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Biomechanical analysis of segmental lumbar lordosis and risk of cage 1 

subsidence with different cage heights and alternative placements in 2 

transforaminal lumbar interbody fusion 3 

 4 

Abstract 5 

Cage subsidence in transforaminal lumbar interbody fusion (TLIF) is one of the 6 

concerns. The objective was to numerically assess the resulting segmental lumbar 7 

lordosis (SLL) and stresses at the bone-cage interface as functions of cage height 8 

(8- vs. 10-mm) and cage placement (oblique asymmetric, vs. anterior symmetric) 9 

for normal and. osteoporotic bone quality. A L4-L5 detailed finite element model 10 

of TLIF.was subjected to the functional loadings of 10 Nm in the physiological 11 

planes after the application of a 400 N follower-load. The SLL was increased by 12 

0.9° (11%) and 1.0° (13%), respectively in oblique asymmetric and anterior 13 

symmetric cage placement with 8-mm height; they were 1.4° (18%) and 1.7° (21%) 14 

for the 10-mm cage. The maximum stresses at the cage-bone interface, in normal 15 

bone model, were increased up to 16% and 41% with the 10-mm cage and 16 

asymmetric oblique placement, respectively, and they increased up to 16% and 17 

43% in osteoporotic bone model. The greater cage resulted to a higher simulated 18 

SLL. Oblique asymmetric placement and the use of a greater cage may increase 19 

the risk of cage subsidence. Due to the lower mechanical strength of osteoporotic 20 

bone, the risk of cage subsidence should be higher. 21 

 22 
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Introduction 1 

Transforaminal lumbar interbody fusion (TLIF) is a surgical procedure to restore the 2 

intervertebral body height, the lumbar lordosis (LL), and spinal stability. This involves 3 

the removal of the nucleus pulposus (NP) and a portion of the annulus fibrosus (AF), 4 

followed by decompression of the segment and the placement of an interbody cage 5 

through a unilateral approach. This is aimed at achieving an anterior interbody fusion in 6 

addition to the posterior one by a solid segmental fixation (Agrawal and Resnick 2012; 7 

Gum et al. 2016).  8 

One of the mechanical complications of the TLIF surgical intervention is cage 9 

subsidence, a situation where a cage enters into the vertebral body and consequently 10 

results in the loss of intervertebral body height and segmental lumbar lordosis (SLL) 11 

created intraoperatively by the instrumentation. Cage subsidence rates associated with 12 

different cage designs and surgical techniques were reportedly from 10% to 38% (Le et 13 

al. 2012; Malham et al. 2015; Lee et al. 2017). A cadaveric experimental study reported 14 

that the subsidence stiffness and subsidence force with TLIF were significantly lower 15 

(p<0.01) than those for anterior (ALIF) and lateral (LLIF) lumbar interbody fusion 16 

(Palepu et al. 2019). Several risk factors of cage subsidence in TLIF have been 17 

identified, such as cage geometry (shapes and sizes) (Cho et al. 2008; Le et al. 2012; 18 

Agarwal et al. 2013; Faizan et al. 2014; Kim JT et al. 2015; Deng et al. 2016; Kim CW 19 

et al. 2016), single cage vs. paired cages (Xu et al. 2013), use of unilateral posterior 20 

fixation vs. bilateral one (Chen et al. 2012; Ambati et al. 2015), and trabecular bone 21 

volume fraction (Palepu et al. 2019). 22 

Biomechanical analysis using finite element models showed that a larger cage 23 

footprint (e.g., 490 vs. 280 mm2) allowed to bear about 300% more functional load and 24 

reduced the maximum stresses by about 50%, resulting in a lower risk of cage 25 
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subsidence (Faizan et al. 2014). Biconvex shapes were shown to allow better cage 1 

fitting, but with loads more concentrated in the medial region of the endplates with 2 

relatively lower mechanical strength than peripheral cortical bone, thus higher risk of 3 

cage subsidence (Cho et al. 2008). Using paired- vs. single-cage configurations resulted 4 

in 55.2% lower stress at the bone-cage interface (49.77 vs. 77.23 MPa) and 5 

subsequently lower risk of cage subsidence (Xu et al. 2013). 6 

A thicker cage is generally more effective for SLL restoration, but requires more 7 

