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A B S T R A C T

The thrust performance of a two-dimensional plate pitching harmonically in a uniform flow is assessed nu-
merically using the OpenFOAM toolbox [1]. The mesh displacement vector associated with the rigid body
motion is computed as the solution of a Laplace equation with variable diffusivity, using the appropriate mesh
manipulation class of the toolbox. For a Reynolds number of 2000, the accuracy of the pressure and viscous
stress distributions is assessed by comparison with reference data available for an equivalent fluid configuration.
The efficiency and flexibility of the solver allows exploring large ranges of the pitching parameter space, that is
the pitching frequency, amplitude and pivot-point location of the pitching plate. The forces induced by the
pitching motion are computed for pitching amplitudes up to 15∘, for Strouhal numbers varying between 0.2 and
0.5 and for different pitch pivot points. Performing a thrust scaling analysis, a classical theoretical model for the
swimming of a waving plate is reliably fitted to the numerical pressure force data. The dependence of the time
averaged thrust with the pitching axis is shown to be predicted accurately by a classical potential flow formula
(known as Garrick’s theory) for pivot points within the front quarter of the plate. The viscous drag is computed as
well for the Reynolds number 2000. The time-averaged values are shown to depend on the pitching amplitude
and frequency and for instance a Blasius-type scaling, sometimes used to model the viscous drag correction for
oscillating two-dimensional foils in this Reynolds number range, is not reliable.

1. Introduction

Unsteady flows past thin oscillating bodies have received con-
siderable attention in the literature. While the objective of early in-
vestigations was the understanding and the reduction of undesirable
effects of flutter, buffeting and dynamic stall [2], there has been a re-
gain of interest over the last decade, as this type of fluid-structure
configurations have applications in connection with the propulsion of
flying and aquatic species [3] and the related design of biologically-
inspired micro air vehicles. In this context, the wake structure of flap-
ping wings triggered by the generation of vorticity, its shedding, roll-up
and subsequent evolution has been the object of numerous investiga-
tions. In particular, thrust development on a flapping structure has been
explained in terms of the generation of a reversed Kármán vortex-street
exhibiting a jet-like average velocity profile, as a result of the shed
vortices inducing a velocity in the same direction as the mean flow [4].
It has been recognized, that the wake structure with its mean stream-
wise velocity profile can be used to predict the propulsive performance

by applying the integral momentum theorem to a control volume sur-
rounding the body; see, e.g. [5]. This is however somehow questionable
because the wake behind a moving foil is highly unsteady, so there is no
guarantee that the far field wake velocity remains equal to the free
stream velocity (in which case the integrand may not go to zero at the
limits of integration), and the velocity fluctuations are likely to be not
negligible [6]. More recently, the reliability of the integral momentum
approach has been readdressed in [7], comparing PIV measurements
with numerical thrust computations for a pitching plate. Direct force
measurements aiming at assessing the propulsive performance for os-
cillating foils are also available (e.g. [8,9]) and more recently for in-
stance in [10,11], just to cite a few.

Scaling laws associated with aquatic locomotion have been re-
viewed in [12], but they are limited by the fact that thrust is influenced
by a large number of parameters, e.g., motion type (heave, pitch, etc.),
amplitude, frequency, rigid or flexible surfaces and two-dimensional
versus three-dimensional bodies. The Strouhal number has for instance
often been adopted as the single parameter of interest for propulsion
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problems involving heaving and/or pitching foils [13]. However, it has
been reported that the trailing edge amplitude of motion does influence
the thrust generated at a fixed Strouhal number by a heaving foil (as a
result of phase differences between forces and motions) but not by a
pitching foil [11].

Pitching foils and associated thrust scaling laws have also been
addressed numerically, using panel method approaches, for instance in
[14] and recently for a finite aspect ratio oscillating plate in [15]. A
boundary element method applied to potential flow formulations, to-
gether with added mass and circulatory forces modeling, has been ap-
plied in [16] to two-dimensional foils with a subsequent generalization
to three-dimensional propulsors [17]. Particle vortex method have for
instance been used in [18] to predict thrust generation by simulating
the wake structure of a flapping foil. A very recent review with a
summary on the experimental investigations and numerical methods
used to investigate the fluid dynamics of flapping foils can be found in
[19].

Despite the important amount of investigations available, there is
however no general consensus about analytical models suitable to fit
experimental or numerical data. This issue of a reliable thrust scaling is
readdressed in the present work using a Navier–Stokes solution proce-
dure for the flow along a pitching plate. Navier-Stokes simulations with
a finite element solver have been used for example in [20] to provide
thrust coefficients for a pitching airfoil. In [21] a compact finite-dif-
ference solution procedure has been employed to scale the thrust and
viscous drag of three-dimensional, low-aspect-ratio pitching plates. In
this latter work a mapping approach is used to account for the moving
boundary, which however puts a bound on the motion’s amplitude in
order to prevent numerical instabilities.

For the numerical simulation of a flow in the presence of a moving
slender body, one key issue is to couple the body motion with the
surrounding flow field via efficient and reliable mesh update methods
involving mesh-moving and remeshing. An alternative to mesh up-
dating is to immerse the moving geometry on a simple structured
Cartesian grid, but these immersed boundary methods (IBM) [22] re-
quire ad-hoc momentum sources to model the relative velocity between
the fluid and the solid [23]. It remains challenging to produce accurate
force data in the context of vortex-induced propulsion using these
methods, because it is difficult to control the accuracy of IBM solutions
in the very vicinity of the body surface. This is particularly true for thin
bodies-fluid interactions requiring extra care to keep the structure im-
permeable [24,25].

It is not intended here to review the abundant literature on mesh
moving techniques. Some mathematical background for adaptive mesh
generation can for instance be found in [26], focusing on mesh-moving
algorithms using monitoring functions [27]. Among the mesh update
techniques in fluid-structure problems, a popular method for creating a
dynamic mesh is to view the fluid grid as an elastic pseudo-structure
with large deformations. A pseudo-nonlinear elastostatic equation for
the mesh displacement vector has for instance been considered in [28],
which is however difficult to solve. A spring analogy of the problem is
more tractable, where all point-to-point connections within the mesh
are replaced by linear or torsional springs and point motion is obtained
as a response to the boundary loading [29–31]. For moderate mesh
distortions, linear equations of elasticity under the small deformation
assumption are often considered [32,33].

