

Biomechanical analysis of segmental lumbar lordosis and risk of cage subsidence with different cage heights and alternative placements in transforaminal lumbar interbody fusion

Sajjad Rastegar, Pierre-Jean Arnoux, Xiaoyu Wang, Carl-Éric Aubin

▶ To cite this version:

Sajjad Rastegar, Pierre-Jean Arnoux, Xiaoyu Wang, Carl-Éric Aubin. Biomechanical analysis of segmental lumbar lordosis and risk of cage subsidence with different cage heights and alternative placements in transforaminal lumbar interbody fusion. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23 (9), pp.456-466. 10.1080/10255842.2020.1737027. hal-03242397

HAL Id: hal-03242397 https://amu.hal.science/hal-03242397

Submitted on 31 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 1 Biomechanical analysis of segmental lumbar lordosis and risk of cage
- 2 subsidence with different cage heights and alternative placements in
- 3 transforaminal lumbar interbody fusion
- 4 Sajjad Rastegar ^{a,b,c}, Pierre-Jean Arnoux Ph.D. ^{c,d}, Xiaoyu Wang Ph.D. ^{a,b,c},
- 5 Carl-Éric Aubin Ph.D., P.Eng. a,b,c*
- ^a Department of Mechanical Engineering, Polytechnique Montréal, Canada; ^bSainte-Justine
- 7 University Hospital Center, Montreal, Canada; c iLab Spine International Laboratory –
- 8 Spine Imaging and Biomechanics, Canada/France; ^dLaboratoire de Biomécanique
- 9 Appliquée, UMRT24 IFSTTAR/Aix-Marseille Université, Marseille, France

- 11 Corresponding author:
- 12 Carl-Éric Aubin, Ph.D., P.Eng.
- 13 Full Professor
- 14 NSERC/Medtronic Industrial Research Chair in Spine Biomechanics
- 15 Polytechnique Montreal, Department of Mechanical Engineering
- 16 P.O. Box 6079, Downtown Station, Montreal (Quebec), H3C 3A7 CANADA
- 17 E-mail: carl-eric.aubin@polymtl.ca
- 18 Phone: 1 (514) 340-4711 ext. 2836; Fax: 1 (514) 340-5867

- 1 Biomechanical analysis of segmental lumbar lordosis and risk of cage
- 2 subsidence with different cage heights and alternative placements in
- 3 transforaminal lumbar interbody fusion

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Abstract

Cage subsidence in transforaminal lumbar interbody fusion (TLIF) is one of the concerns. The objective was to numerically assess the resulting segmental lumbar lordosis (SLL) and stresses at the bone-cage interface as functions of cage height (8- vs. 10-mm) and cage placement (oblique asymmetric, vs. anterior symmetric) for normal and. osteoporotic bone quality. A L4-L5 detailed finite element model of TLIF.was subjected to the functional loadings of 10 Nm in the physiological planes after the application of a 400 N follower-load. The SLL was increased by 0.9° (11%) and 1.0° (13%), respectively in oblique asymmetric and anterior symmetric cage placement with 8-mm height; they were 1.4° (18%) and 1.7° (21%) for the 10-mm cage. The maximum stresses at the cage-bone interface, in normal bone model, were increased up to 16% and 41% with the 10-mm cage and asymmetric oblique placement, respectively, and they increased up to 16% and 43% in osteoporotic bone model. The greater cage resulted to a higher simulated SLL. Oblique asymmetric placement and the use of a greater cage may increase the risk of cage subsidence. Due to the lower mechanical strength of osteoporotic bone, the risk of cage subsidence should be higher.

22

23

24

Keywords: finite element analysis, TLIF (Transforaminal lumbar interbody fusion), cage subsidence, interbody cage, biomechanics, spine

- 26 Abstract word count: 196
- 27 Main-text word count: 4697
- 28 Number of tables: 3
- 29 Number of figures: 8