intervertebral  distraction for its placement, which increases the risk of cage subsidence 8 

due to the higher compressive forces at the bone-cage interface (8.8 N with 6-mm cage 9 

vs. 21.5 N with 8-mm cage in a biomechanical experiments using cadaveric lumbar 10 

spines) (Truumees et al. 2008; Le et al. 2012). Clinical studies showed that a kidney-11 

shape cage placed 16% more anteriorly vs. a medial placement of a bullet-shape cage, 12 

resulted in an SSL increase of 2.11⁰ (Kim JT et al. 2015) and reduced the risk of cage 13 

subsidence by shifting the bone-cage contact more to the peripheral region of the 14 

endplates with superior mechanical strength. The results of a controlled cadaveric test 15 

reported that using shorter cage (with length of 22- vs. 27-mm) in TLIF can potentially 16 

restore the segmental lordosis up to 8.7° (Robertson et al. 2018). Wedged cages (vs. flat 17 

cages) are reported to allow better lordosis restoration; increasing the wedge angle from 18 

4° to 15°, and increased the resulting SLL from 2.6° to 6.5° (Hong et al. 2017). 19 

Clinical studies, experiments using cadaveric spines, and numerical analyses 20 

have been done on the use of interbody cages of different shapes, configurations, and 21 

heights. However, the effects of essential cage parameters are not yet fully understood; 22 

therefore, systematic biomechanical investigations remain to be performed to acquire 23 

comprehensive biomechanical facts to help realize and reduce the risk of cage 24 

subsidence. The objective of this study was to numerically assess the biomechanics of 25 
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TLIF in terms of the resulting SLL and stresses at the bone-cage interface as functions 1 

of the cage height and its placement strategy with two tested bone qualities. This 2 

objective aims at comparing two common cage placement strategy in surgical procedure 3 

while surgeon may choose between two cages with different heights.  4 

 5 

Material and methods 6 

Finite element model of the L4-L5 segment 7 

A detailed finite element model (FEM) of L4-L5 functional spinal unit was created 8 

based on a previously developed and validated FEM of the spine (El-Rich et al. 2008; 9 

El-Rich et al. 2009) (Figure 1a). The FEM was adapted and refined to simulate the 10 

biomechanics of the TLIF, including intervertebral space preparation, cage insertion, 11 

and posterior fixation (Agrawal and Resnick 2012; Gum et al. 2016). The geometric 12 

model of the spine was reconstructed using medical images acquired through a CT-scan 13 

(0.6 mm slice thickness) of a 50th percentile healthy man (El-Rich et al. 2008; El-Rich 14 

et al. 2009). The model consisted of the vertebral body (cancellous and cortical bones), 15 

posterior arches, intervertebral disc, facet joints, and seven ligaments, i.e. the anterior 16 

longitudinal ligament (ALL), posterior longitudinal ligament (PLL), ligamentum flavum 17 

(LF), capsular ligaments (CL), intertransverse ligament (ITL), interspinous ligament 18 

(ISL), and supraspinous ligament (SSL) (Figure 1a).  19 

Each vertebra was meshed with 4-node solid elements, representing the 20 

trabecular bone enveloped by a layer of cortical bone with changing thickness in five 21 

regions: endplates and anterior walls of the vertebral body (0.4 mm), upper pedicle (2 22 

mm), lower pedicle (1.87 mm), posterior processes (1 mm), and insertion area of 23 

pedicle screws (0.8 mm) (Silva et al. 1994; Hirano et al. 1997; Bianco et al. 2017) 24 
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(Figure 1b). The AF was modelled with five concentric layers of 8-node solid elements 1 

between the two vertebrae, reinforced by spring elements to simulate the collagen fibres 2 

oriented at ±35°. The NP was meshed with 8-node elements. All ligaments were meshed 3 

with 4-node shell elements, except the CL, which was represented by 3-node shell 4 

elements. To balance the computation cost and analysis accuracy for this study, we 5 

performed a mesh convergence study to determine adequate element sizes (Figure 1a 6 

and Figure 1b). 7 

Non-linear material properties were implemented to model the mechanical 8 

behaviour of the spinal elements in physiological loading conditions. The cortical and 9 

trabecular bones were modelled as homogenous isotropic materials governed by the 10 

elastoplastic Johnson-Cook constitutive law (Wagnac et al. 2012). The NP and AP were 11 

modelled as Mooney-Rivlin hyperelastic material while collagen fibres were 12 

incorporated as one-dimensional spring elements acting in tension only. The non-linear 13 

behaviour of the spinal ligaments was modelled with a generalized Maxwell-Kelvin-14 