As an alternative to the elasticity analogy, a Laplace equation with
variable diffusivity is also used as mesh motion equation. Efficient
diffusivity choices are based on the inverse distance from a moving
boundary and have been proven efficient to limit mesh distortion in the
region close to the moving surface, which reduces the need for local or
global remeshing [34,35]. In the present investigation, for the numer-
ical solution procedure the open-source OpenFOAM toolbox is used,
that provides a suitable environment for the implementation and rapid
dissemination of new algorithms, and has become very popular in
academic research [36–40] and industrial flows analysis [41–43]. A

Laplacian-based mesh motion solver has been implemented in Open-
FOAM by Jasak and co-workers [44,45]. Here, this dynamic mesh op-
tion is used for the simulation of the flow around a pitching plate with
vanishing thickness. Benchmark computations, which contribute to the
relatively sparse documentation on the use of this mesh update tech-
nique, are first performed. For this purpose, pressure and viscous forces
acting on the plate are compared with available results [7] for an
equivalent flow configuration.

Taking advantage of the solver’s efficiency, the question of the
thrust scaling for pitching foils is readdressed and simulations are
performed, covering a large parameter range in terms of pitching fre-
quency, angle and pivot point. The numerical data are fitted with a
theoretical expression for thrust prediction derived from a potential
flow model for waving plates. Comparisons with a classical propulsion
law for flapping foils based on potential flow formulas are also per-
formed.

The paper is organized as follows. The numerical model is described
in Section 2, together with the various steps which are necessary for the
dynamic mesh option in OpenFOAM. In Section 3, pressure and viscous
stress results are produced with the toolbox for various pitching regimes
and compared to reference experimental and numerical results for va-
lidation purposes of the resolution procedure. The thrust scaling is
undertaken in Section 4, by exploring numerically the pitching para-
meter space and a general pressure-thrust scaling law is derived. The
scaling results are discussed in Section 5, with regard to finite Reynolds
number effects and viscous drag.

2. Numerical model

A plate of length L, pitching with angle amplitude α0 and frequency
f is immersed in an incoming two-dimensional incompressible flow with
velocity U∞. As in [7] which will be used for validation of the solution
procedure, the plate has vanishing thickness. The origin of the fixed
Cartesian coordinate system is set at the leading edge of the plate in its
horizontal position, with the positive x-axis aligned with the free
stream, and positive y-axis in the normal direction. The flow motion is
governed by the Navier–Stokes equations

∇ = ∂
∂

+ ∇ = −∇ + ∇ρ
t

ρ p μu u u u u· 0 , ( · ) ,2
(1)

where = u vu ( , ) is the velocity field and p is the pressure, ρ and μ being
the constant density and dynamic viscosity. Uniform flow (U∞, 0) is
prescribed at inflow and an incoming uniform flow velocity is also the
initial condition when starting a new computation. The pitching motion
is defined as

=
= + −
= −

⎫
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< <θ α πft
x t x r r θ
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( ) ( )cos
( ) ( )sin

0 ,0
0 0

0

(2)

where r is the coordinate along the plate, and the coordinate r0 of the
pitch-pivot point corresponds to (x0, 0) in the fixed coordinate system.
In the following, a four-dimensional parameter space is considered, that
includes the Reynolds number = ∞ρU L μRe / , the reduced pitching fre-
quency = ∞k πfL U/ , the pitching angle α0, and the pivot-point position

=q r L/0 relative to the plate length.
Direct numerical simulations of Eq. (1) are performed using the

OpenFOAM toolbox version 6 [1]. Since the solver is inherently three-
dimensional, only one void cell is used in the z direction to account for
the present two-dimensional flow setting. The methodology used in
OpenFOAM is based on a finite volume discretization of the differential
operators together with a mesh-handling using structured or un-
structured grids.

The main features of the discretization, based on Gauss’ theorem
applied to the volume integrals, are briefly summarized. For the ap-
proximation of the resulting integrals over the control volume
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boundaries, the values of the flow quantities at the volume’s faces have
to be interpolated from the values at the computational nodes.
Interpolation practices for finite volume methods are described for in-
stance in [46]. In the forthcoming simulations, for the convective term
an upwind interpolation known as upwind differencing scheme is used,
where the direction of the flow determines which node provides the cell
face value. For the diffusive term a linear interpolation between the
faces’ two nearest nodes is performed, which is of second order. Linear
interpolation is also used for the computation of the gradients normal to
the surfaces.

Time discretization is based on the first order implicit Euler scheme.
In order to deal with the quadratic non-linearity in the Navier-Stokes
system, the equations to be solved at each time step are linearized about
the result at the previous time step, in the way that the neglected terms
are of second order in time, that is smaller than the error of the time
discretization. The time step is adapted during the time integration via
the Courant number, well known in computational fluid dynamics. This
number is the ratio between the time step and the flow convection time
and has been set to 0.9, the characteristic convection time being com-
puted by summing the velocity fluxes and dividing by the cell volume.
This yields typical values of order ∼ −tΔ 5 10 4. All linear systems are
solved using the built-in pimpleFoam predictor-corrector solver, that
merges the PISO and SIMPLE algorithms widely used in computational
fluid dynamics [46]. The chart for the different options to be set for the
pitching-plate case in the OpenFOAM toolbox is provided in
Appendix A.

