active compared to when feedback is suppressed (see Fig 8B).

The decrease compared to the baseline is significant for kFB = 1 and kFB = 2 (WT(N = 51,

p< 1e − 2)). For higher feedback strength, the lowered activity in the side zone becomes less

significant. The activity in the classical RF exhibits a significant decrease compared to the base-

line (WT(N = 51, p< 1e − 3)). In addition, the larger the feedback strength, the weaker the

activity in the center of the interaction map (WT(N = 51, p< 1e − 2)). For example, we report

a change in the decrease from −28% for kFB = 1 to −34% for kFB = 4 compared to the activity in

the center of the interaction map without feedback (see Fig 8C).

Fig 7. Example of a 9 × 9 interaction map of a V1 area centered on neurons strongly responding to a central

preferred orientation of 45˚, and colored with the relative response w.r.t. no feedback. The feedback strength is set

to 1 and the SDPC is trained on natural images. At each location identified by the coordinates (xc, yc) the angle is
�θ½xc; yc� (see Eq 11) and the color scale is proportional to ra(kFB) (see Eq 25). The color scale being saturated toward

both maximum and minimum activity, all the activities above 1.3 or below 0.5 have the same color, respectively dark

green or purple.

https://doi.org/10.1371/journal.pcbi.1008629.g007
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We report the spatial profile of the median activity along the axis of the central preferred

orientation (see Fig 9). For all distances from the center, the activity along the central preferred

orientation axis of interaction map is significantly higher than the activity without feedback

(all pair-wise statistical tests with the baseline: WT(N = 51, p< 1e − 2)). The only exception is

in the classical RF of the interaction map, where the activity is weaker when feedback is active

(see also Fig 8C). This inhibition in the classical RF of the map compared to the baseline is sig-

nificant as quantified with pair-wise statistical tests (WT(N = 51, p< 1e − 3)). Even if activities

for kFB 6¼ 0 along the central preferred orientation axis are always higher than the activity with

kFB = 0, they tend to decrease with distance to the center (pair-wise statistical test for different

locations: WT(N = 51, p< 1e − 2)). Especially, for kFB = 4, the neurons located just near the

center exhibit a response +36% higher than the same neurons without feedback. With the

Fig 8. Relative response of V1 interaction map w.r.t. no feedback for all central preferred orientations. (A) In the

end-zone. (B) In the side-zone. (C) In the center (i.e. classical RF). Bars’ height represent the median over all the

central preferred orientations, and error bars are computed as the median absolute deviation. The computation of the

relative response, denoted ra(kFB), is detailed in Eq 25. The baseline represents the relative response without feedback.

Black arrows represent the trends observed in neurophysiology (see section ‘Comparing SDPC results with

neurophysiology’ for more details).

https://doi.org/10.1371/journal.pcbi.1008629.g008

Fig 9. Relative response w.r.t. no feedback along the axis of the central preferred orientation of V1 interaction

map. Each point represents the median over all the orientations, and error bars are computed as the median absolute

deviation. The x-axis represents the distance, in number of neurons, to the center of the interaction map. The

computation of the relative response, denoted ra(kFB), is detailed in Eq 25. The baseline represents the relative response

without feedback. Black arrows represent the trends observed in neurophysiology (see section ‘Comparing SDPC

results with neurophysiology’ for more details).

https://doi.org/10.1371/journal.pcbi.1008629.g009
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same feedback strength, this increase of activity w.r.t to no feedback is reduced to 15% when

the neurons are located 4 neurons away from the center. At a given position different from the

center, increasing the feedback strength significantly increases the activity as quantified by all

pair-wise statistical test (WT(N = 51, p< 1e − 2)).

Our results exhibit three different kinds of modulations in the interaction map due to feed-

back signals. First, the activity in the classical RF of the map is reduced with the feedback. Sec-

ond, the activity in the end-zone, and more specifically along the axis of the central preferred

orientation is increased with the feedback. Third, the activity in the side-zone is reduced with

the feedback.

Effect of the feedback at the representational level

After investigating the effect of feedback at the lowest level of neural organization, we now

explore its functional and higher-level aspects. In particular, this subsection is dealing with the

denoising ability of the feedback signal.

Denoising abilities emerge from the feedback signals of the SDPC. To evaluate the

denoising ability of the feedback connection, we feed the Sparse Deep Predictive Coding

(SDPC) model with increasingly more noisy images extracted from the natural images and the

face databases. Then, we compare the resulting representations (γeff
i ) with the original (non-

degraded) image. To do this comparison, we conduct two types of experiments: a qualitative

experiment that visually displays what has been represented by the model (see Figs 10A and

S5A), and a quantitative experiment measuring the similarity between representations of noisy

and original images (see Fig 10B and 10C on natural images and Fig 11A and 11B on face data-

base). These two experiments are repeated for a noise level (σ) ranging from 0 to 5 and a feed-

back strength (kFB) varying from 0 to 4. The similarity between images is computed using the

median structural similarity index [43] over 1200 and 400 images for the natural images and

face database, respectively. The structural similarity index varies from 0 to 1 such that the

more similar the images, the closer the index is to 1. For comparison, we include a baseline

(see the black curves in Figs 10 and 11) which is computed as the structural similarity index

between original and noisy images for different levels of noise. It is important to note that this

experiment has been conducted without re-training the SDPC. Therefore, the network is

trained on non-degraded natural images and has not been explicitly asked to denoise degraded

images.

