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Abstract: The high mortality rate in septic shock patients is likely due to environmental and genetic
factors, which influence the host response to infection. Two genome-wide association studies (GWAS)
on 832 septic shock patients were performed. We used integrative bioinformatic approaches to
annotate and prioritize the sepsis-associated single nucleotide polymorphisms (SNPs). An association
of 139 SNPs with death based on a false discovery rate of 5% was detected. The most significant SNPs
were within the CISH gene involved in cytokine regulation. Among the 139 SNPs associated with
death and the 1311 SNPs in strong linkage disequilibrium with them, we investigated 1439 SNPs
within non-coding regions to identify regulatory variants. The highest integrative weighted score
(IW-score) was obtained for rs143356980, indicating that this SNP is a robust regulatory candidate.
The rs143356980 region is located in a non-coding region close to the CISH gene. A CRISPR-Cas9-
mediated deletion of this region and specific luciferase assays in K562 cells showed that rs143356980
modulates the enhancer activity in K562 cells. These analyses allowed us to identify several genes
associated with death in patients with septic shock. They suggest that genetic variations in key genes,
such as CISH, perturb relevant pathways, increasing the risk of death in sepsis patients.

Keywords: sepsis; GWAS; SNPs; non coding region; CISH; enhancer; CRISPR-Cas9; luciferase assay

1. Introduction

The incidence of sepsis, particularly severe sepsis and septic shock, is increasing
among hospital transfer, with a mortality rate between 20 and 35% despite improved
strategies of care [1]. After the analysis of negative results from randomized clinical trials
(RCTs) to reduce mortality after 28 days and/or 90 days [2–5], new aspects of sepsis have
come to the front. The demonstration of systemic and tissue immuno-depression after a
septic injury [6] and the impact of co-morbidities [7] both motivate a change in the sepsis
syndrome paradigm [8]. Research on the genetic predispositions associated with outcomes
and polymorphisms for genes encoding mediators of inflammation, such as TNFα [9]
and IL-10 [10], has been poorly replicated [11], and negative results on crude mortality
reduction were obtained when agents blocking TNFα were tested. Despite the large number
of such studies, re-analyses of accumulated evidence do not definitely show any associated
genes [11]. As many other complex syndromes for which environmental and chronic
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disease risk factors are thought to interact with multiple genes, such analyses may benefit
from recent genetic methodologies, such as genome-wide association studies (GWAS) [12].
Instead of sepsis syndrome, the GWAS approach has provided important genetic and
biological insight for other more specific infectious diseases, such as meningococcemia or
malaria [13,14].

An article by Rautanen et al. [15] presents the results from the first GWAS on survival
from sepsis due to pneumonia, which was assessed in a multistage study, including
four cohorts and tested almost 6 million single nucleotide polymorphisms. The authors
identified genetic variants within the FER gene showing consistent effects across the four
cohorts studied. The rs4957796 C allele, with a near 20% frequency in European populations,
was associated with reduced mortality in sepsis caused by pneumonia. Scherag et al.
conducted another GWAS in patients with severe sepsis. They reported 14 loci with
suggestive evidence of an association with 28-day mortality [16]. Nevertheless, they did
not find an association between rs4957796 and 28-day mortality and no evidence on an
association between other loci identified by Rautanen et al. and 28-day mortality. They
proposed that the focus on pneumonia-induced sepsis by Rautanen et al. may explain
the observed discrepancies. In the same way, it was proposed that genetic studies should
focus on specific traits related to severity and outcomes rather than on a broadly defined
syndrome [17].

We have collaborated to provide the first human GWAS on severe sepsis or septic
shock using the randomized control trial PROWESS database [18] to test the benefits of
activated protein C (aPC) use on outcome. Because one arm of the trial received aPC
treatment, the sepsis prognosis models have only been tested on the control arm. The
prognosis was finally dominated by clinical variables with modest relation with the tested
genetic markers. The second randomized control trial PROWESS SHOCK [3] tested aPC
exclusively on septic shock patients and failed to show a crude outcome benefit at day 28 or
90. This negative result of aPC treatment in septic shock prompted us to perform GWAS on
outcome specific traits using the complete PROWESS dataset after selection of septic shock
patients. The present study reports the first identification of genetic variants associated
with the prognosis of septic shock when comorbidity levels and systemic inflammation
intensities are integrated. Since the mechanisms for early death differ from those causing
late death [19,20], we also investigated the association of genetic variants with both early
and late death. We further focused on a non-coding region significantly associated with late
death and showed its regulatory activity on one of the closest gene, the cytokine inducible
SH2 containing protein (CISH) gene. Interestingly, CISH is known to be a negative regulator
of cytokine signaling.

2. Results
2.1. Patients and Covariates

Tables S1 and S2 summarize the clinical characteristics and the differences between
groups with early or late deaths. The patients who died early were older, had higher
IL-6 plasma levels at day 1 than other patients. Patients who died after day 7 were also
older than the survivors and had a higher incidence of cardiomyopathy. For the genetic
association studies, only the significant parameters were included in the model. For the
early death analysis, the data were adjusted for age, IL-6 level, and sequential organ failure
assessment (SOFA) score. For the late death analysis, the data were adjusted for age,
cardiomyopathy presence, aPC treatment, and SOFA score.