Introduction

2	Transforammal lumbar interbody fusion (TLIF) is a surgical procedure to restore the
3	intervertebral body height, the lumbar lordosis (LL), and spinal stability. This involves
4	the removal of the nucleus pulposus (NP) and a portion of the annulus fibrosus (AF),
5	followed by decompression of the segment and the placement of an interbody cage
6	through a unilateral approach. This is aimed at achieving an anterior interbody fusion in
7	addition to the posterior one by a solid segmental fixation (Agrawal and Resnick 2012;
8	Gum et al. 2016).
9	One of the mechanical complications of the TLIF surgical intervention is cage
10	subsidence, a situation where a cage enters into the vertebral body and consequently
11	results in the loss of intervertebral body height and segmental lumbar lordosis (SLL)
12	created intraoperatively by the instrumentation. Cage subsidence rates associated with
13	different cage designs and surgical techniques were reportedly from 10% to 38% (Le et
1.4	al. 2012; Malham et al. 2015; Lee et al. 2017). A cadaveric experimental study reported
14	
15	that the subsidence stiffness and subsidence force with TLIF were significantly lower
15	that the subsidence stiffness and subsidence force with TLIF were significantly lower
15 16	that the subsidence stiffness and subsidence force with TLIF were significantly lower (p<0.01) than those for anterior (ALIF) and lateral (LLIF) lumbar interbody fusion
151617	that the subsidence stiffness and subsidence force with TLIF were significantly lower (p<0.01) than those for anterior (ALIF) and lateral (LLIF) lumbar interbody fusion (Palepu et al. 2019). Several risk factors of cage subsidence in TLIF have been
15 16 17 18	that the subsidence stiffness and subsidence force with TLIF were significantly lower (p<0.01) than those for anterior (ALIF) and lateral (LLIF) lumbar interbody fusion (Palepu et al. 2019). Several risk factors of cage subsidence in TLIF have been identified, such as cage geometry (shapes and sizes) (Cho et al. 2008; Le et al. 2012;
15 16 17 18 19	that the subsidence stiffness and subsidence force with TLIF were significantly lower (p<0.01) than those for anterior (ALIF) and lateral (LLIF) lumbar interbody fusion (Palepu et al. 2019). Several risk factors of cage subsidence in TLIF have been identified, such as cage geometry (shapes and sizes) (Cho et al. 2008; Le et al. 2012; Agarwal et al. 2013; Faizan et al. 2014; Kim JT et al. 2015; Deng et al. 2016; Kim CW
15 16 17 18 19 20	that the subsidence stiffness and subsidence force with TLIF were significantly lower (p<0.01) than those for anterior (ALIF) and lateral (LLIF) lumbar interbody fusion (Palepu et al. 2019). Several risk factors of cage subsidence in TLIF have been identified, such as cage geometry (shapes and sizes) (Cho et al. 2008; Le et al. 2012; Agarwal et al. 2013; Faizan et al. 2014; Kim JT et al. 2015; Deng et al. 2016; Kim CW et al. 2016), single cage vs. paired cages (Xu et al. 2013), use of unilateral posterior
15 16 17 18 19 20 21	that the subsidence stiffness and subsidence force with TLIF were significantly lower (p<0.01) than those for anterior (ALIF) and lateral (LLIF) lumbar interbody fusion (Palepu et al. 2019). Several risk factors of cage subsidence in TLIF have been identified, such as cage geometry (shapes and sizes) (Cho et al. 2008; Le et al. 2012; Agarwal et al. 2013; Faizan et al. 2014; Kim JT et al. 2015; Deng et al. 2016; Kim CW et al. 2016), single cage vs. paired cages (Xu et al. 2013), use of unilateral posterior fixation vs. bilateral one (Chen et al. 2012; Ambati et al. 2015), and trabecular bone
15 16 17 18 19 20 21 22	that the subsidence stiffness and subsidence force with TLIF were significantly lower (p<0.01) than those for anterior (ALIF) and lateral (LLIF) lumbar interbody fusion (Palepu et al. 2019). Several risk factors of cage subsidence in TLIF have been identified, such as cage geometry (shapes and sizes) (Cho et al. 2008; Le et al. 2012; Agarwal et al. 2013; Faizan et al. 2014; Kim JT et al. 2015; Deng et al. 2016; Kim CW et al. 2016), single cage vs. paired cages (Xu et al. 2013), use of unilateral posterior fixation vs. bilateral one (Chen et al. 2012; Ambati et al. 2015), and trabecular bone volume fraction (Palepu et al. 2019).

subsidence (Faizan et al. 2014). Biconvex shapes were shown to allow better cage

2 fitting, but with loads more concentrated in the medial region of the endplates with

3 relatively lower mechanical strength than peripheral cortical bone, thus higher risk of

4 cage subsidence (Cho et al. 2008). Using paired- vs. single-cage configurations resulted

in 55.2% lower stress at the bone-cage interface (49.77 vs. 77.23 MPa) and

subsequently lower risk of cage subsidence (Xu et al. 2013).

A thicker cage is generally more effective for SLL restoration, but requires more intervertebral distraction for its placement, which increases the risk of cage subsidence due to the higher compressive forces at the bone-cage interface (8.8 N with 6-mm cage vs. 21.5 N with 8-mm cage in a biomechanical experiments using cadaveric lumbar spines) (Truumees et al. 2008; Le et al. 2012). Clinical studies showed that a kidney-shape cage placed 16% more anteriorly vs. a medial placement of a bullet-shape cage, resulted in an SSL increase of 2.11° (Kim JT et al. 2015) and reduced the risk of cage subsidence by shifting the bone-cage contact more to the peripheral region of the endplates with superior mechanical strength. The results of a controlled cadaveric test reported that using shorter cage (with length of 22- vs. 27-mm) in TLIF can potentially restore the segmental lordosis up to 8.7° (Robertson et al. 2018). Wedged cages (vs. flat cages) are reported to allow better lordosis restoration; increasing the wedge angle from 4° to 15°, and increased the resulting SLL from 2.6° to 6.5° (Hong et al. 2017).