A rectangular computational domain of dimensions Lx× Ly in the x
and y directions is considered, together with open flow boundary
conditions consisting of a uniform free-stream = ∞Uu ex at the inflow,
free-surface flow conditions ∂ ∂ = =u y v/ 0 at the upper and lower
boundaries, whereas at the outflow a zero-gradient condition for the
velocity field and uniform (zero) pressure is imposed. The meshing
procedure in OpenFOAM allows to perform successive refinements.
Starting the procedure, a mesh for the outer domain is defined by im-
posing specific densities mx and my of grid points per unit length on the
x and y boundaries of the computational domain, which yields the
coarse grid size =x y L m L m(Δ , Δ ) ( / , / )x y . The mesh is then refined by a
factor of 4 via triangulation across a small transient zone, hence an
intermediate grid size (Δx/4, Δy/4) is generated in the subdomain of
size Lx,s× Ly,s sketched in Fig. 1. Three additional refinements are
performed successively in the region adjacent and inside the boundary
layer of the plate, as illustrated by the close-up Fig. 2(b). Each refine-
ment is by a factor of 2, hence a fine grid size (Δx/32, Δy/32) that
allows discretizing the boundary layer with ∼ m r L160 / Rey points at a
distance r from the leading edge, as obtained from the well-known
Blasius boundary layer thickness ∼ rL5 /Re [47]. Convergence in the
numerical results has been assessed using 5 different meshes exhibiting
various spatial extents and grid densities, as detailed in Table 1.
Without anticipating on the results, densities =m m( , ) (22, 25)x y yield
17 boundary-layer grid points at =r L0.05 , and 11 points at =r L0.02
(the leading edge is singular for the present case of a plate with van-
ishing thickness), which we show in the following to be sufficient to
resolve accurately the boundary layer.

The OpenFOAM proposes various options to define rigid body mo-
tions and in particular for a pitching plate; see [45,48,49] for an
overview of the different classes available. We use here the dyna-
micFvMesh class, that applies to cases where the mesh topology does not
change (i.e., there is no need to add/remove cells or interfaces). Among
the various sub-classes (each of which corresponds to a different mesh
motion solver), the focus is on the dynamicMotionSolverFvMesh class
meant for cases where the mesh points are solved using boundary
conditions and diffusivity models. More specifically, we use the dis-
placementLaplacian solver that computes the mesh motion from a sta-
tionary diffusion equation

∇ ∇ =γ d·( ) 0 , (3)

where γ is a diffusivity coefficient and d is the mesh displacement
vector needed to update the mesh, computed as the solution of a Di-
richlet-type boundary value problem. Within the displacementLaplacian
class, the pointVectorField class allows defining certain types of rigid
body motions, in particular the angularOscillatingDisplacement type that
corresponds to a pure pitching motion, whose frequency, amplitude and
pivot-point can be user-defined. When performing the time-stepping in
the simulation procedure, the Navier–Stokes and Laplace equations are
solved in a sequential fashion, with the diffusivity coefficient set pro-
portional to the inverse of some measure of the distance to the moving
boundary to ensure minimal distortion (inverseDistance option). Again,
the reader interested in more practical details regarding the im-
plementation of the displacementLaplacian solver is referred to
Appendix A.

3. Benchmark results

This section reports reference data for pitching plate investigations
in the range of reduced frequencies k<5. The Reynolds number is set
to =Re 2000, the pitching angle to = ∘α 10 ,0 and the pitch-pivot point is
at =q 1/3, so as to match the configuration studied experimentally and
numerically in [7]. In this latter work an experimental investigation has
been performed for a three-dimensional plate of span 4.7L, large en-
ough for the flow along the center region of the plate to be quasi-two-
dimensional, and of thickness 0.075L, small enough to avoid body-
shape effects during the pitching motion. The measurements match
remarkably well the numerical results obtained by the same authors for
a two-dimensional plate with vanishing thickness, using a high-order
(8th order) compact finite differences discretization [50], together with
a multi-domain approach (details about this numerical approach are
provided in [51]). Given the completely different numerical solution
procedures, the reliability of the OpenFOAM computations, at least for
the problem under investigation, can hence be assessed by comparing
the present results with those reported in [7]. In particular, the mesh-
convergence is only assessed via comparison of the results at different
discretization levels, contrary to mathematically rigorous convergence
analyses as proposed for instance in [52].

The comparison focuses here on the x-component of the (di-
mensionless) time-averaged pressure and viscous stresses distribution
over the plate, that is

∫〈 〉=− −
∞

+
f

ρU T
p n t* 1 1 ( ) d ,p t

t T
x2 0

0

(4)

∫ ⎜ ⎟⎜ ⎟〈 〉=− ⎛
⎝

∂
∂

+ ⎛
⎝

∂
∂

+ ∂
∂

⎞
⎠

⎞
⎠∞

+
f

ρU T
μ u

x
n u

y
v
y

n t* 1 1 2 d ,μ t

t T
x y2 0

0

(5)

where dimensionless quantities are written with an asterisk, the
brackets ⟨ · ⟩ denote the average over time, nx and ny are the x- and y-
components of the outward unit vector normal to the plate. Note that
the minus sign is applied for a positive total force to correspond to
thrust on the plate, which is the convention generally used. The pres-
sure in (4) is the computed pressure shifted by a constant in order to be
zero at the inflow.Fig. 1. Sketch of the computational domain.
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In practice, the initial condition drives a transient regime that lasts
over 6 to 10 pitching periods (depending on the case considered), be-
fore the flow eventually reaches a time-periodic, vortex-shedding state,
as illustrated in Fig. 3 by the instantaneous snapshot of the vorticity
contours computed along the plate and in the wake for a pitching fre-
quency =k 3.8. In the benchmark computations discussed hereafter, all
time-averaged quantities are computed using a simple trapezoidal rule,
discretizing one period of the plate motion into at least 64 (and up to
128) equidistant snapshots after the periodic regime has been reached.

We assess first the relevance of the numerical approach by com-
paring the results obtained with meshes M1 and +M1 for identical plate
position with respect to the inflow, outflow and lateral boundaries as
used for the computations in [7]. As seen from Table 1, the difference is
in the grid refinement, as M1 has densities =m m( , ) (22, 25)x y points
per unit length (hence fine grid sizes 0.0014L and 0.0012L in the x- and
y- directions, respectively) while +M1 is generated with twice as many
grid points in each direction (cf. the values in Table 1).