Voigt constitutive law, and the failure criteria was incorporated based on the maximum 15 

tensile strain level (Wagnac et al. 2012). The material properties of the elements were 16 

initially defined using numerical results from the literature (Tables 1, 2, and 3). Material 17 

properties of osteoporotic bone were modelled by reducing Young’s modulus of cortical 18 

(33%) and trabecular bone (66%) (Polikeit et al. 2003; Salvatore et al. 2018). To model 19 

the zygapophyseal facet joints, a general purpose contact was used with an initial gap of 20 

0.5 mm (Faizan et al. 2014) and Coulomb friction coefficient of 0.2 (Li et al. 2015) 21 

between the two facets of the articulation. Tied contacts were modelled between the 22 

ligaments and cortical bone at their attachment sites. The mechanical properties of the 23 

aforementioned modelling elements were adjusted and calibrated such that the load-24 

displacement results of functional loading simulations corresponded to the results from 25 
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experiments on cadaveric lumbar spines (Heuer et al. 2007). To validate the FEM, the 1 

ROMs of the intact model under simulated pure bending of 8 Nm in flexion-extension, 2 

lateral bending, and axial rotation were compared with the reported ROMs of similar 3 

experimental cadaveric tests (Dahl et al. 2013; Jaramillo et al. 2016). To support the 4 

decisions in the context of use (COU) which was the risk of cage subsidence in TLIF, 5 

the credibility of developed FEM was stablished. For this purpose, the assumption and 6 

model inputs were tested in their ranges to assure that the results are still applicable to 7 

the COU with the quantified uncertainty of the predictions. 8 

 9 

Simulation of TLIF procedure 10 

The surgical procedure of TLIF was modelled by partial discectomy through the 11 

unilateral approach was modelled by removing the elements corresponding to the 12 

posterior-left portion of the AF and NP. A facetectomy was simulated by removing the 13 

elements corresponding to the zygapophyseal joint to virtually make a window for the 14 

cage insertion (Figure 2Error! Reference source not found.a). Four pedicle screws (40 15 

mm long, 6.5 mm diameter; CD HORIZON® LEGACYTM, Medtronic, Memphis TN) 16 

were modelled as rigid bodies, and their external surfaces were meshed with triangular 17 

shell elements. They were aligned with their corresponding vertebra based on a typical 18 

lumbar pedicle screw insertion technique (Agarwal et al. 2013; Bianco et al. 2017). To 19 

identify the proper element size, a mesh convergence study initially was conducted by 20 

testing various element sizes (from 0.5 to 1.5 mm) at the endplate-cage interface of the 21 

oblique asymmetric placement of 10-mm cage, up until the variation of the maximum 22 

Von-Mises stress at the bone-cage interface was lower than 5%.  Boolean operations 23 

between the screw and the vertebral models were performed to remove the cortical layer 24 



8 

 

and trabecular core model elements (Bianco et al. 2017). A point-to-surface contact 1 

with a Columb friction of 0.2 was modelled to represent the bone-screw interface. 2 

The interbody cage models were based on a generic cage (CAPSTONE® 3 

interbody cage, Medtronic, Memphis TN). The length and width of the models were 26 4 

mm and 10 mm, respectively. Two cage heights were tested, i.e. 8 and 10 mm. For each 5 

model, we tested the oblique asymmetric and anterior symmetric placements, a total of 6 

four interbody cage scenarios (Figure 3). The cages were meshed with 4-node 7 

tetrahedral elements of 1.0 mm, and material properties of polyether-ether-ketone 8 

(PEEK) were assigned (E=3.4 GPa and ν=0.4 (Faizan et al. 2014)). The modelling of 9 

the cage insertion was based on the documented surgical technique (Agarwal et al. 10 

2013). First, the cage model was aligned to the superior endplate of L5, and a node-to-11 

surface contact with a minimum distance of 0.5 mm and Columb friction coefficient of 12 

0.2 was applied to the interface. Then, a distractive force was applied between L4 and 13 