2.2. Genome-Wide Association Analysis

Tables S1 and S2 list the single nucleotide polymorphisms (SNPs) considered signifi-
cant based on a false discovery rate (FDR) of 5%. On this basis, we identified 32 SNPs and
107 SNPs associated with early and late death, respectively. Table 1 lists the SNPs selected
after the Bonferroni correction. Here, we describe the genes and their genetic variants
using the following criteria: (1) the gene contains at least one SNP associated with mortality
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based on a threshold of significance of approximately 5.58 × 10−8 when the Bonferroni
correction was used; (2) the SNP is located within a gene selected on the former criteria,
and is associated with mortality with an FDR of 5%; (3) the gene, for which we anticipate a
functional relevance in sepsis.

Early mortality: the GWAS analysis identified 12 SNPs after Bonferroni correction
(Figure 1B, Table 1 and Table S1). For the identified SNPs, the minor allele was associ-
ated with a higher risk of mortality (Table 1). These 12 SNPs correspond to 4 loci on
chromosomes 3, 8, 9, and 12. The three intragenic SNPs having the strongest evidence of
association with early death (Table 1) were located within CYP11B2: rs11991278; rs6981918,
and rs4544. A strong association was also observed between early death and rs7974468
located within PTPN11 and rs956727 located in SLC28A3. Moreover, four other SNPs
located within PTPN11 (rs11066321, rs9668774, rs7975439, and rs12301915) were associated
with mortality based on an FDR of 5% (Table S1).

Figure 1. SNPs selection design (A). Schematic outline of patient and SNP selection. After quality control of the SNP data,
896,358 SNPs and 832 patients having septic shock were selected for genome-wide association analysis. (B–E) Genome-wide
association results for early and late mortality. Manhattan plots show the −log10 (p value) for the association of SNPs
with early (B) and late (C) mortality according to their position on the genome. The horizontal red line and the purple line
correspond to a Bonferroni threshold and an FDR of 5%, respectively. Receiving operating characteristic (ROC) curves
plotting sensitivity against 1-specificity are shown for the prediction of early (D) and late (E) mortality based on the effect of
covariates/confounding factors (red), SNPs (green), and both (blue).



Int. J. Mol. Sci. 2021, 22, 5852 4 of 28

Table 1. Loci associated with the mortality due to sepsis at day 7 or at day 28.

SNP CHR: Position Alleles (MAF) Risk Allele p Value (q
Value)

Unadjusted OR
(Adjusted OR)

LD Region r2 >
0.8

Genes
Containing

SNP
Genes in LD Phenotype

Associated

rs16857698 3: 145685067 A > G (0.014) G 1.75 × 10−9

(7.53 × 10−4)
3.52 (4.51) 3:145665563-

145685067 D7

rs5029231 3: 145701146 C > T (0.019) T 1.37 × 10−8

(1.73 × 10−3)
3.54 (3.99) 3:145686379-

145759412 D7

rs6763296 3: 145709314 T > C (0.018) C 2.55 × 10−9

(7.53 × 10−4)
3.93 (4.67) 3:145686379-

145759412 D7

rs16857836 3: 145752473 G > T (0.014) T 5.51 × 10−10

(4.89 × 10−4)
3.79 (5.20) 3:145686379-

145759412 D7

rs4544 8: 143994806 T > C (0.010) C 8.86 × 10−9

(1.31 × 10−3)
3.24 (6.87) 8:143983592-

144018027 CYP11B2 GML D7

rs11991278 8: 144001245 C > T (0.010) T 8.48 × 10−9

(1.31 × 10−3)
3.23 (6.87) 8:143983592-

144018027 CYP11B2 GML D7

rs6981918 8: 144007939 C > A (0.010) A 8.74 × 10−9

(1.31 × 10−3)
3.22 (6.85) 8:143983592-

144018027 CYP11B2 GML D7

rs956727 9: 86846933 A > G (0.009) G 3.22 × 10−8

(2.60 × 10−3)
4.85 (17.43) 9:86814655-

86862104 SLC28A3 D7

rs7974468 12: 112927208 G > A (0.013) A 1.60 × 10−8

(1.78 × 10−3)
3.10 (3.34) 12:112819245-

112985734 PTPNN11 RPH3A D7

rs10849640 12: 119712137 G > A (0.116) A 3.22 × 10−8

(2.60 × 10−3)
1.65 (2.25) 12:119712137-

119725314 D7

rs10849641 12: 119721354 C > T (0.115) T 2.65 × 10−8

(2.60 × 10−3)
1.67 (2.27) 12:119712137-

119725314 D7

rs10849642 12: 119725314 C > T (0.117) T 4.04 × 10−8

(2.99 × 10−3)
1.62 (2.25) 12:119712137-

119725314 D7
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Table 1. Cont.

SNP CHR: Position Alleles (MAF) Risk Allele p Value (q
Value)

Unadjusted OR
(Adjusted OR)