The pressure and viscous stress results are shown in Fig. 4 for three
reduced frequencies =k 2.5, 3.8 and =k 5 and are seen to be almost
identical, which confirms that the M1 grid is sufficient to accurately
resolve the flow around the plate. There is also a very good agreement
with the results of [7] shown as well (the region r/L<0.1 is omitted in
these results, because the authors use a coordinate transformation to
map the physical coordinates into computational ones, which makes it

difficult to handle the leading edge singularity for this case of plate with
vanishing thickness). This overall agreement of the pressure and viscous
stresses is remarkable given the completely different resolution proce-
dures, and gives confidence that the present numerical approach is
sound. In [7], the plate’s motion is given by a simplified pitching
function

= −y x x α πft( ) sin(2 ) ,0 0 (6)

that can be seen as a leading-order approximation of (2) in the limit
where α0≪ 1 (in which case cos θ≡ 1 and sin θ≡ θ). This is likely to
explain the observed limited discrepancies along the plate, especially in
terms of the viscous stress distribution close to the leading edge. Also, in
the function (6) the leading and trailing edges have fixed x-coordinates,
which can be interpreted as a small numerical stretching of the plate
length, that takes the value +L α1 tan2

0 in the plate maximal peak
position. For the pitching angle = ∘α 100 considered herein, the
stretching is by ∼ 1.5%.

Before addressing the thrust scaling issue in the next section, the
influence of the spatial extent of the computational domain on the
computed mean force distribution is briefly examined. For this purpose,
four meshes M1, M2, M3 and M4 are built with the same densities

=m m( , ) (22, 25),x y the different mesh parameters being listed in
Table 1. For the meshes M1, M2, M3, the outflow boundary is kept at the
same distance 3.33L from the plate’s trailing edge, but the distance

Fig. 2. Example of the mesh structure, (a) in a subdomain lx× ly of the computational domain Lx× Ly (cf. Table 1); (b) zoom near the plate corresponding to the
rectangle drawn in (a).

Table 1
Mesh parameters for the computational domain sketched in Fig. 1.

M1 +M1 M2 M3 M4

Lx − L L[ 0.33 , 4.33 ] − L L[ 0.33 , 4.33 ] − L L[ 0.66 , 4.33 ] − L L[ 1 , 4.33 ] − L L[ 0.66 , 6 ]
Ly − L L[ 0.66 , 0.66 ] − L L[ 0.66 , 0.66 ] −L L[ , ] − L L[ 1.5 , 1.5 ] −L L[ , ]
Lx,s − L L[ 0.16 , 4.33 ] − L L[ 0.16 , 4.33 ] − L L[ 0.33 , 4.33 ] − L L[ 0.66 , 4.33 ] − L L[ 0.33 , 6 ]
Ly,s − L L[ 0.5 , 0.5 ] − L L[ 0.5 , 0.5 ] − L L[ 0.66 , 0.66 ] − L L[ 1.33 , 1.33 ] − L L[ 0.66 , 0.66 ]
mx 22 44 22 22 22
my 25 50 25 25 25
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between the inflow and the plate’s leading edge is increased from 0.33L
to L, whereas the distance between the lateral boundaries is increased
from 4L/3 to 3L. The results obtained only for the highest reduced
frequency =k 5 are provided in Fig. 5, the tendencies being the same
for the other pitching frequencies. We observe small but non-negligible
discrepancies between M1 and M2, meaning that the M1 results are not

entirely free from finite size effects (a conclusion already briefly drawn
in [7], although the authors did not report a convergence study). In
contrast, a near-perfect agreement is obtained between M2 and M3. The
influence of the outflow boundary remains to assess and in mesh M4, its
distance from the plate’s trailing edge has been increased to 5L, the
other parameters being those from M2. The result is shown in Fig. 5 as
the symbol and there is again an agreement with the M2 computations,
which justifies retaining M2 as the reference set-up from now on.

As mentioned before, for the benchmark comparisons the time-
averaging has been performed over one pitching period (once a periodic
regime reached), as in [7]. A thrust scaling analysis is undertaken in the
next section, by varying the pitching angle, the pitching frequency and
the pitch-pivot point location. There is however no guarantee, in par-
ticular for large pitching angles and frequencies, that an exact periodic
regime of the flow state is reached after the transient phase. The time
evolution of the thrust ∮ f r* dL p

1 (with = −f p n* ( )p x the pressure stress)

Fig. 3. Instantaneous snapshot of the (dimensionless) vorticity contours in the computational domain Lx× Ly (cf. Table 1) for a Reynolds number =Re 2000, a
reduced frequency =k 3.8, a pitching angle = ∘α 100 and a pitch-pivot point located at =q 1/3.

Fig. 4. Dimensionless mean pressure stress 〈 〉f *p and viscous stress 〈 〉f * ,μ com-

puted along the plate’s upper face as function of the distance r/L from the
leading edge, at the reduced frequency (a) =k 2.5, (b) =k 3.8 and (c) =k 5. For
all three plots, the Reynolds number is =Re 2000, the pitching angle is = ∘α 100

and the pitch-pivot point is located at =q 1/3. Results corresponding to mesh
M1 (resp. mesh +M1 ) are represented as the colored lines (resp. symbols × ). The
reference results of [7] are superimposed as the black lines.

Fig. 5. Dimensionless mean (a) pressure stress 〈 〉f *p and (b) viscous stress 〈 〉f * ,μ

computed along the plate’s upper face 0< r/L<1, at the reduced frequency
=k 5, for a Reynolds number =Re 2000, a pitching angle = ∘α 100 and a pitch-

pivot point located at =q 1/3. Results corresponding to meshes M1, M2 and M3

are shown as the solid blue, black dashed, and red dotted lines, respectively.
The result for mesh M4 is depicted by the symbol × . (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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for the highest pitching angle = ∘α 150 which will be considered in the
next section is shown in Fig. 6(a) over 10 pitching periods, once the
flow has settled down. For this example, the pitch-point location is

=q 1/3, and the reduced frequency =k 9 is high.
It is seen that indeed the time-signal is only approximately periodic

with respect to the pitching period T and one observes a small global
undulation. The mean pressure-stress along the plate’s upper face is
shown in Fig. 6(b), considering 1, 10 and 50 pitching cycles, respec-
tively, for the time-averaging procedure (with 70 equidistant snapshots
for one period). It is seen that besides differences of the mean stress
near the leading edge =r 0, the results are very close, whatever number
of cycles is considered. For instance, when averaging the signal in
Fig. 6(a) for the first period T shown one gets a value 0.2180, whereas
the mean value for an interval of 10T gives 0.2025 and for 50T one gets
0.2042, that is the difference is only about 6%. For the thrust analysis
discussed in the next section, the time-averaging has therefore been
performed over one pitching period, having verified also for other
parameter configurations, that a time-averaging over more than one
cycle (of course beyond the transient regime) has only a marginal effect
on the thrust prediction.