We first observe that whatever the feedback strength, the first layer representations of the

original image (first row, column 2 to 6 in S5A Fig) are relatively similar to the input image

itself. This observation is supported by a structural similarity index close to 0.9 for all feedback

strengths (σ = 0 in Fig 10B for natural images and Fig 11A for faces). On the contrary, second

layer representations look more sketchy and exhibit fewer details than the image they repre-

sent (first row, column 7 to 11 in S5A Fig). This is also quantitatively backed by a structural

similarity index fluctuating around 0.4 for the natural images database (σ = 0 in Fig 10C) and

0.6 for the face database (σ = 0 in Fig 11B). Interestingly, when input images are corrupted

with noise (i.e. when σ� 1), and whatever the feedback strength, first layer representations

systematically exhibit higher structural similarity index than the baseline (Fig 10B for natural

images and Fig 11A for faces). This denoising ability of the SDPC, even without feedback is

significant as reported by the pair-wise Wilcoxon signed-rank tests with the baseline for both

databases (WT(N = 1200, p< 1e − 2) for natural images database, and WT(N = 400, p< 1e
− 2) for the face database). More importantly, the higher the feedback strength, the higher the

similarity index. In particular, on the natural images database, when the input is highly

degraded by noise (σ = 5), the similarity is 0.02 for the baseline, 0.03 for kFB = 0, 0.05 for
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Fig 10. Effect of the feedback strength on noisy images from natural images database. (A) In the left column, one

image is corrupted by Gaussian noise of mean 0 and a standard deviation of 2 (σ). The central column exhibits the

representations made by the first layer (γeff
1

), and the right-hand column the representations made by the second layer

(γeff
2

). Within each of these blocks, the feedback strength (kFB) is equal to 0 in the top line and 4 in the bottom line. (B)

We plot the structural similarity index (higher is better) between original images and their representation by the first

layer of the SDPC. (C) We plot the structural similarity index between original images and their representation by the

second layer of the SDPC. All curves represent the median structural similarity index over 1200 samples of the testing

set and present a logarithmic scale on the y-axis. The color code corresponds to the feedback strength, from grey for

kFB = 0 to darker blue for higher feedback strength. The black line is the baseline, it is the structural similarity index

between the noisy and original input images.

https://doi.org/10.1371/journal.pcbi.1008629.g010

Fig 11. Effect of the feedback strength on noisy images from face database. This figure description is similar to the

description of the Fig 10B and 10C. For the face database, all presented curves represent the median structural

similarity index over 400 samples of the testing set.

https://doi.org/10.1371/journal.pcbi.1008629.g011
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kFB = 1 and 0.06 for kFB = 4 (see Fig 10B). This improvement of the denoising ability with

higher feedback strength when σ = 5 is also significant as quantified by the pair-wise statistical

tests between all feedback strengths (WT(N = 1200, p< 1e − 2)). The inter-image variability of

the structural similarity of first layer representation as quantified by the median absolute devi-

ation is low compared to the median similarity on the natural images database (see S5D Fig).

In the face database, for a highly degraded input (σ = 5), the structural similarity index is 0.01

for the baseline, 0.03 for kFB = 0, 0.05 for kFB = 1 and 0.07 for kFB = 4. On the face database, the

increases of the first layer similarity with the feedback strength when inputs are highly

degraded (σ = 5) are significative as measured by all the pair-wise statistical tests between all

feedback strengths (WT(N = 400, p< 1e − 2)). Inter-image variability of the similarity of the

first layer representation is also lower than the corresponding median on the face database (see

S6C Fig). Our analysis suggests that the feedback connection in the Predictive Coding (PC)

framework (i.e. when kFB > 0) allows the first layer of the network to better denoise degraded

images. It is interesting to mention again that this property is emergent as the network has

never been explicitly trained to denoise degraded images.

Effect of sparsity on denoising. We have seen in the previous subsection that the feed-

back connection exhibited an emergent denoising ability. In this subsection, we wonder what

is the effect of the sparsity on the denoising ability of the Sparse Deep Predictive Coding

(SDPC). To answer this question, we feed the SDPC with increasingly blurred images, we vary

the level of the sparsity in the first layer during inference (i.e. λ1) and we assess its impact on

the reconstruction quality using the structural similarity index. Figs 12 and 13 show the evolu-

tion of the similarity on the natural images and face databases and for 3 different levels of spar-

sity on the first layer: no sparsity at all (i.e. λ1 = 0), intermediate sparsity (i.e.λ1 = 1.5), and high

sparsity (i.e. λ1 = 3.0). We observe that high sparsity levels are beneficial for better reconstruc-

tion quality of the first layer when the input images are strongly degraded (see dark brown

curves in Figs 12A and 13A). In contrast, when input images are not degraded at all (i.e. σ = 0),

the lower the first layer sparsity the better the reconstruction quality (see light brown curves

on Figs 12A and 13A). In addition, we observe a similar phenomenon for the second layer of

the SDPC (see Figs 12B and 13B). Our analysis suggests that sparsity is playing a crucial role

when it comes to denoise strongly degraded input images.