LD Region r2 >
0.8

Genes
Containing

SNP
Genes in LD Phenotype

Associated

rs12491812 3: 50556581 C > T (0.011) T 4.18 × 10−11

(1.25 × 10−5)
5.62 (7.32) 3:50534635-

50645413 CACNA2D2 C3orf18,
HEMK1, CISH D28

rs2239753 3: 50645158 T > C (0.011) C 2.80 × 10−11

(1.25 × 10−5)
4.97 (7.02) 3:50555933-

50645413 CISH
C3orf18,
HEMK1,

CACNA2D2
D28

rs2239752 3: 50645413 C > T (0.011) T 5.43 × 10−10

(4.86 × 10−5)
4.32 (5.62) 3:50555933-

50645413 CISH
C3orf18,
HEMK1,

CACNA2D2
D28

rs2239751 3: 50647888 A > C (0.011) C 5.21 × 10−10

(4.86 × 10−5)
4.32 (5.62) 3:50531386-

50875635 CISH

C3orf18,
HEMK1,

CACNA2D2,
MAPKAPK3,

DOCK3

D28

rs743753 3: 50651395 C > T (0.011) T 5.21 × 10−10

(4.86 × 10−5)
4.32 (5.62) 3:50531386-

50875635 MAPKAPK3

C3orf18,
HEMK1,

CACNA2D2,
CISH, DOCK3

D28

rs616689 3: 50668532 G > A (0.014) A 1.87 × 10−10

(3.35 × 10−5)
5.09 (5.79) 3:50647343-

50751643 MAPKAPK3 CISH, DOCK3 D28

rs9879397 3: 50685642 G > A (0.012) A 8.79 × 10−9

(6.57 × 10−4)
4.00 (4.86) 3:50647343-

50751643 MAPKAPK3 CISH, DOCK3 D28

rs2170840 3: 50686517 A > C (0.014) C 1.87 × 10−10

(3.35 × 10−5)
5.09 (5.78) 3:50647343-

50751643 MAPKAPK3 CISH, DOCK3 D28

rs12492982 3: 50698155 C > T (0.011) T 4.18 × 10−11

(1.25 × 10−5)
4.85 (7.32) 3:50531386-

50875635 MAPKAPK3

C3orf18,
HEMK1,

CACNA2D2,
CISH, DOCK3

D28

rs2035484 3: 50721892 A > G (0.011) G 5.21 × 10−10

(4.86 × 10−5)
4.32 (5.62) NA DOCK3 D28

rs17051403 3: 50751643 C > A (0.011) A 5.21 × 10−10

(4.86 × 10−5)
4.32 (5.62) 3:50531386-

50875635 DOCK3

C3orf18,
HEMK1,

CACNA2D2,
CISH,

MAPKAPK3

D28
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Table 1. Cont.

SNP CHR: Position Alleles (MAF) Risk Allele p Value (q
Value)

Unadjusted OR
(Adjusted OR)

LD Region r2 >
0.8

Genes
Containing

SNP
Genes in LD Phenotype

Associated

rs17072628 3: 65229760 G > A (0.012) A 8.25 × 10−9

(6.57 × 10−4)
3.88 (4.96) 3:65214495-

65241577 D28

rs7840669 8: 89929277 A > G (0.015) G 2.38 × 10−8

(1.53 × 10−3) 4.23 (3.77) 8:89901960-
90133835 D28

rs7953683 12: 79993704 C > T (0.024) T 3.07 × 10−8

(1.72 × 10−3)
2.06 (2.07) 12:79919466-

80080618 PAWR D28

rs1502522 17: 51544776 A > G (0.029) G 2.57 × 10−8

(1.53 × 10−3)
3.24 (2.64) 17:51519876-

51590268 D28

rs1393467 17: 51560869 T > C (0.029) C 2.57 × 10−8

(1.53 × 10−3) 3.24 (2.64) 17:51519876-
51590268 D28
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Mortality between days 7 and 28: The GWAS analysis identified 16 SNPs after Bon-
ferroni correction (Figure 1C, Table 1 and Table S2). The three intragenic SNPs having
the strongest evidence of association with late death (Table 1) were located within CISH
(rs2239753), CACNA2D2 (rs12491812), and MAPKAPK3 (rs12492982). Two other SNPs
within CISH were also strongly associated (rs2239751 and rs2239752) (Table 1), as was
rs7953683 located in PAWR. In addition, six other SNPs close to CISH and located within
DOCK3 or MAPKAPK3 were associated (Table 1). Moreover, 17 additional SNPs within
PAWR and 1 SNP within CACNA2D2 (rs1107312) were associated with mortality based on
an FDR of 5% (Table S2).

To summarize, we identified 139 SNPs associated with mortality in patients with septic
shock. Noticeably, the SNPs associated with early death are different from those associated
with late mortality. This supports the hypothesis that molecular mechanisms causing early
death are at least partly different from those causing late death. Besides, the intragenic SNPs
with the most significant p values for early death were within CYP11B2, which is involved
in the renin-angiotensin-aldosterone system. Interestingly, the SNPs displaying the best
p values were within the CISH-MAPKAPK3-DOCK3 locus. The CISH and MAPKAPK3
genes are known to modulate the immune response [21–26], whereas DOCK3 is mainly
expressed in nervous system and involved in developmental disorders [27–29].