4. Thrust scaling

The reliability of the numerical solution procedure having been
assessed in the previous section, a parameter exploration for the
pitching plate is performed in view of a thrust scaling analysis. During
the pitching motion, the force exerted by the fluid on the plate has an
inertial reactive component, owing to the fluid accelerated by the body
motion. The inertial resistive force, that is the form drag, is zero for the
present zero-thickness plate and only the skin friction drag opposes the
thrust force.

For potential flow and in the limit of small pitching angles, the re-
action of the fluid accelerated by the body has been formulated in [53],
and the theoretical model of the induced local force (per unit span in
the present two-dimensional setting) reads (see also [54–56])

�= − ⎛
⎝

∂
∂

+ ∂
∂

⎞
⎠

∞r t
t

U
r

y r tf n( , ) ( , ) ,p th,

2

(7)

with � the added-mass coefficient and

= ± − θ θn ( sin , cos ) , (8)

the unit normal vector at the plate (with plus sign for the upper face of
the plate and minus sign for the lower face, consistently with the
convention used in Section 3). It is well known [57] that the added
mass per unit span of a plate with length L and moving normal to its
surface is equal to πρL2/4 which corresponds to

� = π ρL
4

, (9)

in the local force expression (7).
Substituting (2) for the y pitching displacement and (8) for the

normal vector n in (7), projecting in the negative streamwise x direc-
tion (for the thrust coefficient to be positive) and integrating along the
plate yields the following expression for the dimensionless theoretical
pressure thrust

∫ ∮=−
∞

F
ρU L T

r t r tf e* 1 1 ( , )· d d ,p th
T

th x, 2 0 (10)

=
− −

〈 〉 − 〈 〉

− 〈 〉

∞

∞

π L r r
U

θ θ θ θ θ

πL
U

θ θ θ

(( ) )
4

( ( ˙ sin ) ¨ cos sin )

˙ cos sin ,

0
2

0
2

2
2

(11)

where we denote by θ̇ the time derivative of the time-dependent
pitching angle. In the limit of small pitching angles, the term quadratic
in the angular velocity 〈 〉θ θ( ˙ sin )2 is of order α0

4 and is thus negligible in
comparison to the other two terms of order α ,0

2 hence, given that
=q r L/ ,0

= − − 〈 〉 − 〈 〉
∞ ∞

F πL
U

q θ θ θ πL
U

θ θ θ*
4

(1 2 ) ¨ cos sin ˙ cos sin .p th,

2

2 (12)

This expression can be written equivalently

= − +
∞ ∞

F C πL
U

q α π f C πL
U

α πf*
4

(1 2 ) 4 2 ,p th, 1
2

2 0
2 2 2

2 0
2

(13)

with

= −
〈 〉

= −
〈 〉

C
θ θ θ

α π f
C

θ θ θ
α πf

¨ cos sin
4

˙ cos sin
2

,1
0
2 2 2 2

0
2 (14)

allowing to write the thrust formula in terms of the reduced pitching
frequency as

= − +F C π q α k C πα k* (1 2 ) 2 .p th, 1 0
2 2

2 0
2

(15)

Equivalently, this formula can be expressed in terms of the Strouhal
number = ∞St Af U/ , where = −A q L α2(1 ) sin 0 is the trailing edge
peak-to-peak amplitude of motion. Since the small-pitching-angle as-
sumption underlies the derivation of formula (13), this gives

= − ∼ −St
π

q k α
π

q kα2 (1 ) sin 2 (1 )0 0 (16)

and thus

=
−
−

+
−

F C π q
q

St C π
q

Stα*
4

1 2
(1 )

1
1

.p th, 1
3

2
2

2
2

0
(17)

An expression similar to (17) has been proposed for instance in [11]
and generalized in [21] to finite-aspect-ratio pitching plates. In prac-
tice, the ideal values for C1 and C2, obtained retaining only the leading-

Fig. 6. Temporal evolution (a) of the integrated pressure stress ∮ f r* dL p
1 and

(b) the time-average 〈 〉f *p of the pressure stress along the plate’s upper face

0< r/L<1 using 1, 10 and 50 pitching cycles, at the reduced frequency =k 9,
pitching angle = ∘α 150 and pitch-pivot point at =q 1/3. The Reynolds number
is =Re 2000 and the M2 mesh has been used.
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order terms of cos θ and sin θ are

= 〈 〉 = = −〈 〉 =C πf C πf πfsin (2 ) 1
2

, sin(2 )cos(2 ) 0 .1
2

2 (18)

It is however unclear whether these theoretical values when used in
relations (15)–(17) fit actual experimental or numerical results. Several
recent studies derive a model equivalent to (17) setting =C 02 ; see, e.g.
the experimental investigation reported in [11]. It has however been
argued that there is no reason to set C1 and C2 equal to the ideal values,
because the fluid-plate dynamics is likely to introduce phase shifts be-
tween the periodic wall displacement and the induced fluid velocity
and acceleration.

In order to shed new light on this issue, 35 computations have been
performed by varying the pitching angle α0, from 5∘ up to 15∘ by in-
crements of 2.5∘ and the Strouhal number from 0.2 up to 0.5 by in-
crements of 0.05, with the Reynolds number remaining =Re 2000 and
the pitch-pivot point now at the leading edge ( =q 0). The small
pitching angle approximation is expected to hold, since =αmax{ } 0.26,0
meaning that the difference between sin α0 and α0 is at most 1.1%. For
every set of parameters, the simulations have been performed until a
periodic regime is achieved. The dimensionless pressure stress has been
integrated along the plate. In Fig. 7, the resulting dimensionless pres-
sure force

∮= 〈 〉F
L

f r* 1 * d ,p p (19)

is plotted as a function of the Strouhal number, with each symbol
corresponding to a different pitching angle. We observe that the thrust
force does not depend on St alone, but that the angle α0, although en-
tering in the definition of St, is to be considered as an independent
parameter. Note in particular that for a given Strouhal number, the
thrust diminishes with increasing angle, meaning that the coefficient C2

in (17) must be non zero and negative in order to fit the results with the
theoretical formula.