Clinical studies, experiments using cadaveric spines, and numerical analyses have been done on the use of interbody cages of different shapes, configurations, and heights. However, the effects of essential cage parameters are not yet fully understood; therefore, systematic biomechanical investigations remain to be performed to acquire comprehensive biomechanical facts to help realize and reduce the risk of cage subsidence. The objective of this study was to numerically assess the biomechanics of

- 1 TLIF in terms of the resulting SLL and stresses at the bone-cage interface as functions
- 2 of the cage height and its placement strategy with two tested bone qualities. This
- 3 objective aims at comparing two common cage placement strategy in surgical procedure
- 4 while surgeon may choose between two cages with different heights.

6

Material and methods

7 Finite element model of the L4-L5 segment

- 8 A detailed finite element model (FEM) of L4-L5 functional spinal unit was created
- 9 based on a previously developed and validated FEM of the spine (El-Rich et al. 2008;
- 10 El-Rich et al. 2009) (Figure 1a). The FEM was adapted and refined to simulate the
- biomechanics of the TLIF, including intervertebral space preparation, cage insertion,
- and posterior fixation (Agrawal and Resnick 2012; Gum et al. 2016). The geometric
- model of the spine was reconstructed using medical images acquired through a CT-scan
- 14 (0.6 mm slice thickness) of a 50th percentile healthy man (El-Rich et al. 2008; El-Rich
- et al. 2009). The model consisted of the vertebral body (cancellous and cortical bones),
- posterior arches, intervertebral disc, facet joints, and seven ligaments, i.e. the anterior
- 17 longitudinal ligament (ALL), posterior longitudinal ligament (PLL), ligamentum flavum
- 18 (LF), capsular ligaments (CL), intertransverse ligament (ITL), interspinous ligament
- 19 (ISL), and supraspinous ligament (SSL) (Figure 1a).
- Each vertebra was meshed with 4-node solid elements, representing the
- 21 trabecular bone enveloped by a layer of cortical bone with changing thickness in five
- regions: endplates and anterior walls of the vertebral body (0.4 mm), upper pedicle (2
- 23 mm), lower pedicle (1.87 mm), posterior processes (1 mm), and insertion area of
- pedicle screws (0.8 mm) (Silva et al. 1994; Hirano et al. 1997; Bianco et al. 2017)

1 (Figure 1b). The AF was modelled with five concentric layers of 8-node solid elements 2 between the two vertebrae, reinforced by spring elements to simulate the collagen fibres 3 oriented at ±35°. The NP was meshed with 8-node elements. All ligaments were meshed 4 with 4-node shell elements, except the CL, which was represented by 3-node shell 5 elements. To balance the computation cost and analysis accuracy for this study, we 6 performed a mesh convergence study to determine adequate element sizes (Figure 1a 7 and Figure 1b). 8 Non-linear material properties were implemented to model the mechanical 9 behaviour of the spinal elements in physiological loading conditions. The cortical and 10 trabecular bones were modelled as homogenous isotropic materials governed by the 11 elastoplastic Johnson-Cook constitutive law (Wagnac et al. 2012). The NP and AP were 12 modelled as Mooney-Rivlin hyperelastic material while collagen fibres were 13 incorporated as one-dimensional spring elements acting in tension only. The non-linear 14 behaviour of the spinal ligaments was modelled with a generalized Maxwell-Kelvin-15 Voigt constitutive law, and the failure criteria was incorporated based on the maximum 16 tensile strain level (Wagnac et al. 2012). The material properties of the elements were 17 initially defined using numerical results from the literature (Tables 1, 2, and 3). Material 18 properties of osteoporotic bone were modelled by reducing Young's modulus of cortical 19 (33%) and trabecular bone (66%) (Polikeit et al. 2003; Salvatore et al. 2018). To model 20 the zygapophyseal facet joints, a general purpose contact was used with an initial gap of 21 0.5 mm (Faizan et al. 2014) and Coulomb friction coefficient of 0.2 (Li et al. 2015) 22 between the two facets of the articulation. Tied contacts were modelled between the 23 ligaments and cortical bone at their attachment sites. The mechanical properties of the 24 aforementioned modelling elements were adjusted and calibrated such that the load-25 displacement results of functional loading simulations corresponded to the results from

- 1 experiments on cadaveric lumbar spines (Heuer et al. 2007). To validate the FEM, the
- 2 ROMs of the intact model under simulated pure bending of 8 Nm in flexion-extension,
- 3 lateral bending, and axial rotation were compared with the reported ROMs of similar
- 4 experimental cadaveric tests (Dahl et al. 2013; Jaramillo et al. 2016). To support the
- decisions in the context of use (COU) which was the risk of cage subsidence in TLIF,
- 6 the credibility of developed FEM was stablished. For this purpose, the assumption and
- 7 model inputs were tested in their ranges to assure that the results are still applicable to
- 8 the COU with the quantified uncertainty of the predictions.