2.3. Usefulness of GWAS to Predict Septic Shock Outcome

A genetic score was calculated based on the leading SNP at each of the 15 loci
among the SNPs that were associated with early mortality after setting up an FDR of
5% (see the Table S1). The leader SNPs were rs16857836, rs11991278, rs7974468, rs10849641,
rs956727, rs11137198, rs9891869, rs16840396, rs2061815, rs34737153, rs11948550, rs2838103,
rs16928895, rs12268257, and rs17169594. The analysis showed that individuals with 4 or
more risk alleles had a death risk 12.33-fold higher than those with no risk alleles (adjusted
OR = 12.33, 95% CI 5.19–31.82) (Table 2). The cumulative effect of the risk alleles is also
represented by receiving operating characteristic (ROC) curves (Figure 1D). The addition
of SNPs significantly improved the AUC obtained with the clinical covariates (0.72 to 0.85;
p = 3.15 × 10−13).

Table 2. Adjusted and unadjusted OR for cumulative effect of allele risk at leader SNPs.

Early Death Late Death

Nb of Risk
Alleles

Non-Adjusted
OR Adjusted OR Non Adjusted

OR Adjusted OR

0 1 1 1 1
1 1.56 1.44 4.75 3.53
2 1.71 1.58 7.95 7.82
3 3.38 3.48 17.96 17.86
≥4 9.40 12.33 70.75 123.35

In the same way, a genetic score was calculated based on the leading SNP at each
of the 32 loci among the SNPs that were associated with late mortality after setting up
an FDR of 5% (see the Table S2). For survival between day 7 and day 28, the leader
SNPs were rs359952, rs17442970, rs6692946, rs1509380, rs2239753, rs17072628, rs9856368,
rs6852672, rs12654328, rs7726677, rs3797817, rs6910170, rs11987625, rs11994554, rs7840669,
rs3005838, rs7096890, rs4575240, rs7953683, rs1882182, rs527603, rs7992136, rs4646220,
rs1756650, rs7178141, rs2340518, rs1434590, rs7214197, rs1502522, rs4381690, rs17271418,
and rs2232619. The results show that individuals with four or more risk alleles have a
death risk 123.35-fold higher than those with no risk alleles (adjusted OR = 123.35, 95% CI
23.64–2292) (Table 2). The cumulative effect of the risk alleles is also represented by ROC
curves (Figure 1E). The addition of SNPs significantly improved the AUC obtained with
clinical covariates (0.73 to 0.93; p = 9.69 × 10−23).
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In conclusion, our results provide evidence of a strong cumulative effect of genetic
factors on both early and late mortality.

2.4. Protein–Protein Networks and Functional Enrichments

Using the 45 genes containing SNPs associated with early or late mortality or in linkage
disequilibrium with those SNPs (Table 3), no functional enrichment was detected (data
not shown). The products of those genes were further mapped onto a high-quality human
protein network [30]. Only the protein products of 30 genes were mapped, as 15 genes
encoded proteins were not present in the network (Table 3). Interestingly, 27 out of these
30 proteins encoded by genes associated with mortality are particularly close in the network.
Indeed, average characteristic path lengths for the sepsis network and for the whole protein
network were 3.16 and 3.79, respectively. The distribution of characteristic path length of
the sepsis network significantly differed from that of the whole protein network (p < 0.0001).
We therefore extracted the subnetwork containing 1617 interactions between 325 proteins
(Figure 2A and Table S3), including all the interactors of the 27 proteins. As an example,
Figure 2B shows the proteins interacting with PTPN11, CISH, FER, NKCP5, DOCK3,
RL6, SYT1, and SNAA/NAPA, the SNPs of which have been associated with early or
late death. Furthermore, this subnetwork was significantly enriched for 79 biological
pathways with p-values corrected for multiple tests lower than 0.05 (Table S4). These
pathways included those related to the renin-angiotensin-aldosterone system (aldosterone-
regulated sodium reabsorption) and many pathways related to the immune system, which
can be clustered into immune signaling pathways (“MAPK signaling pathway”, “T cell
receptor signaling pathway”, “Toll-like receptor signaling pathway”, “Natural killer cell
mediated cytotoxicity”, “NF-kB signaling pathway”, “Jak STAT signaling pathway” and
“IL6 signaling pathway”). Over-representations of pathways related to cancer (chronic
myeloid leukemia; renal cell carcinoma) [31] and brain injuries (neurotrophin signaling
pathway) [32] were also found in the subnetwork. In all, these results suggest that genetic
variants associated with mortality perturb molecular networks involving the immune cells,
which may lead to severe disease.