This is confirmed by a conventional least-square fit which provides
the coefficients C1, C2 in the scaling formula (17), such that the residual

∑ −F F(( *) ( * ) ) ,
j

p j p th j,
2

(20)

is minimal, where = ⋯j 1, 2, labels the 35 thrust samples obtained in
the (α0-St) parameter space (7 Strouhal numbers and 5 pitching angles).

The least-square procedure yields = = −C C0.332, 0.225,1 2 for
which the numerical results exhibit an excellent agreement with the
theoretical pressure thrust F* ,p th, shown as the horizontal axis in Fig. 8.
We recall that, according to the assumptions underlying the derivation
of the model (15)–(17), C1 is related to the time average between the

displacement and acceleration term, whereas C2 comes from the time-
average between displacement and velocity. Interestingly, the fitted
values are in the interval −[ 0.5, 0.5], but they are different from the
idealized values (0.5 and 0 respectively), highlighting the existence of
phase shifts between displacement, velocity and acceleration in the
present fluid-structure dynamics.

For the same pitching angles and Strouhal numbers as considered
above, the procedure has been repeated by varying the pitch-pivot
position q which also enters the scaling formulas (15)–(17). Concerning
aquatic motion, the Strouhal number (16) formed with the tail beat-
amplitude is the appropriate parameter (and it is in the range of 0.2 to
0.5 for diverse species of fish and cetaceans [58]). For the trailing-edge
excursion to be dominant over the leading-edge excursion during
pitching, pitch-pivot point locations have been chosen in the range
0≤ q≤ 0.4 and for the complete parameter space (St, α0, q) con-
sidered, the reduced frequency is in the range 1< k<15 according to
(16).

For each value of q, it is convenient to report in Fig. 9 the computed

Fig. 7. Computed time-averaged thrust F*p as function of the Strouhal number,
as obtained for pitching angles = ∘α 50 (* ), = ∘α 7. 50 (∘), = ∘α 100 (△),

= ∘α 12. 50 (□), = ∘α 150 (☆) at Reynolds number =Re 2000, with a pitch-pivot
point at the leading edge ( =q 0).

Fig. 8. Computed time-averaged thrust F*p against its theoretical counterpart
F*p th, computed from model (17) with =C 0.331 and = −C 0.222 . The various
symbols represent 35 data points obtained in the (α0-St) parameter space, by
considering 7 Strouhal numbers 0.2≤ St≤ 0.5, and 5 pitching angles = ∘α 50

(* ), = ∘α 7. 50 (∘), = ∘α 100 (△), = ∘α 12. 50 (□), = ∘α 150 (☆), for the Reynolds
number =Re 2000, and a pitch-pivot point at the leading edge ( =q 0); see
Fig. 7. The solid line corresponds to the bisector of the first quadrant angle.

Fig. 9. Computed time-averaged thrust F α*/p 0
2 as function of the reduced fre-

quency k. Seven different positions q of the pitch-pivot point have been con-
sidered, as indicated by the labels. For each label, the various symbols again
represent the 35 data points obtained at =Re 2000 in the (α0-k) parameter
space for the same 7 Strouhal numbers 0.2≤ St≤ 0.5 and 5 pitching angles
5∘≤ α0∘ ≤ 15∘ as in figure 7. The solid curves correspond to theoretical thrust
F α* /p th, 0

2 computed from model (15), with C1 and C2 coefficients (shown in
Fig. 10) optimized for each value of q through a least-square procedure.
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thrust values divided by α ,0
2 i.e., F α*/ ,p 0

2 as those should be close to a
second order polynomial in k, according to (15). Similar to Fig. 7, each
symbol in Fig. 9 indicates a given pitching angle, while the reduced
frequency k corresponds to a given Strouhal number according to (16).
For each pitch-pivot position, the F α*/p 0

2 data are seen to evolve along
distinct and separate curves, which is in agreement with (15). Also, the
thrust decreases for increasing distance of the pivot-point from the
leading edge, which is in qualitative agreement with experimental ob-
servations reported for instance in [59]. The solid lines in Fig. 9 cor-
respond to the theoretical formula F α* /p th, 0

2 obtained from (15), whose
C1 and C2 have been computed repeatedly for each pivot-point location
from a least-square fit over the 35 thrust samples obtained in the (α0-k)
parameter space. The obtained coefficients are reported in Fig. 10,
where one observes that the C2 coefficient varies quite significantly
with the pitch-pivot position, while the coefficient C1 remains ap-
proximately constant. As mentioned before, the C2 value is triggered by
the existence of phase shifts between the periodic wall displacement
and the induced fluid velocity and acceleration. The variation of C2 is
hence not too surprising, because there is no reason that such phase
shifts should remain identical over the whole parameter space, and in
particular over the whole range of pitch-pivot-point locations.

As can be seen in Fig. 10, the C2 values vary almost linearly with q
and a simple fit gives

= = − +C C q q0.33, ( ) 0.22 0.25 .1 2 (21)

Using these values in the formula (17), the Fig. 11 shows that the 245
samples (for the 7 pitch-pivot configurations, the 7 Strouhal numbers
and 5 pitching angles considered) match closely the theoretical pre-
diction shown as the horizontal axis.