In this section, we conducted a qualitative and quantitative analysis of the denoising ability

of Sparse Deep Predictive Coding (SDPC) model. Our results suggest that not only the feed-

back connection but also the sparse representation allows the SDPC to better recover images

Fig 12. Effect of the first layer sparsity on noisy images from natural images database with kFB = 4. (A) Structural

similarity index between original images and their representation by the first layer of the SDPC. (B) Structural

similarity index between original images and their representation by the second layer of the SDPC. Top lines represent

the sparsity levels that maximize the similarity for different levels of degradation. All presented curves represent the

median structural similarity index over 1200 samples of the testing set.

https://doi.org/10.1371/journal.pcbi.1008629.g012
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degraded with noise. Therefore, the emergent denoising ability of the proposed model is

directly deriving from the combination of the 2 components of the SDPC that are Sparse Cod-

ing and Predictive Coding. The superior denoising capacity of the 2nd layer of the SDPC sug-

gests that the network is able to disentangle informative features from noisy background. Such

a disentangling mechanism might help the network to better recognize object when the input

is corrupted.

Discussion

Herein, we have conducted computational experiments on a 2-layered Sparse Deep Predictive

Coding (SDPC) model. The SDPC leverages feedforward and feedback connections into a

model combining Sparse Coding (SC) and Predictive Coding (PC). As such, the SDPC learns

the causes (i.e. the features) and infers the hidden states (i.e. the activity maps) that best

describe the hierarchical generative model giving rise to the visual stimulus (see Fig 14 for an

illustration of this hierarchical model and Eq 1 for its mathematical description).

Fig 13. Effect of the first layer sparsity on noisy images from face database with kFB = 4. This figure description is

similar to the description of the Fig 12. For the face database, all presented curves represent the median structural

similarity index over 400 samples of the testing set.

https://doi.org/10.1371/journal.pcbi.1008629.g013

Fig 14. Illustration of the hierarchical generative model learned by the SDPC model on the face database. The

deepest prediction (first row) is viewed as the sum of the features prediction (the second row). These feature

predictions are computed as the convolution between one channel of γ2 and the corresponding features in D2.

Similarly, the eyes can be decomposed using γ1 and D1(the third row).

https://doi.org/10.1371/journal.pcbi.1008629.g014
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We use this model of the early visual cortex to assess the effect of the early feedback connec-

tion (i.e feedback from V2 to V1) through different levels of analysis. At the neural level, we

have shown that feedback connections tend to recruit more neurons in the first layer of the

SDPC. We have introduced the concept of interaction maps to describe the neural organiza-

tion in our V1-model. Interestingly, the interaction maps generated when natural images are

presented to the model are very similar to biologically observed association fields. In addition,

interaction maps allow us to describe the neural reorganization due to feedback signals. In

particular, we have observed that feedback signals align neurons co-linearly to the central pre-

ferred orientation. At the activity level, we observe three different kinds of feedback modula-

tory effects. First, the activity in the classical Receptive Field (RF) is decreased. Second, the

activity in the end-zone of the extra-classical RF and more specifically along the axis of the cen-

tral preferred orientation is increased. Third, the activity in the side-zone of the extra-classical

RF is reduced. At the representational level, we have investigated the role of feedback signals

when input images are degraded using Gaussian noise. We have demonstrated that higher

feedback strengths allow better denoising ability. We have also shown that sparsity plays a cru-

cial role to recover degraded images. In this section, we link our model with the original PC

model [29] and we interpret our computational findings in light of current neuroscientific

knowledge.

SDPC extends Rao & Ballard’s PC model

The Sparse Deep Predictive Coding (SDPC) model is directly inspired by the Predictive Cod-

ing (PC) model proposed by Rao & Ballard [29] and extends it to a scale that is more realistic

for cortical processing in the visual cortex. The original PC model had few dozens of neurons

(20 in the first layer and 32 in the second one), linked with fully-connected synapses and

trained on patches extracted from 5 natural images. In this work, the SDPC leverages hundreds

of thousands of neurons (� 5 × 105 neurons in the first layer,� 8 × 105 neurons in the second

layer for the network trained on natural images) and convolutional synaptic weights trained

on thousands of natural images. In terms of analysis, the interaction maps we introduced con-

firm and extend the results from Rao & Ballard. Our model also described the end-stopping

effects inside the classical Receptive Field (RF): we observed a strongly decreased activity in the

classical RF for extended contours when the feedback connection was activated (see Fig 5 from

[29] and see Figs 8C and 9). Last but not least, the convolutional framework of the SDPC

allows us to extend the Rao & Ballard findings beyond the classical RFs and to observe that

feedback signals play a role in the extra-classical RF. It tends to reinforce neural activity along

the preferred orientation axis (see Figs 9 and 7) and to reshape neural selectivities to better

reflect association fields.