Simulation of TLIF procedure

The surgical procedure of TLIF was modelled by partial discectomy through the unilateral approach was modelled by removing the elements corresponding to the posterior-left portion of the AF and NP. A facetectomy was simulated by removing the elements corresponding to the zygapophyseal joint to virtually make a window for the cage insertion (Figure 2Error! Reference source not found.a). Four pedicle screws (40 mm long, 6.5 mm diameter; CD HORIZON® LEGACYTM, Medtronic, Memphis TN) were modelled as rigid bodies, and their external surfaces were meshed with triangular shell elements. They were aligned with their corresponding vertebra based on a typical lumbar pedicle screw insertion technique (Agarwal et al. 2013; Bianco et al. 2017). To identify the proper element size, a mesh convergence study initially was conducted by testing various element sizes (from 0.5 to 1.5 mm) at the endplate-cage interface of the oblique asymmetric placement of 10-mm cage, up until the variation of the maximum Von-Mises stress at the bone-cage interface was lower than 5%. Boolean operations between the screw and the vertebral models were performed to remove the cortical layer

1 and trabecular core model elements (Bianco et al. 2017). A point-to-surface contact 2 with a Columb friction of 0.2 was modelled to represent the bone-screw interface. 3 The interbody cage models were based on a generic cage (CAPSTONE® 4 interbody cage, Medtronic, Memphis TN). The length and width of the models were 26 5 mm and 10 mm, respectively. Two cage heights were tested, i.e. 8 and 10 mm. For each 6 model, we tested the oblique asymmetric and anterior symmetric placements, a total of 7 four interbody cage scenarios (Figure 3). The cages were meshed with 4-node 8 tetrahedral elements of 1.0 mm, and material properties of polyether-ether-ketone 9 (PEEK) were assigned (E=3.4 GPa and v=0.4 (Faizan et al. 2014)). The modelling of 10 the cage insertion was based on the documented surgical technique (Agarwal et al. 11 2013). First, the cage model was aligned to the superior endplate of L5, and a node-to-12 surface contact with a minimum distance of 0.5 mm and Columb friction coefficient of 13 0.2 was applied to the interface. Then, a distractive force was applied between L4 and 14 L5 such that the intervertebral body space increased and there was no interference 15 between the cage and endplate geometries. Finally, the loads were released after node-16 to-surface contact was modelled between the cage and the adjoining endplates (Figure 17 2b). The SSL was assessed before and after the simulation of the cage placement by 18 measuring the angle between the superior endplate of L4 and inferior endplate of L5 19 (Hong et al. 2017). After the simulation of the cage insertion, two titanium rod (4.5 mm) 20 models were aligned with screw head saddles and tied contacts were modelled between 21 them to simulate the posterior fixation (Figure 2c). The rods were meshed with 4-node 22 tetrahedral solid elements of 0.5 mm characteristic length, and the material properties of 23 Titanium alloy were adapted from literature (E=115 GPa and v=0.34 (Faizan et al. 24 2014)).

1 The resulting FEM was used to simulate physiological loading. The body weight 2 was modelled as a 400 N follower-load to the superior elements of L4 with the inferior 3 endplate of L5 fixed in space. A 10-Nm functional load was simulated in the three 4 anatomical planes, respectively, to simulate flexion (Fe), extension (Ex), right lateral 5 bending (RLB), left lateral bending (LLB), right axial rotation (RAR), and left axial 6 rotation (LAR). The ROM and maximum Von-Mises stresses were computed as a 7 measure of the risk of cage subsidence. 8 All the simulations were performed using the RADIOSS v14.0 finite element 9 package (Altair Engineering Inc., Troy, USA) in a quasi-static condition (Bianco et al. 10 2017). 11 12 Results 13 The resulting ROMs of the non-instrumented FEM of the L4-L5 segment were 9.3°, 7.6°, and 4.1° in flexion-extension, lateral bending, and axial rotation, respectively. 14 15 These results were within the range of reported ROM of experimental cadaveric studies in the literature (Dahl et al. 2013; Jaramillo et al. 2016) (Figure 4). With the simulated 16 17 normal bone quality, the anterior symmetric and oblique asymmetric placement of the 18 cages increased the SLL by 0.9° and 1.0°, respectively, for the 8-mm height cage, and by 1.4° and 1.7° for the 10-mm one. SLL restorations with simulated osteoporosis were 19 20 within 1.2% to those with the normal bone quality. With normal bone, the simulated 21 ROMs of the FSU after the TLIF procedure were lower than 1° in all loading directions.

while they ranged from 2° to 8° with the un-instrumented FSU (Figure 5a). With

normal bone (Figure 5b). Oblique asymmetric vs. anterior symmetric placement

simulated osteoporosis, the ROMs were slightly (about 8%) higher than those with

22

23

1 increased the ROM by 66% and 72% for the simulated normal and osteoporotic bone,

respectively. Insertion of the 8-mm cage vs. the 10-mm one increased the ROM of the

instrumented segment up to 43% and 48% in simulated normal and osteoporotic bone

4 models, respectively.