L5 such that the intervertebral body space increased and there was no interference 14 

between the cage and endplate geometries. Finally, the loads were released after node-15 

to-surface contact was modelled between the cage and the adjoining endplates (Figure 16 

2b). The SSL was assessed before and after the simulation of the cage placement by 17 

measuring the angle between the superior endplate of L4 and inferior endplate of L5 18 

(Hong et al. 2017). After the simulation of the cage insertion, two titanium rod (4.5 mm) 19 

models were aligned with screw head saddles and tied contacts were modelled between 20 

them to simulate the posterior fixation (Figure 2c). The rods were meshed with 4-node 21 

tetrahedral solid elements of 0.5 mm characteristic length, and the material properties of 22 

Titanium alloy were adapted from literature (E=115 GPa and ν=0.34 (Faizan et al. 23 

2014)). 24 
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The resulting FEM was used to simulate physiological loading. The body weight 1 

was modelled as a 400 N follower-load to the superior elements of L4 with the inferior 2 

endplate of L5 fixed in space.  A 10-Nm functional load was simulated in the three 3 

anatomical planes, respectively, to simulate flexion (Fe), extension (Ex), right lateral 4 

bending (RLB), left lateral bending (LLB), right axial rotation (RAR), and left axial 5 

rotation (LAR). The ROM and maximum Von-Mises stresses were computed as a 6 

measure of the risk of cage subsidence. 7 

All the simulations were performed using the RADIOSS v14.0 finite element 8 

package (Altair Engineering Inc., Troy, USA) in a quasi-static condition (Bianco et al. 9 

2017).  10 

 11 

Results  12 

The resulting ROMs of the non-instrumented FEM of the L4-L5 segment were 9.3°, 13 

7.6°, and 4.1° in flexion-extension, lateral bending, and axial rotation, respectively. 14 

These results were within the range of reported ROM of experimental cadaveric studies 15 

in the literature (Dahl et al. 2013; Jaramillo et al. 2016) (Figure 4). With the simulated 16 

normal bone quality, the anterior symmetric and oblique asymmetric placement of the 17 

cages increased the SLL by 0.9° and 1.0°, respectively, for the 8-mm height cage, and 18 

by 1.4° and 1.7° for the 10-mm one. SLL restorations with simulated osteoporosis were 19 

within 1.2% to those with the normal bone quality. With normal bone, the simulated 20 

ROMs of the FSU after the TLIF procedure were lower than 1° in all loading directions, 21 

while they ranged from 2° to 8°with the un-instrumented FSU (Figure 5a). With 22 

simulated osteoporosis, the ROMs were slightly (about 8%) higher than those with 23 

normal bone (Figure 5b). Oblique asymmetric vs. anterior symmetric placement 24 
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increased the ROM by 66% and 72% for the simulated normal and osteoporotic bone, 1 

respectively. Insertion of the 8-mm cage vs. the 10-mm one increased the ROM of the 2 

instrumented segment up to 43% and 48% in simulated normal and osteoporotic bone 3 

models, respectively. 4 

For the 8-mm cage with normal bone quality, the maximum stresses at the bone-5 

cage interface ranged from 82.1 to 98.4 MPa (anterior symmetric placement) and from 6 

117.9 to 155.5 MPa (oblique asymmetric placement) (Figure 6a). For the 10-mm cage, 7 

they were from 88.2 to 107.2 MPa (anterior symmetric) and between 134.4 and 176.4 8 

MPa (oblique asymmetric) (Figure 6a). With osteoporosis, stresses at the bone-cage 9 

interface were about 2.5% lower (Figure 6b). Oblique asymmetric as compared to the 10 

anterior symmetric cage placement increased the maximum stresses by up to 41% and 11 

43% for the simulated normal and osteoporotic bone, respectively. Insertion of the 10-12 

mm cage vs. the 8-mm one increased the maximum stresses by up to 16% in simulated 13 

normal and osteoporotic bone models. The stress on the superior endplate of L5 is 14 

displayed on Figure 7 for the 4 tested configurations under simulated flexion moment of 15 

10 N m and 400 N follower-load. 16 

For the 8-mm cage with normal bone quality, the maximum stresses in the 17 

posterior rods were between 128.9 and 230.3 MPa (anterior symmetric) and between 18 