SDPC learns cortex-like RFs while performing neuro-plausible

computation

The Sparse Deep Predictive Coding (SDPC) model satisfies some of the computational con-

straints that are thought to occur in the brain, notably local computations [44]. The locality of

the computation is ensured by Eq 5: the new state of a neural population (whose activity is rep-

resented by γtþ1
i ) only depends on its previous state (γt

i), the state of adjacent layers (γt
i� 1

and

γt
iþ1

) and the associated synaptic weights (Di and Di+1). In the SDPC we have used the convolu-

tional framework to enforce a retinotopic organization of the activity map. The convolutional

operator suggests that features are shared at every position of the activity map. This assump-

tion has the advantage to model the position invariance of RFs observed in the brain. Never-

theless, the weight-sharing mechanism is far from being bio-plausible. Interestingly, recent
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studies have shown that imposing local RFs to fully connected synapses allows to mimic con-

volutional features without enforcing the weight-sharing mechanism [45]. Therefore, it sug-

gests that convolution-like operations might be implemented in the brain in the form of

locally-connected synapses. All these neuro-plausible constraints we have included in the

SDPC makes it unique compared to frameworks like feedforward neural networks or auto-

encoders. These networks are trained using a global loss function minimized through back-

propagation and do not leverage top-down signals during the inference process. Not only the

processing but also the result of the training exhibits tight connections with neuroscience. The

first-layer Receptive Fields (RFs) (Fig 2B for the natural images database and Fig 2F for the

face database) are similar to the V1 simple-cells RFs, which are oriented Gabor-like filters [46,

47]. Olshausen & Field have already demonstrated, in a shallow network, that oriented Gabor-

like filters emerge from sparse coding strategies [25], but to the best of our knowledge, this is

the first time that such filters are exhibited in a 2-layers network combining neuro-plausible

computations with Predictive Coding and Sparse Coding (in [29], Rao & Ballard exhibited

only first layer filters on their model constrained with a sparse prior). This architecture allows

us to observe an increase in the specificity of the neuron’s RFs with the depth of the network.

This observation is even more striking when the SDPC is trained on the face database, which

presents less variability compared to the natural images database. On face images, second layer

RFs exhibit features that are highly specific to faces (eyes, mouth, eyebrows, contours of the

face). Interestingly, it was demonstrated with neurophysiological experiments that neurons

located in deeper regions of the central visual stream are also sensitive to that particular face

features [48, 49].

Comparing SDPC results with neurophysiology

At the electrophysiological level, it has been demonstrated that as early as in the V1 area, feed-

back connections from V2 or V4 could either facilitate [12] or suppress [16] lateral interac-

tions. These modulations help V1 neurons to integrate contextual information from a larger

part of the visual field and play a causal role in increasing and decreasing activity for neurons

encoding for the contour and the background, respectively [18, 50, 51]. The SDPC model

behaves similarly: i) Fig 8A is showing a feedback-dependent increase of activity for neurons

located in the end-zone (i.e. in the direction of the contour) and ii) Fig 8B exhibits a feedback-

dependent decrease activity of neurons located in the side-zone (i.e. in the direction of the

background). As mentioned in the previous subsection, the SDPC is also consistent with the

increase of end-stopping effect related to the increase of the feedback strength. In electrophysi-

ology these phenomenons has been observed in monkeys using attentional modulations (that

we will interpret as a modulation of the feedback strength) [52] or by cooling-down areas

located after V1 to remove the feedback signals [17]. Moreover, it has been demonstrated that

the neural excitation due to feedback signal from V4 to V1 on neurons located on contours

was strongly dependent on the length of the contours [18]. An extended contour triggered

smaller extra-feedback signals compared to shorter contours (see Fig 2A in [18]). This

electrophysiological observation is in line with the SDPC results shown in Fig 9: neurons

located along the axis of the contour but far away from the classical Receptive Field (RFs) are

less strongly excited than those closer to the classical RF.

Functional interpretation of the observed V1 interaction maps

It was assumed that association fields were represented in V1 to perform such a contour inte-

gration [21]. Interestingly, SDPC first-layer interaction maps exhibit a co-linear and co-circu-

lar neural organization very similar to association fields even without feedback (see Fig 5). We
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formulate the hypothesis that this specific organization is mainly related to the statistics of

edge co-occurrences in natural images [20]. Nevertheless, the modulation of neural activity

within the interaction map mediated by feedback goes towards a better contour integration.

Indeed, the increase of activity in the end-zone and the decrease of activity in the side-zone

seem to be optimal to integrate smooth and close contours [53] (see Figs 7–9). In addition, the

organizational feedback modulation in the interaction map reveals that feedback signals tend

to reorganize the side-zone to promote orientations that are co-linear to the central preferred

orientation (see Fig 6). This organization may provide an optimal substrate to integrate

dynamic stimuli along two axes: a parallel one with the apparent motion-like sequence of ori-

ented stimuli moving along the end-zone direction [41, 54, 55], and a perpendicular one for

oriented stimuli moving perpendicular to their orientation. Interestingly, oriented Gabors

moving in an apparent sequence along the parallel axis are perceived as faster as Gabors mov-

ing along the orthogonal axis [55]. Furthermore, aligning the side-zone region to the preferred

orientation could also contribute to the aperture problem [56] and the observed bias for per-

ceiving oriented bars as moving in the direction perpendicular to their orientation [57, 58].

Do lateral interactions increase the sparseness of neural activity in V1?