For the 8-mm cage with normal bone quality, the maximum stresses at the bone-cage interface ranged from 82.1 to 98.4 MPa (anterior symmetric placement) and from 117.9 to 155.5 MPa (oblique asymmetric placement) (Figure 6a). For the 10-mm cage, they were from 88.2 to 107.2 MPa (anterior symmetric) and between 134.4 and 176.4 MPa (oblique asymmetric) (Figure 6a). With osteoporosis, stresses at the bone-cage interface were about 2.5% lower (Figure 6b). Oblique asymmetric as compared to the anterior symmetric cage placement increased the maximum stresses by up to 41% and 43% for the simulated normal and osteoporotic bone, respectively. Insertion of the 10-mm cage vs. the 8-mm one increased the maximum stresses by up to 16% in simulated normal and osteoporotic bone models. The stress on the superior endplate of L5 is displayed on Figure 7 for the 4 tested configurations under simulated flexion moment of 10 N m and 400 N follower-load.

For the 8-mm cage with normal bone quality, the maximum stresses in the posterior rods were between 128.9 and 230.3 MPa (anterior symmetric) and between 114.9 and 326.6 MPa (oblique asymmetric) (Figure 8a). For the 10-mm cage, they ranged from 60.3 to 218.0 MPa (anterior symmetric) and from 69.6 to 262.5 MPa (oblique asymmetric) (Figure 6a). With osteoporosis, stresses in the posterior rods increased up to about 120% (Figure 8b). Oblique asymmetric vs. anterior symmetric placement increased the maximum stresses by up to 55% and 48% for the simulated normal and osteoporotic bone, respectively. In simulations with oblique asymmetric placement, stresses in the rod on the opposite side of the cage were higher than the other

1 rod. Insertion of the 8-mm cage vs. the 10-mm one increased the maximum stresses up

to 59% and 54% in simulated normal and osteoporotic bone, respectively.

3

4

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

2

Discussion

5 A larger SLL restoration was observed in the simulations with a 10-mm vs. 8-mm cage.

6 This was expected from a geometric point of view because greater cage height means

7 greater anterior intervertebral distance, thus higher SLL. Consequently, stresses at the

bone-cage interface in simulations of 10-mm cage were always higher than the 8-mm

cage. Cages of greater height required more intervertebral distraction for its proper

placement, which initiated a higher compression force at the bone-cage interface

generated by the tightening of the soft tissues, which translated in higher structural

stiffness and lower ROM due to the non-linear mechanical behaviour of the

intervertebral ligaments. This could explain why the maximum stresses in the rods with

the 10-mm cage were lower than the 8-mm cage. The stresses generated by the

compression forces as a function of cage height agreed with the reported experiments

with cadaveric lumbar spines (Truumees et al. 2008; Ambati et al. 2015).

The simulated SLL restoration with the anterior symmetric cage placement was very close to that with the oblique asymmetric placement, but the maximum stresses at the bone-cage interface with anterior symmetric placement were consistently lower than those with oblique asymmetric placement. This may be explained by the fact that the resultant force at the bone-cage interface with anterior symmetric placement has a longer lever arm with respect to the posterior fixation, providing a mechanical advantage to balance the external loads. In this standpoint, with the use of similar interbody cage footprints and in the presence of a smaller compression force at the bone-cage interface, lower stress is expected with the anterior cage placement.

1 Compared with oblique asymmetrical placement, the anterior symmetrically placed 2 cage had more bone-cage contact area in the anterior part of the intervertebral body 3 space (Figure 4) where the endplates have superior mechanical strength (Tsitsopoulos et 4 al. 2012; Faizan et al. 2014). Increased stresses due to oblique asymmetric vs. anterior symmetric (41%) seems to have a significant effect on the stress distribution at the 5 6 bone-cage interface. This difference is clinically important because the maximum stress 7 at the interface, in some cases, exceeds the failure stress of cortical bone (126 MPa) 8 (Hansen et al. 2008). On the other hand, using 10-mm cage does not significantly affect 9 the risk of subsidence since the value of the maximum stresses are still below the failure 10 stress of cortical bone. With the oblique asymmetric placement, reaction forces from the 11 rods had, therefore, shorter lever arms with respect to the cage centre – fulcrum point 12 between the upper and lower vertebral bodies, resulting in a higher stress in the rods to 13 balance the loads. 14 There was no difference in SLL restoration between normal and osteoporosis 15 bones. Although the maximum stresses at the bone-cage interface for the simulated 16 osteoporosis were identical to those of modelled normal bone, the risk of cage 17 subsidence should be higher because the osteoporotic bones also have between 20% to 18 40% lower mechanical strengths due to decreased bone mineral density (Dickenson et 19 al. 1981; Bono and Einhorn 2003). Also, clinical studies showed that the risk of cage 20 subsidence in osteoporosis spines was about 3 times higher than in spines with normal 21 bone (Formby et al. 2016; Oh et al. 2017). The simulated osteoporosis bones had lower 22 stiffness and provided less support of the functional loads as compared to the normal 23 bones, making the rods subjected to higher loads and stresses. 24 Some simplifications and approximations were made in the modelling and 25 simulations in this study (i.e. the cortical and trabecular bones were modelled as