2.5. Sepsis-Associated SNPs in Super-Enhancers

Super-enhancers are of particular interest as they modulate the gene expression and
are active in tissue or cell type specific manner [33]. We crossed the genomic coordinates of
the 139 SNPs with those of enhancer and super-enhancers in 86 tissue or cell types [33].
Figure 3 shows the density of non-coding SNPs associated with mortality in septic shock
patients in the super-enhancers and typical enhancers in 12 out of the 86 tissue and cell
samples. Moreover, 12.2% of these SNPs (17/139) occurred in the super-enhancers of CD14+
monocytes (Table S5). This led to a density of 2.91 SNPs per 10 MB, whereas the density of
the sepsis-associated SNPs was 0.37 SNPs per 10 MB in typical enhancer of monocytes. We
further found a significant overlap between SNPs and monocyte super-enhancers using
a method based on Monte Carlo simulation (p = 0.003). We found 3.44 SNPs within the
monocyte super-enhancers after permutating the genomic elements, whereas we identified
17 SNPs within the monocyte super-enhancers. Similarly, an enrichment of the sepsis-
associated SNPs was found for Th memory lymphocytes (p = 0.015; random overlap = 0.58;
observed overlap = 4), CD34+ hematopoietic stem cells (p = 0.01; random overlap = 1.68;
observed overlap = 5), and spleen (p = 0.012; random overlap = 2.98; observed overlap = 12)
(Figure 3). As shown in Table S5, we also detected an enrichment for other hematopoietic
stem cell samples (p = 0.024; random overlap = 1.69; observed overlap = 7) and for naïve
Th lymphocytes (p = 0.024; random overlap = 0.73; observed overlap = 4). In conclusion,
our results show that genetic variants associated with mortality are enriched in monocyte
super-enhancers. This suggests that the alteration of gene expression in monocytes may
play a central role in the mortality in patients with septic shock.



Int. J. Mol. Sci. 2021, 22, 5852 9 of 28

Table 3. List of the proteins associated with mortality.

HGNC Symbol UniProt Symbol Presence in the
Interactome

Presence in the
Sub-Network

ADAP2 ADAP2_HUMAN yes yes
ANKFN1 ANKF1_HUMAN no no

ANKH ANKH_HUMAN yes yes
ARIH1 ARI1_HUMAN yes yes
ASIC2 ASIC2_HUMAN yes yes
ATAD5 ATAD5_HUMAN yes yes
C3orf18 CC018_HUMAN no no
C6orf170 BROMI_HUMAN no no

CACNA2D2 CA2D2_HUMAN no no
CISH CISH_HUMAN yes yes

CRLF3 CRLF3_HUMAN yes yes
CYP11B2 C11B2_HUMAN no no
DOCK3 DOCK3_HUMAN yes yes
DPYD DPYD_HUMAN yes yes

EHMT1 EHMT1_HUMAN yes yes
FER FER_HUMAN yes yes
GML GML_HUMAN no no

GPR158 GP158_HUMAN yes yes
GREM2 GREM2_HUMAN yes no

HECTD4 HECD4_HUMAN no no
HEMK1 HEMK1_HUMAN yes yes
IFIT1B IFT1B_HUMAN no no
KPTN KPTN_HUMAN yes yes
LBP LBP_HUMAN yes yes
LIPA LICH_HUMAN no no

MAPKAPK3 MAPK3_HUMAN yes yes
NAPA SNAA_HUMAN yes yes

NCKAP5 NCKP5_HUMAN yes yes
NLN NEUL_HUMAN no no

OSCP1 OSCP1_HUMAN no no
PAWR PAWR_HUMAN yes yes
PPFIA2 LIPA2_HUMAN yes yes
PTPN11 PTN11_HUMAN yes yes
RBFOX1 RFOX1_HUMAN yes yes

RPL6 RL6_HUMAN yes yes
RNF135 RN135_HUMAN yes yes

SLC15A1 S15A1_HUMAN yes no
SLC28A3 S28A3_HUMAN no no
SLFN13 SLN13_HUMAN no no

SLFN12L SN12L_HUMAN no no
SYNC SYNCI_HUMAN yes yes
SYT1 SYT1_HUMAN yes yes

TRAFD1 TRAD1_HUMAN yes no
U6 SNR27_HUMAN yes yes

WDR85 DPH7_HUMAN no no
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Figure 2. Subnetwork of the 27 connected proteins associated with sepsis and their direct interactors. Orange proteins are
those encoded by genes associated with early mortality. Green proteins are those encoded by genes associated with late
mortality. Pink proteins are direct interactors of proteins encoded by associated genes. The global network (A) and zooms
on proteins of interest (B) are shown.
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Figure 3. Sepsis-associated SNPs in super-enhancers and typical enhancers. Radar plots show the density of non-coding
SNPs within super-enhancers (A) and typical enhancers (B) in 12 tissues and cell types. The SNP density (SNP/10 MB
sequence) was calculated by first counting the number of SNPs within super-enhancers and typical enhancers, which was
further divided by the numbers of base pairs of the super-enhancer or typical enhancer region in the same tissue or cell
type, and then multiplied by 10 million. The center of the plot is 0, the SNP density (SNP/10 MB sequence) is shown on the
respective axis for each tissue or cell type.