It is recalled that this prediction relies on the theoretical model (7)
for the reaction of the fluid accelerated by the plate’s motion derived in
[53]. In [16], time-averaged thrust forces for a pitching airfoil have
been compared with Garrick’s theory [60] based on potential flow
formulas derived in [61], for an idealized airfoil represented as a
straight line. The time-averaged value of the propelling force Px is given
in [60], which also applies to variable pitch-pivot point positions. It
takes the following dimensionless expression with the present notations
for the pitching plate

⎜ ⎟
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− ⎞
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+ + ⎛
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⎤
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2
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2
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2

1
2

2

( ) 1 3
2

2 ,

x

2
0
2

2

2 2
2

2

(22)

F and G being function of the reduced frequency k involving Bessel

functions of the first and second kind given in [60]. The above formula
(with =q 0) has been shown in [16] to predict quite accurately the
thrust force and it has also been used for comparison with numerical
computations for a NACA airfoil with a pitch-pivot point at one quarter
chord in [14]. The effect of pivot axis location, including configurations
with pivot points ahead or downstream the airfoil, have also been ad-
dressed experimentally in [10] and compared with Garrick’s linear
theory. This scaling is compared in Fig. 12 with the scaling F*p th, using
the parameter values (21) in (15), for =q 0, 0.2, 0.4 and the different
pitching angles considered. It is seen, that for =q 0 and =q 0.2, Gar-
rick’s scaling is rather close to the prediction F*p th, and in particular for
higher k-values (the results only up to =k 8 are shown, in order to
better distinguish the differences for lower frequencies). For the pitch-
pivot point =q 0.4 Garrick’s curve however overpredicts the thrust.

The values of F and G in (22) are tabulated in [60] and are shown to
converge for increasing k towards 0.5 and 0, respectively. This yields
the asymptotic expression (setting =F 0.5, =G 0, =F k/ 02 in (22))

⎜ ⎟∼ ⎛
⎝

− + ⎞
⎠

P πk α
q q* 9

32
3
4 2

.x
2

0
2

2

(23)

For instance, it can be checked that for k≥ 3 this simplified formula
differs only about few percent from (22), when varying q from 0 to 0.4.
Using the expressions (21) for C1 and C2(q) in (15), this formula

Fig. 10. Coefficients C1 and C2 as function of the pitch-point position q for the
least-square fit between (17) and the computed time-averaged thrust (19). For
each value of q, the same Strouhal numbers 0.2≤ St≤ 0.5 and pitching angles
5∘≤ α0≤ 15∘ as in figure 7 have been considered. The broken line corresponds
to =C 0.331 and the solid line to = − +C q q( ) 0.22 0.252 .

Fig. 11. Computed time-averaged thrust F*p against its theoretical counterpart
F*p th, computed from model (17) with =C 0.331 and = − +C q q( ) 0.22 0.252 using
the full set of parameters (pitch-point position 0≤ q≤ 0.4, Strouhal number
0.2≤ St≤ 0.5, pitching angle 5∘≤ α0≤ 15∘), together with Reynolds number

=Re 2000. The solid line corresponds to the bisector of the first quadrant angle.

Fig. 12. Computed time-averaged thrust F α*/p 0
2 as function of the reduced fre-

quency k, against its theoretical prediction F*p th, given by (15) with =C 0.33,1

= − +C q q( ) 0.22 0.252 and compared with Garrick’s prediction (22), for three
different pitch-pivot point positions =q 0, 0.2, 0.4. The symbols for the
pitching angles 5∘≤ α0≤ 15∘ are the same as in Fig. 7.
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becomes

= − − −F πα k k q k k* [0.33 0.44 (0.66 0.5 )].p th, 0
2 2 2 (24)

For large k-values the k2 terms dominate and it is seen when comparing
with (23), that for q<0.2 the predictions are indeed close to Garrick’s
theory.

The dependence of C2(q) on q has been inferred from the results up
to =q 0.4 and extrapolating to =q 0.5 would give according to (24) a
negative thrust −F πα k* 0.19p th, 0

2 decreasing linearly with k. To verify if
this trend is retrieved in the computations, some simulations have been
performed with =q 0.5 and indeed the thrust values proved to be ne-
gative. For instance, for = ∘α 50 and =St 0.2 (that is =k 7.2), one finds

= −F* 0.028p and at = ∘α 150 and =St 0.4 (that is =k 4.8) one gets
= −F* 0.160p . The extrapolation would give the values − 0.032 and

− 0.186 which compare fairly well. Garrick’s formula however predicts
thrust which is still positive for =q 0.5 which shows the limit of a
possible comparison with potential flow theory.

Garrick’s general formula is rather complicated, while the scaling
formula F*p th, proposed here can easily be derived from the theoretical
expression (7) and it can easily be written in terms of the reduced
frequency or the Strouhal number. It has however to be emphasized
that while the parameter C1 in (15) appears to be independent of the
pitch-pivot point location q, a linear function C2(q) proved necessary
for a reliable scaling.

5. Concluding remarks

The present numerical investigation has shown that the combina-
tion of an easy-to-use Laplacian-based dynamic mesh procedure and the
physical modelling capabilities of OpenFOAM provides a powerful
numerical framework, particularly suitable for flow computations along
rigid objects moving with prescribed archetypal motions, like the
pitching motion considered here. Beyond the reported accuracy, the
solver is also efficient. Indeed, the running time needed to ensure
convergence of the mean force distributions with the M2 mesh (that is
1.5× 105 grid points; see Table 1) is about 50 min using 16 cores (Dell
PowerEdge C6420) on the HPC cluster of Aix-Marseille Université. An
extensive parameter investigation could therefore be performed, with
245 simulations spanning 7 oscillation frequencies, 5 pitching angles,
and 7 pivot-point position. The propulsive performance has been sys-
tematically and reliably assessed, and a thrust analytical model (17) has
been successfully fitted with the generated data set. This thrust model
could easily be derived and its expression is a fairly simple function of
the three pitching parameters.

One key approximation underlying the latter thrust scaling is the
purely potential formulation needed to estimate the theoretical pressure
thrust (7), while all results so far have been obtained for the finite
Reynolds number =Re 2000. Additional simulations have been per-
formed at =Re 1000 and =Re 3000 to assess the sensitivity of the
pressure stress to finite Reynolds number effects. The results obtained
for a reduced frequency =k 5, pitching angle = ∘α 100 and pitch-pivot
point at =q 1/3 are shown in Fig. 13, where the pressure stress dis-
tribution is seen to remain the same, regardless of the value of the
Reynolds number. This gives confidence that the present pitching thrust
scaling has some general significance when viscous flow is considered,
at least for values of Re above a certain threshold.