1 homogenous isotropic materials, the geometry and mechanical properties of the FSU

were based on a generic 50th model, and screw insertion was model as a geometric

Boolean operation between the screw and the vertebral models and with a contact

4 definition between the two). These modelling simplifications and approximations are

considered to have limited effects on the conclusions because this study focused on the

relative effects of the cage height, cage placement and bone quality which are common

7 in TLIF for most of the cases. The presented modelling technique might be adapted to

examine the biomechanics of multi-level TLIF, as well as the performance of any other

interbody cages in terms of risk of cage subsidence.

10

11

14

15

16

17

18

19

20

21

22

23

2

3

5

6

8

9

Conclusion

12 A detailed FEM was developed to simulate the biomechanics of the TLIF procedure.

13 The FEM allowed the assessment of the effects of the cage height, cage placement, and

bone quality on the SLL restoration and risk of the cage subsidence. It was found that

10- vs 8-mm cage height resulted in up to 0.7° higher SLL restoration and 16% higher

stresses at the bone-cage interface. Oblique asymmetric placement vs. anterior

symmetric placement had almost similar SLL restoration, but the stresses at the bone-

cage interface were up to 43% higher. Bone quality did not affect the achieved SLL; a

higher risk of cage subsidence is expected for the osteoporotic spines although the

maximum stresses at the bone-cage interface were 2.5% lower. The FEM presented in

this study was shown to be a relevant tool to assess the biomechanics of TLIF. It could

be further adapted to further assess the biomechanics of any interbody cage design, as

well as to evaluate reported clinical findings towards the improvement of the TLIF

24 procedure.

2 Acknowledgement

- 3 This study was financially supported by Medtronic and the Natural Sciences and
- 4 Engineering Research Council of Canada (Industrial Research Chair program with
- 5 Medtronic of Canada).

1	References
2	Agarwal A, Palepu V, Agarwal AK, Goel VK, Yildirim ED. 2013. Biomechanical
3	evaluation of an endplate-conformed polycaprolactone-hydroxyapatite
4	intervertebral fusion graft and its comparison with a typical nonconformed
5	cortical graft. Journal of biomechanical engineering. 135(6):61005-61009.
6	Agrawal BM, Resnick D. 2012. Transforaminal Lumbar Interbody Fusion. Schmidek
7	and Sweet Operative Neurosurgical Techniques. Philadelphia: W.B. Saunders; p.
8	1951-1954.
9	Ambati DV, Wright EK, Jr., Lehman RA, Jr., Kang DG, Wagner SC, Dmitriev AE.
10	2015. Bilateral pedicle screw fixation provides superior biomechanical stability
11	in transforaminal lumbar interbody fusion: a finite element study. The spine
12	journal. 15(8):1812-1822.
13	Bianco RJ, Arnoux PJ, Wagnac E, Mac-Thiong JM, Aubin CE. 2017. Minimizing
14	Pedicle Screw Pullout Risks: A Detailed Biomechanical Analysis of Screw
15	Design and Placement. Clinical Spine Surgery. 30(3):E226-E232.
16	Bono CM, Einhorn TA. 2003. Overview of osteoporosis: pathophysiology and
17	determinants of bone strength. European spine journal. 12(2):S90-96.
18	Chen SH, Lin SC, Tsai WC, Wang CW, Chao SH. 2012. Biomechanical comparison of
19	unilateral and bilateral pedicle screws fixation for transforaminal lumbar
20	interbody fusion after decompressive surgerya finite element analysis. BMC
21	musculoskeletal disorders. 13:72.
22	Cho W, Wu C, Mehbod AA, Transfeldt EE. 2008. Comparison of cage designs for
23	transforaminal lumbar interbody fusion: a biomechanical study. Clinical
24	biomechanics (Bristol, Avon). 23(8):979-985. eng.
25	Dahl MC, Ellingson AM, Mehta HP, Huelman JH, Nuckley DJ. 2013. The
26	biomechanics of a multilevel lumbar spine hybrid using nucleus replacement in
27	conjunction with fusion. The spine journal. 13(2):175-183. eng.
28	Deng QX, Ou YS, Zhu Y, Zhao ZH, Liu B, Huang Q, Du X, Jiang DM. 2016. Clinical
29	outcomes of two types of cages used in transforaminal lumbar interbody fusion
30	for the treatment of degenerative lumbar diseases: n-HA/PA66 cages versus
31	PEEK cages. Journal of materials science Materials in medicine. 27(6):102.
32	Dickenson RP, Hutton WC, Stott JR. 1981. The mechanical properties of bone in
33	osteoporosis. J Bone Joint Surg Br. 63-b(2):233-238.