In this paper, we have assumed that recurrent internal processing could be modeled using

sparse coding. Is it a realistic hypothesis? One of the main roles of sparse coding is to enforce

competition among neurons: it suppresses weakly activated neurons to promote strongly acti-

vated ones. In other words, sparse coding performs “explaining away”. Interestingly, when 2

stimuli (blobs) were presented at different locations and timings, it has been observed in mon-

keys’ area V1 that a suppressive wave tends to spatially disambiguate the positions of the 2 sti-

muli [59]. This effect was attributed to lateral interactions (due to the spatio-temporal

properties of the effect) and can be thought of as an explaining away mechanism. Other studies

have also demonstrated that lateral interactions exacerbate competition in cortical columns

with different orientations or ocular dominance [60–62]. Therefore, our sparse coding model

accounts for one possible function of lateral interaction. Nevertheless, the sparse coding algo-

rithm we use (i.e. the Fast Iterative Soft-Thresholding Algorithm (FISTA), see section “Model

and methods”) doesn’t allow to explicitly learn a lateral connectivity matrix. Consequently,

one might consider other sparse coding algorithms including lateral connection weights to

provide a more accurate model of cortical columns [63].

SDPC accounts for object processing in V1 with degraded images

In this paper, we demonstrate that both the feedback connection introduced by Predictive

Coding (PC) as well as Sparse Coding (SC) allow the Sparse Deep Predictive Coding (SDPC)

to denoise the representation generated in the first and the second layer. Interestingly, this is

an emergent property of the network as we do not explicitly train the SDPC to denoise the

input. This crucial point makes the SDPC very different from denoising sparse auto-encoder

that are trained to reconstruct corrupted input. Psychophysical experiments using backward

masking demonstrated that categorization performances were substantially impaired when a

mask followed a highly degraded stimulus (by occlusion or contrast reduction) [24, 64]. This

suggests that feedback is crucial to recognize a degraded image. We demonstrate a similar

result by assessing the representations of the first layer of the SDPC when the model is fed with

increasingly more noisy images and with different feedback strengths. In particular, we have

shown that feedback connections from V2 to V1 have the ability to denoise corrupted images

(see Figs 11, 12, S5 and S6). In addition, the previously mentioned psychophysical studies sug-

gest that feedback connections are not bringing any change in recognition accuracy when
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non-degraded images are presented to the subjects [24, 64]. In contrast, the structural similar-

ity index between the original image and the first layer representation when the SDPC is fed

with a non-degraded image exhibits a slight decrease, but significant enough, when the feed-

back strength or the sparsity is increased. We formulate the hypothesis that this discrepancy is

mainly coming from the fixed value we give to the feedback strength and to the sparsity

parameter. In the brain, representations are strongly subject to attentional modulation, and a

recent study has suggested that attention can be understood as a mechanism weighting feed-

back connections using the level of uncertainty [65]. Therefore, one might consider replacing

the parameters kFB and λi by internal state variables that would be specific to each input image

(similar to the sparse maps γi). For example, if the input image is not degraded, the feedback

signals should be weak as no higher-layer information is needed to faithfully represent the sen-

sory input. On the contrary, if the input is strongly degraded, the feedback connection should

be strong enough to bring additional information from higher-layer to compensate for the

high uncertainty in the first layer representations. Such modifications should allow the SDPC

to adapt to the specificity of each input, and could be used to model attentional mechanisms in

the SDPC.

Concluding remarks

In this study, we have shown that the first layer of the Sparse Deep Predictive Coding (SDPC)

model represents the visual input similarly to V1. We have also demonstrated that feedback

from V2 may modulate the interaction map in such a way to promote contour integration.

This improvement in contour integration with feedback strength resulted in a better represen-

tation when noisy images were presented to the SDPC. Note that the proposed SDPC is a sim-

plified version of perceptual inference models based on free-energy optimization [66, 67].

While free-energy estimates the entire distribution of error and prediction signals, our SDPC

only assesses their most likely values. One interesting perspective would be to extend the

SDPC to make it fit the precision-weighted message passing implemented in the free-energy

framework. Another interesting perspective would involve building deeper SDPC networks to

model brain areas like V4 or IT. In such a case, we expect that feedback signals in a deeper

layer should highlight higher-level concepts (e.g. the global shape of an object or its identity-

related items). In general, we foresee great perspectives to such a description of the brain both

in computational neuroscience to understand perceptual mechanisms and in artificial intelli-

gence for tasks like denoising, classification or inpainting.

Model and methods

In this section, we detail the Sparse Deep Predictive Coding (SDPC) model. We first explain

how the SDPC is directly related to the Predictive Coding (PC) theory. Next, we describe the

mathematics behind the inference and the learning process. We then explicitly describe the

back-projection mechanism used to interpret and visualize inference and learning results. We

also describe the databases and the network parameters we adopted to train the SDPC. Finally,

we detailed all the calculations needed to generate interaction maps.