2.6. Prioritization and Annotation of Non-Coding Functional SNPs

We identified 1311 SNPs in strong linkage disequilibrium (r2 ≥ 0.8) with the SNPs
associated with either early mortality or late mortality (Tables S1 and S2), leading to a
list of 1450 SNPs (Table S6). Since 1439 SNPs were in non-coding regions, we further
looked for regulatory SNPs (Table S6). Figure 4A shows the outline of SNP annotation
and prioritization.

We crossed the genomic coordinates of the 1439 SNPs with those of enhancer and
super-enhancers from the catalog published by Hnisz [33]. Among the non-coding SNPs,
505 SNPs were found to be located within enhancers or super-enhancers in at least one of
the cell or tissue types. (Table S7). Most of the SNPs were located within super-enhancers
of monocytes, spleen, or hematopoietic cells. In particular, 150 SNPs were located within
enhancers or super-enhancers in CD14+ monocytes. We further searched for transcription
factors that may bind to the sequence containing the SNPs associated with mortality or
the SNPs in linkage disequilibrium with them. To this aim, we used the ReMap tool [34],
which is a catalog of ChIP-seq results, and regulatory sequence analysis tools (RSAT) [35],
which analyzes the sequence containing the SNPs and scans a collection of motifs binding
transcription factors. We identified 187 SNPs that may alter the binding of transcription
factors (Table S8). Among them, 31 SNPs were located within enhancers or super-enhancers,
on the basis of the catalog published by Hnisz et al. [33], whereas 16 SNPs were annotated
as expression quantitative trait loci (eQTLs) (Table S9). Among the 16 SNPs, 14 SNPs were
located within two super-enhancers located within either the RNF135 gene locus or the
CISH and MAPKAPK3 gene locus. Interestingly, rs2170840 and rs616689 within the CISH
and MAPKAPK3 gene locus were associated with late mortality with a p value lower than
10−8 (Table 1).
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Figure 4. Schematic outline of non-coding SNP annotation and prioritization. (A) Schematic outline of non-coding SNP
annotation and selection. SNiPA was used for looking for eQTL, whereas RSAT and ReMap were used for identifying
transcription factors binding sequences containing the SNPs. Enhancer and super-enhancer annotation was based on the
catalog published by Hnisz [33]. IW-scoring and TAGOOS methods were applied to rank the SNPs. (B) Prioritization of
non-coding SNPs on the basis of IW-scoring method.
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In parallel, we ranked the SNPs associated with mortality and the SNPs in linkage
disequilibrium with them with two bioinformatic tools, named TAGOOS [36] and integra-
tive weighted (IW) scoring framework [37]. Each tool gives a score based on genomic and
epigenomic annotations to predict the regulatory effect of the SNPs. Figure 4B shows the
results of the ranking of the SNPs on the basis of the IW-score. The details are in Table
S10. Among the SNPs associated with mortality or the SNPs in linkage disequilibrium
with them, the SNP with the highest IW-score was rs143356980, which is located close to
rs2170840 and rs616689 within the CISH and MAPKAPK3 gene locus on chromosome 3.
Noticeably, rs2170840 and rs616689 were ranked in 143th and 23th position by using the
IW-scoring method, respectively. rs143356980 was ranked in 13th position on the basis
of the intergenic TAGOOS score, whereas it had the best score among the SNPs within
chromosome 3. rs2170840 and rs616689 were ranked in 99th and 64th position on the
basis of the intergenic TAGOOS score, respectively. Interestingly, rs143356980 was located
within a super-enhancer of CD14+, CD4+, CD8+, CD34+, and spleen cells (Table S7), and
was in linkage disequilibrium with eQTLs, including rs2170840 and rs616689. Moreover,
rs143356980 was in linkage disequilibrium (r2 > 0.55) with 13 out of the 14 SNPs associated
with late mortality and located within the CISH and MAPKAPK3 gene locus (Table S2).
rs143356980 was in strong linkage disequilibrium (r2 > 0.80) with 4 SNPs associated with
late mortality: rs2239751, rs2239751, rs12492982, and rs17051403 (Table 1).

The Figure 5 shows a detailed view of the CISH and MAPKAPK3 gene locus, which
contains 14 SNPs associated with late mortality with an FDR of 5% and SNPs in linkage
disequilibrium with them. These include rs143356980, which is located within a peak
of H3K4me1, a peak of H3K27ac histone mark, a DNAse I hypersensitivity site, and a
region binding to several transcription factors. Furthermore, rs143356980 is located within
GH03J050580 from the GeneHancer catalog [38], and a super-enhancer of monocytes from
the catalog by Hnisz et al. [33]. Moreover, the genomic region containing rs143356980
can be considered as a good enhancer candidate, the activity of which may be altered
by rs143356980.