1	El-Rich M, Arnoux PJ, Wagnac E, Brunet C, Aubin CE. 2009. Finite element
2	investigation of the loading rate effect on the spinal load-sharing changes under
3	impact conditions. Journal of biomechanics. 42(9):1252-1262.
4	El-Rich M, Wagnac E, Arnoux PJ, Aubin CE. 2008. Detailed modeling of the lumbar
5	spine for trauma applications: preliminary results. Comput Method Biomec.
6	11(sup001):93-94.
7	Faizan A, Kiapour A, Kiapour AM, Goel VK. 2014. Biomechanical analysis of various
8	footprints of transforaminal lumbar interbody fusion devices. J Spinal Disord
9	Tech. 27(4):E118-127.
10	Formby PM, Kang DG, Helgeson MD, Wagner SC. 2016. Clinical and Radiographic
11	Outcomes of Transforaminal Lumbar Interbody Fusion in Patients with
12	Osteoporosis. Global spine journal. 6(7):660-664.
13	Gum JL, Reddy D, Glassman S. 2016. Transforaminal Lumbar Interbody Fusion
14	(TLIF). JBJS essential surgical techniques. 6(2):e22. eng.
15	Hansen U, Zioupos P, Simpson R, Currey JD, Hynd D. 2008. The Effect of Strain Rate
16	on the Mechanical Properties of Human Cortical Bone. Journal of
17	Biomechanical Engineering. 130(1).
18	Heuer F, Schmidt H, Klezl Z, Claes L, Wilke HJ. 2007. Stepwise reduction of
19	functional spinal structures increase range of motion and change lordosis angle.
20	Journal of biomechanics. 40(2):271-280.
21	Hirano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, Sugiura T,
22	Yokaichiya M, Ikeda M. 1997. Structural characteristics of the pedicle and its
23	role in screw stability. Spine. 22(21):2504-2509; discussion 2510.
24	Hong TH, Cho KJ, Kim YT, Park JW, Seo BH, Kim NC. 2017. Does Lordotic Angle of
25	Cage Determine Lumbar Lordosis in Lumbar Interbody Fusion? Spine.
26	42(13):E775-E780.
27	Jaramillo HE, Puttlitz CM, McGilvray K, Garcia JJ. 2016. Characterization of the L4-
28	L5-S1 motion segment using the stepwise reduction method. Journal of
29	biomechanics. 49(7):1248-1254.
30	Kim CW, Doerr TM, Luna IY, Joshua G, Shen SR, Fu X, Wu AM. 2016. Minimally
31	Invasive Transforaminal Lumbar Interbody Fusion Using Expandable
32	Technology: A Clinical and Radiographic Analysis of 50 Patients. World
33	neurosurgery. 90:228-235.

1	Kim 11, Shin MH, Lee HJ, Choi DY. 2015. Restoration of lumbopeivic sagittal
2	alignment and its maintenance following transforaminal lumbar interbody fusion
3	(TLIF): comparison between straight type versus curvilinear type cage. Eur
4	Spine J. 24(11):2588-2596.
5	Le TV, Baaj AA, Dakwar E, Burkett CJ, Murray G, Smith DA, Uribe JS. 2012.
6	Subsidence of polyetheretherketone intervertebral cages in minimally invasive
7	lateral retroperitoneal transpsoas lumbar interbody fusion. Spine. 37(14):1268-
8	1273.
9	Lee N, Kim KN, Yi S, Ha Y, Shin DA, Yoon DH, Kim KS. 2017. Comparison of
10	Outcomes of Anterior, Posterior, and Transforaminal Lumbar Interbody Fusion
11	Surgery at a Single Lumbar Level with Degenerative Spinal Disease. World
12	neurosurgery. 101(Supplement C):216-226.
13	Li J, Shang J, Zhou Y, Li C, Liu H. 2015. Finite Element Analysis of a New Pedicle
14	Screw-Plate System for Minimally Invasive Transforaminal Lumbar Interbody
15	Fusion. PloS one. 10(12):e0144637.
16	Malham GM, Parker RM, Blecher CM, Seex KA. 2015. Assessment and classification
17	of subsidence after lateral interbody fusion using serial computed tomography.
18	Journal of Neurosurgery Spine. 23(5):589-597.
19	Oh KW, Lee JH, Lee DY, Shim HJ. 2017. The Correlation Between Cage
20	Subsidence, Bone Mineral Density, and Clinical Results in Posterior Lumbar
21	Interbody Fusion. Clinical Spine Surgery. 30(6):E683-E689.
22	Palepu V, Helgeson M, Molyneaux-Francis M, Nagaraja S. 2019. The effects of bone
23	microstructure on subsidence risk for ALIF, LLIF, PLIF, and TLIF spine cages.
24	Journal of Biomechanical Engineering. 141(3): 031002
25	Polikeit A, Nolte LP, Ferguson SJ. 2003. The effect of cement augmentation on the load
26	transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine.
27	28(10):991-996.
28	Salvatore G, Berton A, Giambini H, Ciuffreda M, Florio P, Longo UG, Denaro V,
29	Thoreson A, An KN. 2018. Biomechanical effects of metastasis in the
30	osteoporotic lumbar spine: A Finite Element Analysis. BMC musculoskeletal
31	disorders. 19(1):38.