SDPC model

Variable dimensionality and convolutional operator. In the entire article, we have

adopted the machine learning convention to describe the dimensions of our dictionary D and

of the activity map γ: a dictionary D of size [nf, nc, w, h] coud be interpreted as a collection of

nf features of size nc × w × h. nc is then the number of channels of the representation on which

we apply the convolution. For example, in the case of the first layer dictionary, nc = 1 for
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grayscale images and nc = 3 for color images (i.e. the natural images database). The width and

height are denoted by w and h, respectively. Similarly, an activity map γ of size [nf, wm, hm]

could be interpreted as a collection of nf 2D maps of dimension (wm, hm).

Using the same dimension notation, we define our discrete 2D-convolutional operator

using the following operation (see Eq 13)

γi� 1 ¼ DT
i � γi

with γi� 1½j; k; l� ¼
Xnc

m¼1

Xw

p¼1

Xh

q¼1

DT
i ½j;m; p; q� � γi� 1½m; k � p; l � q�

s:t: k � p 2 ⟦1;wm⟧ and l � q 2 ⟦1; hm⟧

ð13Þ

For the sake of clarity, in the mathematical description of our model, we replaced the con-

volution by a matrix-vector product. This mathematical transformation is valid as one can

always find an operator that transforms the dictionary Di into a Toeplitz matrix (we denote

this operator T in the following equation):

γi� 1 ¼ T ðDT
i Þ � γi ¼ DT

i � γi s:t: T is the transformation of DT
i into a Toeplitz matrix ð14Þ

In Eq 14, the sign × denotes the matrix-vector multiplication. To facilitate the reading of the

mathematical equation, we have purposely abuse the notation in the paper such that:

γi� 1 ¼ DT
i γi ¼ T ðDT

i Þ � γi ¼ DT
i � γi.

From predictive coding to sparse deep predictive coding. Fig 1 shows the architecture

of a 2-layered SDPC model that takes an image x as an input. As the SDPC is relying on the

Predictive Coding (PC) theory [29], it is continuously generating top-down predictions such

that the neural population at one level (γi) predicts the neural activity at the lower level (γi−1).

The prediction from a higher level is sent through a feedback connection to be compared to

the actual neural activity. This elicits a prediction error, ϵi, that is forwarded to the following

layer to update the population activity towards improved prediction. This dynamical process

repeats throughout the hierarchy until the bottom-up process no longer conveys any new

information. We force the weights of the feedforward connection (Di) to be reciprocal to the

weights of the feedback connection (DT
i ) [29, 68]. We also impose a convolutional structure to

Di to strengthen the proximity with the overlapping Receptive Fields (RFs) observed in the

visual cortex. Mathematically, the SDPC solves the hierarchical inverse problem formulated in

Eq 1 by minimizing the loss function L defined in Eq 15. This optimization process is sepa-

rated into two different but related steps: inference and dictionary learning. The inference pro-

cess involves finding a sparse activity map of the input considering the synaptic weights are

fixed. Once the activity map has been estimated, the next step is to update the synaptic weights

to better fit the dataset. We iterate these two processes until the convergence is reached.

Inference. To obtain a convex cost, we relax the ℓ0 constraint in Eq 1 into a ℓ1-penalty. It

defines, therefore, a loss function that could be minimized using first-order methods like Itera-

tive Shrinkage Thresholding Algorithms (ISTA) [69]. This algorithm is proven to be computa-

tionally cheap and offers fast convergence rate. In practice, we use an accelerated version of

this algorithm called the Fast Iterative Soft Thresholding Algorithm (FISTA). Eq 15 describes

the generalized loss function, that is minimized at each layer using the Iterative Soft Thresh-

olding Algorithm.

Li ¼
1

2
k γi� 1 � DT

i γi k
2

2
þ
kFB
2
k γi � DT

iþ1
γiþ1 k

2

2
þlik γi k1

ð15Þ
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One inference step used to update γi is shown in Eq 5. In Eq 5, T a denotes a non-negative soft

thresholding operator, as defined in Eq 16. Zci is the learning rate of the inference process, it is

computed as the inverse of the largest eigenvalue of DT
i Di [69].

T aðxÞ ¼

( x � a if x � a

0 if x � a
ð16Þ

Fig 1 shows how we can interpret the update scheme described in Eq 5 as one loop of the

inference process of a recurrent layer. This recurrent layer forms the building block of the

Sparse Deep Predictive Coding (SDPC) network (see S1 Algo for the complete pseudo-code of

the SDPC inference process). We initialize all the activity maps γt
i to zero at the beginning of

the inference process. We consider the inference process is finalized once all the activity maps

have reached a fixed point. Our fixed point consists in a threshold (Tfp) on the relative varia-

tion of each activity map (Eq 17).

γt
i has reached a fixed point if

k γt
i � γt� 1

i k2

k γt
ik2

< Tfp ð17Þ

Dictionary learning. The SDPC learns the synaptic weights using a stochastic gradient

descent on Li. Eq 6 describes one step of the dictionary learning process.

In Eq 6, Dt
i is the set of synaptic weights at time step t and ZLi is its learning rate. At the

beginning of the learning, all weights are initialized using the standard normal distribution

(mean 0 and variance 1). The learning step takes place after the convergence of the inference

process is achieved (see Algo 1). It was demonstrated that this alternation of inference and

learning offers a reasonable convergence guarantee [37]. After every dictionary learning step

we ℓ2-normalize each weight to avoid any redundant solution.