2.7. Experimental Validation of the Regulatory Effect of rs143356980

The human erythroleukemia cell line K562 is multipotential, myeloid malignant cells
that spontaneously differentiate into progenitors such as erythrocytes granulocyte and
monocytic series [39,40]. This cell line is a predilection model in immunology due to their
intrinsic properties and their ability to be easily transfected. Interestingly, SNPs associated
with late mortality due to sepsis overlap the enhancer marks H3K4me1 and H3K27Ac in
K562 cells and monocytes in the CISH-MAPKAPK3 locus (Figure 5A). We then generated
K562 homozygous mutated cells, in which a 1636 bp genomic region around rs143356980
was deleted (K562−/−) using CRISPR/Cas9 system in order to study the impact of this
deletion on gene expression (Figure 5B). Three independent clones were used to measure
the expression of CISH and to compare it with that of non-deleted K562 cells. The genomic
region of interest has been sequenced for wild type cells and mutated cells. The results
confirmed the existence of the deleted region of 1636 bp for the 1B1 and 5C clones and
that of 1628 bp for the 1B2 clone (Figure 5B,C); these included sequencing results (data not
shown). Quantitative real-time PCR assays showed a significant downregulation of CISH
transcripts in K562−/− cells (n = 27) versus non-deleted K562 cells (n = 9) with (t = 7.90,
p < 0.001) and without stimulation by IFNγ (t = 7.74, p < 0.001). These differences remained
significant when taking into account the clustering of triplicates into three experiments
for K562 and each K562−/− clone (p = 0.004 for unstimulated cells, p = 0.007 for cells
stimulated by IFNγ), as shown in Figure 6B. Similarly, another series of experiments
showed a downregulation of CISH in K562−/− cells (n = 27) versus non-deleted K562 cells
(n = 9) with (p = 0.008) and without stimulation by lipopolysaccharide (LPS) (p = 0.011),
when taking into account the experiment factor (Figure 6A. In addition, after grouping the
series of experiments performed with unstimulated cells, the analysis confirmed the effect
of the deletion on CISH expression (p < 0.001).
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Figure 5. SNPs associated with mortality due to sepsis overlap enhancers in K562 cells and monocytes in the CISH-
MAPKAPK3 gene locus. (A) Peaks of specific histone marks such as H3K4me3 (active promoters), H3K4me1, H3K27ac
(active enhancers), and DNAse I hypersensitivity sites (open chromatin) are shown in K562 cells. Peaks of ChIP-seq for
transcription factors from the Remap catalog, and location of enhancer predicted by GeneHancer and super-enhancer in
CD14+ monocytes (Hnisz Enhancer CD14+) and in K562 cells (Hnisz Enhancer K562) are also indicated. The genomic
position of the SNPs associated with mortality due to sepsis (SNP associated) and that of SNPs in linkage disequilibrium
with them (SNP LD) is pointed out. Positions of guide RNA (gRNA) used to generate the deleted K562 cells (1B1, 5C, and
1B2) by CRISPR/Cas9 method are indicated. (B) Zoom on the region (framed in (A)) containing rs143356980 in K562 WT
cells and in 1B1, 5C, and 1B2 K562 deleted cells. Flanking sequences, and the motifs of transcription factors binding sites
on the rs143356980 (red box) are specified. (C) PCR controls performed on the genomic DNA of WT K562 cells (K562)
and in 1B1, 5C, and 1B2 deleted K562 cells using primers located upstream and downstream of the deleted region (MW,
molecular weights).
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Figure 6. Enhancer effect of the genomic region containing rs143356980 on CISH expression. (A) CISH expression
measurements in K562 cells and K562−/− cells either unstimulated (-) or stimulated (+) with LPS. (B) CISH expression
measurements in K562 cells and K562−/− cells either unstimulated (−) or (+) with IFNγγ. For (A,B), three independent
experiments with triplicates were performed, leading to nine measurements for each condition. The box plot of the mean
of triplicates is shown for the three experiments. Mixed models that took into account the clustering of triplicates into
the experiments were used to compare K562 cells to each K562−/− clone. p values are shown for the comparison of the
unstimulated K562−/− clones with unstimulated K562 cells and for the comparison of the stimulated K562−/− clones with
stimulated K562 cells: *** for p < 0.001; ** for p < 0.01; * for p < 0.05. (C) Effect of rs143356980 on the enhancer activity. DNA
sequences containing either rs143356980-C allele or rs143356980-T allele were cloned into a luciferase reporter that contained
no promoter, a minimal promoter or CISH promoter. Three independent experiments with triplicates were performed in
K562 cells unstimulated (−) or stimulated (+) with IFNγ, leading to nine measurements for each condition. The box plots
show the mean of triplicates for three experiment. Mixed models that took into account the clustering of triplicates into the
experiments were used to compare the luciferase activity of the constructs, with a special emphasis of the comparison of
constructs containing rs143356980-C allele with those containing rs143356980-T allele. p values are shown for unstimulated
cells and stimulated cells.
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When analyzing each clone, CISH expression was lower in 1B1 (n = 9), 1B2 (n = 9),
and 5C (n = 9) clones than that of non-deleted K562 cells (n = 9) on the basis of a Stu-
dent’s t test (t > 4.37, p < 0.001). When taking into account the clustering of triplicates into
three experiments, the downregulation of CISH remained significant in 1B1 (p = 0.01 for
unstimulated cells, p = 0.001 for cells stimulated by IFNγ) and 1B2 (p = 0.001 for unstim-
ulated cells, p = 0.037 for cells stimulated by IFNγ) clones versus non deleted K562 cells
(Figure 6B), whereas it was not significant for 5C clone (p = 0.054 for unstimulated cells,
p = 0.114 for cells stimulated by IFNγ). Another series of experiments confirmed this result
in unstimulated 1B1 (p < 0.001), 1B2 (p = 0.003), and 5C clones (p = 0.075) (Figure 6A), and
provided evidence of a downregulation of CISH in cells stimulated by LPS (p = 0.006 for
1B1, p = 0.010 for 1B2, p = 0.028 for 5C). The downregulation of CISH in the unstimulated
5C clone was significant when grouping all the experiments (p = 0.006), whereas it was
highly significant for 1B1 (p < 0.001) and 1B2 (p < 0.001).