1	Silva MJ, Wang C, Keaveny TM, Hayes WC. 1994. Direct and computed tomography
2	thickness measurements of the human, lumbar vertebral shell and endplate.
3	Bone. 15(4):409-414.
4	Truumees E, Demetropoulos CK, Yang KH, Herkowitz HN. 2008. Effects of disc
5	height and distractive forces on graft compression in an anterior cervical
6	corpectomy model. Spine. 33(13):1438-1441.
7	Tsitsopoulos PP, Serhan H, Voronov LI, Carandang G, Havey RM, Ghanayem AJ,
8	Patwardhan AG. 2012. Would an anatomically shaped lumbar interbody cage
9	provide better stability? An in vitro cadaveric biomechanical evaluation. Journal
10	of spinal disorders & techniques. 25(8):E240-244.
11	Wagnac E, Arnoux PJ, Garo A, Aubin CE. 2012. Finite element analysis of the
12	influence of loading rate on a model of the full lumbar spine under dynamic
13	loading conditions. Medical & biological engineering & computing. 50(9):903-
14	915.
15	Xu H, Ju W, Xu N, Zhang X, Zhu X, Zhu L, Qian X, Wen F, Wu W, Jiang F. 2013.
16	Biomechanical comparison of transforaminal lumbar interbody fusion with 1 or
17	2 cages by finite-element analysis. Neurosurgery. 73(2):198-205.
18	
19	

1 List of figures

- 2 **Figure 1** a) The un-instrumented FE model of the L4-L5 segment including the vertebrae,
- 3 seven spinal ligaments, and intervertebral disc; b) regional thickness of the cortical bone
- 4 and finer mesh of the trabecular bone around the screw imprint ALL: Anterior
- 5 Longitudinal ligament, PLL: Posterior Longitudinal Ligament, ITL: Intertransverse
- 6 Ligament, CL: Capsular Ligament, LF: Ligament Flavum, ISL: Interspinous Ligament,
- 7 SSL: Supraspinous Ligament, AF: Annulus Fibrosus, NP: Nucleus Pulposus.
- 8
- 9 Figure 2 Simulation of different surgical procedures of TLIF: (a) Partial discectomy and
- 10 facetectomy of L4-L5, (b) Cage placement by imposing distractive force and moment on
- 11 L4, while the inferior endplate of L5 was fixed in space, and (c) Implementation of the
- 12 posterior fixation followed by application of the follower-load and physiological
- moments (flexion, extension, lateral bending, and torsion) on the superior endplate of L4
- while the inferior endplate of L5 was fixed in space.
- 15 **Figure 3** Simulated placement scenarios of the cage: (a) Oblique asymmetric: (b)
- 16 Anterior symmetric.
- 17 **Figure 4** Simulated ROM of the FEM of L4-L5 segment was within the reported range
- of similar experimental tests on human cadaveric spines (Dahl et al. 2013; Jaramillo et al.
- 19 **2016**).
- Figure 5 Range of motion (ROM) of the instrumented spinal segment in different
- 21 loading directions for normal (a) and osteoporotic (b) bone models (A08/A10: Oblique
- 22 asymmetric placement of 8/10-mm cage; S08/S10: Anterior symmetric placement of
- 23 8/10-mm cage).

- 1 Figure 6 Maximum Von-Mises stress at the endplate-cage interface in different loading
- 2 directions for normal (a) and osteoporotic (b) bone model (A08/A10: Oblique asymmetric
- 3 placement of 8/10-mm cage; S08/S10: Anterior symmetric placement of 8/10-mm cage).
- 4 Figure 7 Stress (in MPa) on the superior endplate of L5 under simulated flexion
- 5 moment of 10 N m and 400 N follower-load.

- 6 **Figure 8** Maximum Von-Mises stress in the posterior rods in different loading directions
- 7 for normal (a) and osteoporotic (b) bone models (A08/A10: Oblique asymmetric
- 8 placement of 8/10-mm cage; S08/S10: Anterior symmetric placement of 8/10-mm cage)