Algorithm 1: Alternation of inference and learning
while convergence not reached do
for i = 1 to L do
γtþ1
i ¼ T Zci li

ðγt
i � Zcirγti

LiÞ # inference

for i = 1 L to L do
Dtþ1

i ¼ Dt
i � ZirDt

i
Li # learning

Back-projection mechanism. Interestingly, the dictionaries could be used to project (or

back-project) the activity of a neural population and their associated synaptic weights into the

next (or previous) level. Due to their high dimensionality, the weights Di are difficult to inter-

pret and visualize for i> 1 as they represent a structure into an intermediate feature space at

layer i − 1. To overcome this limitation, we back-project the weights Di into the input space,

which is the visual space [37]. This back-projection, called effective dictionary and denoted by

Deff
i , could be interpreted as the set of Receptive Fields (RFs) of the neurons located in layer i.

Note that the network doesn’t directly compute the effective dictionaries, and it is used only to

visualize what has been learned and represented by the model. Mathematically, the effective

dictionaries are described in Eq 3, and illustrated in S7 Fig. Similarly, we defined γeff
i as the

back-projection into the visual space of the hidden states variable γi (Eq 18). This mechanism

is used to reconstruct the input image from one intermediate layer.

γeff
i ¼ DeffT

i γi ð18Þ
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Databases

We train our SDPC model on two different databases: The Chicago Face Database (CFD) [70]

and STL-10 [71].

The Chicago Face Database consists of 1, 804 high-resolution (2, 444 × 1, 718 px), color,

standardized photographs of male and female faces with varying ethnicity between the ages of

18 and 40 years. We re-sized the pictures to 170 × 120 px to keep reasonable computational

time. This database is partitioned into batches of 10 images. This dataset is split into a training

set composed of 721 images and a testing set of 400 images. No validation set was used.

The STL-10 database is a recognition dataset developed for unsupervised feature learning

and composed of color photographs with a resolution of 96 × 96 px representing animals

(bird, cat, deer, dog, horse, monkey) and non-animals (airplane, car, ship, truck). The images

are highly diverse (different viewpoints, backgrounds, . . .) and could be considered as natural

images. The set is partitioned into a training set of 5000 images and a testing test of 1200

images. No validation set was used.

All the curves, images and histograms presented in this paper are generated using the test-

ing set. The training set is used only to learn the synaptic weights. All these databases are pre-

processed using local contrast normalization and whitening. Local contract normalization is

inspired by neuroscience and consists in a local subtractive and divisive normalization [40]. In

addition, we use whitening to reduce dependency between pixels.

Network parameters

Networks and training parameters of the Sparse Deep Predictive Coding (SDPC) model are

summarized in Table 1 for the natural image and face databases. We used PyTorch 1.0 [72] to

implement, train, and test the SDPC model.

Interaction maps analysis

Computation of the relative co-linearity and co-circularity for different feedback

strength. We measure the co-linearity deviation of the interaction map with a circular differ-

ence between the central preferred orientation (θc) and the orientation of the interaction map

(see Eq 19). The co-circularity deviation is quantified using a circular difference between a

map of orientations that are co-circular to the central preferred orientation and the angle of

Table 1. SDPC network and training parameters on natural image and face databases. The size of the convolutional

kernels for each layer are shown in the format: [number of features, number of channels, width, height] (value of the

convolutional stride).

DataBase

Face images Natural images

network param. D1 size [64, 3, 9, 9] (3) [64, 3, 9, 9] (2)

D2 size [128, 64, 9, 9] (1) [128, 64, 9, 9] (1)

λ1 0.3 0.4

λ2 1.6 1.2

Tstab 5e-3 5e-3

training param. # epochs 250 250

ZL1
1e-4 1e-4

ZL2
5e-3 5e-3

momentum 0.9 0.9

https://doi.org/10.1371/journal.pcbi.1008629.t001
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the interaction map (see Eq 20) [73]. We simplify the calculation of the co-circular angle map

in Eq 20 by centering the coordinate (xc, yc) in the middle of the interaction map (the co-circu-

lar map is shown in the top right corner of the Fig 6A and 6B).

θco� lin½xc; yc� ¼ jyc � �θ½xc; yc�j ð19Þ

θco� cir½xc; yc� ¼ j atan
yc � yco
xc � xco

� �

þ
p

2
� �θ½xc; yc�Þj

with xco ¼
sin ðycÞ � ðx2

c þ y2
c Þ

2ð sin ðycÞ � xc � cos ðycÞ � ycÞ

and yco ¼ tan yc þ
p

2

� �
� xco

ð20Þ

The atan operator in Eq 20 denotes the arctangent operator. For a given feedback strength

kFB, we introduce two ratios, denoted ~θkFB
co� lin and ~θkFB

co� cir (see Eqs 21 and 22, respectively) to scale

the co-linearity and co-circularity w.r.t. their marginal measure. In those equations, the mar-

ginal co-linearity (θkFB
co� lin½x�c; y�c�) and co-circularity (θkFB

co� cir½x�c; y�c�) correspond to the co-lin-

earity and co-circularity computed outside of the contour neighborhood. To facilitate the

interpretation of these ratios, we make sure they are following the same evolution than a preci-

sion measure. For example, if an interaction map exhibits a higher co-linearity with the central

preferred orientation, then the corresponding ~θkFB
co� lin will be necessarily over 1.