114.9 and 326.6 MPa (oblique asymmetric) (Figure 8a). For the 10-mm cage, they 19 

ranged from 60.3 to 218.0 MPa (anterior symmetric) and from 69.6 to 262.5 MPa 20 

(oblique asymmetric) (Figure 6a). With osteoporosis, stresses in the posterior rods 21 

increased up to about 120% (Figure 8b). Oblique asymmetric vs. anterior symmetric 22 

placement increased the maximum stresses by up to 55% and 48% for the simulated 23 

normal and osteoporotic bone, respectively. In simulations with oblique asymmetric 24 

placement, stresses in the rod on the opposite side of the cage were higher than the other 25 
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rod. Insertion of the 8-mm cage vs. the 10-mm one increased the maximum stresses up 1 

to 59% and 54% in simulated normal and osteoporotic bone, respectively. 2 

 3 

Discussion  4 

A larger SLL restoration was observed in the simulations with a 10-mm vs.  8-mm cage. 5 

This was expected from a geometric point of view because greater cage height means 6 

greater anterior intervertebral distance, thus higher SLL. Consequently, stresses at the 7 

bone-cage interface in simulations of 10-mm cage were always higher than the 8-mm 8 

cage. Cages of greater height required more intervertebral distraction for its proper 9 

placement, which initiated a higher compression force at the bone-cage interface 10 

generated by the tightening of the soft tissues, which translated in higher structural 11 

stiffness and lower ROM due to the non-linear mechanical behaviour of the 12 

intervertebral ligaments. This could explain why the maximum stresses in the rods with 13 

the 10-mm cage were lower than the 8-mm cage. The stresses generated by the 14 

compression forces as a function of cage height agreed with the reported experiments 15 

with cadaveric lumbar spines (Truumees et al. 2008; Ambati et al. 2015).  16 

The simulated SLL restoration with the anterior symmetric cage placement was 17 

very close to that with the oblique asymmetric placement, but the maximum stresses at 18 

the bone-cage interface with anterior symmetric placement were consistently lower than 19 

those with oblique asymmetric placement. This may be explained by the fact that the 20 

resultant force at the bone-cage interface with anterior symmetric placement has a 21 

longer lever arm with respect to the posterior fixation, providing a mechanical 22 

advantage to balance the external loads. In this standpoint, with the use of similar 23 

interbody cage footprints and in the presence of a smaller compression force at the 24 

bone-cage interface, lower stress is expected with the anterior cage placement. 25 
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Compared with oblique asymmetrical placement, the anterior symmetrically placed 1 

cage had more bone-cage contact area in the anterior part of the intervertebral body 2 

space (Figure 4) where the endplates have superior mechanical strength (Tsitsopoulos et 3 

al. 2012; Faizan et al. 2014). Increased stresses due to oblique asymmetric vs. anterior 4 

symmetric (41%) seems to have a significant effect on the stress distribution at the 5 

bone-cage interface. This difference is clinically important because the maximum stress 6 

at the interface, in some cases, exceeds the failure stress of cortical bone (126 MPa) 7 

(Hansen et al. 2008). On the other hand, using 10-mm cage does not significantly affect 8 

the risk of subsidence since the value of the maximum stresses are still below the failure 9 

stress of cortical bone. With the oblique asymmetric placement, reaction forces from the 10 

rods had, therefore, shorter lever arms with respect to the cage centre – fulcrum point 11 

between the upper and lower vertebral bodies, resulting in a higher stress in the rods to 12 

balance the loads. 13 

There was no difference in SLL restoration between normal and osteoporosis 14 

bones. Although the maximum stresses at the bone-cage interface for the simulated 15 

osteoporosis were identical to those of modelled normal bone, the risk of cage 16 

subsidence should be higher because the osteoporotic bones also have between 20% to 17 

40% lower mechanical strengths due to decreased bone mineral density (Dickenson et 18 

al. 1981; Bono and Einhorn 2003). Also, clinical studies showed that the risk of cage 19 

subsidence in osteoporosis spines was about 3 times higher than in spines with normal 20 

bone (Formby et al. 2016; Oh et al. 2017). The simulated osteoporosis bones had lower 21 

stiffness and provided less support of the functional loads as compared to the normal 22 

bones, making the rods subjected to higher loads and stresses. 23 

Some simplifications and approximations were made in the modelling and 24 

simulations in this study (i.e. the cortical and trabecular bones were modelled as 25 
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homogenous isotropic materials, the geometry and mechanical properties of the FSU 1 

were based on a generic 50th model, and screw insertion was model as a geometric 2 