In concluding this study, the viscous drag along the moving plate is
also addressed, as it opposes the thrust generated by the pressure stress
at a finite Reynolds number (the form drag is zero in the present case of
a zero-thickness plate), meaning that the true propulsive performance
of the pitching plate does not solely depend on the scaling laws dis-
cussed in the previous section. In an attempt to quantify the viscous
drag, the mean viscous stress distribution 〈 〉f *μ computed at =Re 2000
has been integrated along the plate. It is recalled that the convergence
of this flow quantity has been assessed in Section 3 (see Fig. 4). In
Fig. 14, the resulting dimensionless viscous drag force

∮= 〈 〉F
L

f r* 1 * d ,μ μ (25)

is plotted as a function of the Strouhal number for the lowest and
highest pitching angle considered, that is 5∘ and 15∘, respectively, for a
pitch-pivot point at the leading edge ( =q 0). We observe that the drag
is systematically larger (in magnitude) for the smallest angle, i.e., when
the reduced frequency at a given Strouhal number is higher, according
to relation (16). Fig. 14 also shows the Blasius friction drag formula
− 1.33/ Re often used in the literature to estimate the laminar, skin
friction of a slender body oscillating in a uniform flow; see for instance
the experimental results reported in [62,63] for Reynolds numbers in
the range from 103 to 104, similar to those considered herein. For

=Re 2000, the Blasius formula gives a viscous drag of − 0.03, which is
consistent with the values ranging from − 0.02 to − 0.04 obtained for

= ∘α 150 . Conversely, the results obtained for = ∘α 50 departs increas-
ingly and significantly from the Blasius prediction as St increases, up to
150% at =St 0.5.

For the lowest Strouhal number =St 0.2, it can be seen in Fig. 15(a)
that the viscous stress distribution does approximately follow the
Blasius law − r L0.33/ Re / shown as the black-dotted line (the singular
point =r 0 being omitted), if one excepts the regions near the leading
and trailing edges. The steep slope near =r 0 in the values for both
angles is the mark of the singularity at the leading edge. The dis-
crepancy with the Blasius prediction in the rear part of the plate is due
to the fact that the flow accelerates on average as it approaches the

Fig. 13. Dimensionless mean pressure stress 〈 〉f *p computed along the plate

upper face as function of the distance r/L from the leading edge for a reduced
frequency =k 5, a pitching angle is = ∘α 100 and a pitch-point position =q 1/3
at =Re 1000 (—), =Re 2000 (- - -) and =Re 3000.

Fig. 14. Computed time-averaged viscous drag F*μ as function of the Strouhal
number, for pitching angles = ∘α 50 (* ) and = ∘α 150 (☆), together with a
Reynolds number =Re 2000, and a pitch-pivot point at the leading edge
( =q 0). The straight line corresponds to the Blasius friction drag formula
− = −1.33/ Re 0.03 at =Re 2000.
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trailing edge and 〈 〉f *μ increases accordingly (in magnitude). This effect
however becomes larger with the pitching frequency, as seen in
Fig. 15(b) for the Strouhal number =St 0.5, and it is especially steep for

= ∘α 50 (note that for a better comparison between the results for both
Strouhal numbers, Fig. 15(b) is cut at the lowest value 〈 〉 = −f * 0.2,μ even
though the skin friction still continues to decrease when r/L approaches
1). This likely explains why the Blasius estimate of the viscous drag
force is off by a factor of almost 3. The viscous stress distribution for

= ∘α 150 at the high pitching frequency is more complex, because of the
averaged flow field separation occurring at the leading edge. The latter
is visible in Fig. 15(b) from the positive stress values in the range 0< r/
L<0.3, and somehow compensates the increase in the trailing-edge
friction. This explains the relative agreement with the Blasius value
seen in Fig. 14 for this pitching frequency. However, the intensity of the
separation along oscillating boundaries can hardly be generally esti-
mated. Note, that as shown in [64], the viscous drag even for vanishing
frequencies depends on the pitching angle. Blasius scaling laws hence
hardly provide reliable drag scaling for large span-to-chord aspect ratio
flapping plates (the present two-dimensional configuration being a limit
case). This is even more true for plates with small aspect ratios, whose
skin friction is considerably modified by the oscillating boundary (with
regard to a motionless plate). This has been put forward by the Bones-
Lighthill boundary-layer thinning hypothesis [65], and further ratio-
nalized in [66].
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Appendix A. OpenFOAM dynamic mesh dictionary

This Appendix aimed at the OpenFOAM users community describes
the various steps needed to use the build-in Laplacian-based dynamic
mesh support. The reader interested in further technical details is re-
ferred to [44,45]. The file structure of a classical OpenFOAM set-up is
reproduced above. The mesh is created in the MeshFiles directory, and
the files controlDict, fvSchemes and fvSolution are systems files, speci-
fying respectively the run control parameters, discretization schemes
and equation solvers. The blockMeshDict is the file where the domain
and the patch names are created, and the snappyHexMeshDict refines the
domain and “snaps” the object geometry given by an.obj file (here the
plate, created with the software Blender [67]). Boundary layer zones
can be defined in the vicinity of the plate for further mesh refinements.
Once the geometry and the mesh have been created, they must be
imported in the runFiles directory with the help of the extrudeMeshDict
file. The initial and boundary conditions for the velocity and the pres-
sure are set in the U and p files. In the transportProperties the kinematic
viscosity is set and in the turbulenceProperties file the simulation type
must be specified (here “laminar”). The pointVectorField class and the
displacementLaplacian solver are included in the dictionary file dyna-
micMeshDict with the diffusivity model (inverseDistance in our case). The
type of the object motion is chosen in pointDisplacement, here

Fig. 15. Dimensionless mean viscous stress 〈 〉f *μ computed along the plate’s

upper face as function of the distance r/L from the leading edge for (a) =St 0.2
and (b) =St 0.5. For both figures, the curves for the angles = ∘α 50 (—) and

= ∘α 150 (- - -) are shown. The pitch-pivot point is at the leading edge ( =q 0),
the Reynolds number is =Re 2000. The Blasius formula − r L0.33/ Re( / ) is
shown as well as the dotted line.
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angularOscillatingDisplacement for a pure pitching motion.
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