~θkFB
co� lin ¼

θkFB
co� lin½x�c; y�c�
θkFB
co� lin½xc; yc�

ð21Þ

~θkFB
co� cir ¼

θkFB
co� cir½x�c; y�c�
θkFB
co� cir½xc; yc�

ð22Þ

To quantify how more co-linear and co-circular were the different regions of the interac-

tion maps with feedback compared to the same interaction maps without feedback we used

the following ratios (see Eqs 23 and 24):

rθco� linðkFBÞ ¼
~θkFB
co� lin

~θkFB¼0

co� lin

ð23Þ

rθco� cirðkFBÞ ¼
~θkFB
co� cir

~θkFB¼0

co� cir

ð24Þ

Computation of the relative activity with or without feedback. To compare the relative

activity with or without feedback, we introduce the ratio ra(kFB) (see Eq 25).

raðkFBÞ ¼
j�aðkFBÞj
j�aðkFB ¼ 0Þj

ð25Þ

Supporting information

S1 Fig. Receptive Fields (RFs) when the SDPC is trained on the natural images database.

(A) 64 first layer RFs, sorted by activation probability in a descending order. The size of the
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RFs is 9 × 9 px. (B) 128 second layer RFs, sorted by activation probability in a descending

order. The size of the RFs is 22 × 22 px. All the visualized RFs are generated using Eq 3.

(TIF)

S2 Fig. Receptive Fields (RFs) when the SDPC is trained on the face database. (A) 64 first

layer RFs, sorted by activation probability in a descending order. The size of the RFs is 9 × 9

px. (B) 128 second layer RFs, sorted by activation probability in a descending order. The size

of the RFs is 33 × 33 px. All the visualized RFs are generated using Eq 3.

(TIF)

S3 Fig. Example of 9 × 9 association field of V1 centered on neurons strongly responding

to 6 different contour orientations, when the SDPC is trained on the natural image

database. From left to right and top to bottom the contour orientations are 0˚ (A), −30˚

(B), −60˚ (C), 90˚ (D), 60˚ (E) and 30˚ (F). The feedback strength is set to 1. At each loca-

tion identified by the coordinates (xc, yc) the angle is �θ½xc; yc� (see Eq 11) and the color scale

is j�a½xc; yc�j (see Eq 12). The color scale being saturated toward both maximum and mini-

mum activity, all the activities above 0.8 or below 0.3 have the same dark green or white

color, respectively.

(TIF)

S4 Fig. Example of a 9 × 9 association field in V1 colored with relative response w.r.t no

feedback, centered on neurons strongly responding to 6 different contour orientations,

when the SDPC is trained on the natural image database. The feedback strength is set to 1.

From left to right and top to bottom the contour orientations are 0˚ (A),−30˚ (B), −60˚ (C),

90˚ (D), 60˚ (E) and 30˚ (F). At each location identified by the coordinates (xc, yc) the angle is

�θ½xc; yc� (see Eq 11) and the color scale is proportional to ra(kFB) (see Eq 25). The color scale

being saturated toward both maximum and minimum activity, all the activities above 1.3 or

below 0.5 have the same dark green or dark purple color, respectively.

(TIF)

S5 Fig. Effect of the feedback strength on noisy images from the natural images database.

(A) In the left block, one image is corrupted by Gaussian noise of mean 0 and standard devia-

tion (σ) varying from 0 to 5. The central block exhibits the representations made by the first

layer (γeff
1

), and the right-hand block the representations made by the second layer (γeff
2

).

Within each of these blocks, the feedback strength (kFB) is ranging from 0 to 4 in columns.

Highlighted images with black square are those selected in Fig 10. (B) median structural simi-

larity index between 1200 original images and their reconstructions by the first layer of the

SDPC. (C) Structural similarity index between original images and their reconstructions by

the second layer of the SDPC. (D) Error, as computed with the median absolute deviation, of

the structural similarity index plotted in (B) (i.e. for the first layer). (E) Error, as computed

with the median absolute deviation, of the similarity index plotted in (C) (i.e. for the second

layer). The color code corresponds to the feedback strength, from light grey for kFB = 0 to

darker blue for higher feedback strength. The black line is the baseline, it is the similarity

between noisy and original input image.

(TIF)

S6 Fig. Effect of the feedback strength on noisy images from the face database. This figure

description is similar to the description of the S5 Fig. For this database, all presented curves

represent the median structural similarity index over 400 samples of the testing set.

(TIF)
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S7 Fig. Illustration of the back-projection mechanism. The projection of the second layer

dictionary into the visual space (DeffT
2

) is obtained by convolving the transpose of the first layer

dictionary (DT
1
) by the second layer dictionary (DT

2
) [37]. This mechanism could be also used

to back-project any activity map into the visual space (see Eq 18).

(TIF)

S1 Algo. SDPC inference algorithm. Pseudo-code of the inference using python-like pseudo

algorithm. T að�Þ denotes the element-wise non-negative soft-thresholding operator. A fortiori,

T 0ð�Þ is a rectified linear unit operator. # comments are comments.

(TIF)
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