Boolean operation between the screw and the vertebral models and with a contact 3 

definition between the two). These modelling simplifications and approximations are 4 

considered to have limited effects on the conclusions because this study focused on the 5 

relative effects of the cage height, cage placement and bone quality which are common 6 

in TLIF for most of the cases. The presented modelling technique might be adapted to 7 

examine the biomechanics of multi-level TLIF, as well as the performance of any other 8 

interbody cages in terms of risk of cage subsidence.  9 

 10 

Conclusion  11 

A detailed FEM was developed to simulate the biomechanics of the TLIF procedure.  12 

The FEM allowed the assessment of the effects of the cage height, cage placement, and 13 

bone quality on the SLL restoration and risk of the cage subsidence. It was found that 14 

10- vs 8-mm cage height resulted in up to 0.7° higher SLL restoration and 16% higher 15 

stresses at the bone-cage interface. Oblique asymmetric placement vs. anterior 16 

symmetric placement had almost similar SLL restoration, but the stresses at the bone-17 

cage interface were up to 43% higher. Bone quality did not affect the achieved SLL; a 18 

higher risk of cage subsidence is expected for the osteoporotic spines although the 19 

maximum stresses at the bone-cage interface were 2.5% lower. The FEM presented in 20 

this study was shown to be a relevant tool to assess the biomechanics of TLIF. It could 21 

be further adapted to further assess the biomechanics of any interbody cage design, as 22 

well as to evaluate reported clinical findings towards the improvement of the TLIF 23 

procedure.  24 
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List of figures 1 
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seven spinal ligaments, and intervertebral disc; b) regional thickness of the cortical bone 3 

and finer mesh of the trabecular bone around the screw imprint ALL: Anterior 4 

Longitudinal ligament, PLL: Posterior Longitudinal Ligament, ITL: Intertransverse 5 

Ligament, CL: Capsular Ligament, LF: Ligament Flavum, ISL: Interspinous Ligament, 6 

SSL: Supraspinous Ligament, AF: Annulus Fibrosus, NP: Nucleus Pulposus. 7 
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Figure 2 Simulation of different surgical procedures of TLIF: (a) Partial discectomy and 9 

facetectomy of L4-L5, (b) Cage placement by imposing distractive force and moment on 10 

L4, while the inferior endplate of L5 was fixed in space, and (c) Implementation of the 11 

posterior fixation followed by application of the follower-load and physiological 12 

moments (flexion, extension, lateral bending, and torsion) on the superior endplate of L4 13 

while the inferior endplate of L5 was fixed in space. 14 

Figure 3 Simulated placement scenarios of the cage: (a) Oblique asymmetric: (b) 15 

Anterior symmetric. 16 

Figure 4 Simulated ROM of the FEM of L4-L5 segment was within the reported range 17 

of similar experimental tests on human cadaveric spines (Dahl et al. 2013; Jaramillo et al. 18 

2016). 19 

Figure 5 Range of motion (ROM) of the instrumented spinal segment in different 20 

loading directions for normal (a) and osteoporotic (b) bone models (A08/A10: Oblique 21 

asymmetric placement of 8/10-mm cage; S08/S10: Anterior symmetric placement of 22 

8/10-mm cage). 23 
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Figure 6 Maximum Von-Mises stress at the endplate-cage interface in different loading 1 

directions for normal (a) and osteoporotic (b) bone model (A08/A10: Oblique asymmetric 2 

placement of 8/10-mm cage; S08/S10: Anterior symmetric placement of 8/10-mm cage). 3 

Figure 7 Stress (in MPa) on the superior endplate of L5 under simulated flexion 4 

moment of 10 N m and 400 N follower-load. 5 

Figure 8 Maximum Von-Mises stress in the posterior rods in different loading directions 6 

for normal (a) and osteoporotic (b) bone models (A08/A10: Oblique asymmetric 7 

placement of 8/10-mm cage; S08/S10: Anterior symmetric placement of 8/10-mm cage) 8 
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