We further cloned upstream a 607 bp region surrounding rs143356980 into a luciferase
reporter vector to test its regulatory effect (Figure 6C). The enhancer activity of the region
surrounding rs143356980 was detected in cells with the minimal promoter (t > 8.9, p < 0.001)
and cells with the CISH promoter (t > 2.7, p < 0.016), as shown in Figure 6C. This was further
confirmed, when taking into account both the experiment factor and rs143356980 allele for
the minimal promoter and the CISH promoter (p < 0.001). Nevertheless, the results showed
a clear effect of rs143356980 on the enhancer activity. Moreover, the luciferase activity in
K562 cells with both the CISH promoter and the enhancer with rs143356980-C allele was
significantly higher than that in K562 cells with both the CISH promoter and the enhancer
with rs143356980-T allele (p = 0.004 for unstimulated cells and p < 0.001 for cells stimulated
with IFNγ), after taking into account the clustering of triplicates into three experiments.
Similar results were obtained in K562 cells with the minimal promoter (p = 0.023 for
unstimulated cells and p = 0.010 for cells stimulated with IFNγ). Interestingly, there was no
effect of IFNγ on the luciferase activity in K562 cells with the minimal promoter (Figure 6C).
In contrast, the luciferase activity in K562 cells with the CISH promoter was higher in cells
stimulated with IFNγ than that in unstimulated cells (p < 0.003), indicating that IFNγ acts
on the CISH promoter.

Overall, our results show that the genomic region of interest has an enhancer activity
that is perturbed by rs143356980. The effect of the variants on the activator activity and
further on the regulation of cytokines could partly explain the transition from mild to
severe sepsis in some patients.

3. Discussion

In this study, we assessed the association of SNPs with early and late mortality in
septic shock patients at the genome level, and we looked for biological pathways that could
be disrupted by genetic variation. We then annotated and prioritized the SNPs associated
with mortality and the SNPs in linkage disequilibrium with them and characterized the
functional significance of the best candidates.

This present GWAS follows a previous study using the same PROWESS cohort [18],
but designed after removal of the patients in the aPC arm. The next randomized clinical
trial PROWESS SHOCK failed to show a benefit of aPC on mortality, motivating the im-
mediate removal of aPC from the market. As a consequence, this aPC failure to reduce
mortality in septic shock allowed to use the shocked patients from both placebo and aPC
arms of the PROWESS cohort to perform the GWAS, a selection that differed from the
previous GWAS [18]. The treatment with aPC was then considered only as a covariate. The
growing evidence for potential differing mechanisms for early versus late death [19,20] was
then considered to test SNP associations. The early stimulation of inflammation processes
appears to be rapidly followed by a downregulation of these processes through dominant
anti-inflammatory patterns, which can be considered suitable for maintaining the tissue
fitness and reducing the risk of death [41]. If it persists over time, such acquired immuno-
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suppression may be associated with higher risk of secondary infection [42]. The present
GWAS allowed us to identify SNPs associated with mortality in septic shock patients.

Based on an FDR of 5%, 32 and 107 SNPs were associated with early and late mortality,
respectively. These associations reduced to 12 and 16 SNPs after the Bonferroni correction
for early and late mortality, respectively. Individuals having four or more risk alleles had a
12-fold higher or a 123-fold higher risk of death than those without risk alleles for early
and late death, respectively. For early death, the strongest associations between intra-genic
SNPs were located within CYP11B2, a gene encoding aldosterone synthase, a key enzyme
of the aldosterone biosynthesis. Variants of such a gene have never been reported to be
associated with human shock status and/or severe infection, but have been shown to be
largely associated with hypertension and atrial fibrillation [43]. The other important SNPs
associated with early mortality were located within PTPN11, which is also known as SHP2.
The proteins encoded by this gene are members of the protein tyrosine phosphatase (PTP)
family that are known to be signaling molecules regulating a variety of cellular processes.
This PTP family contains two tandem Src homology-2 domains, which function as phospho-
tyrosine binding domains and mediate the interaction of the PTP with their substrates.
The protein encoded by PTPN11 is implicated in reduced JAK/STAT signaling when it
is elevated, which may reduce MHC expression induced by INFγ [31]. SHP2 activation
induced by human CMV infection is responsible for the downregulation of INFγ-induced
STAT1 tyrosine phosphorylation [44]. In addition, the PD1/PDL1 interaction has been
shown to inhibit T cell receptor signaling by recruiting SHP1/2 phosphatases [45]. For late
mortality, it should be noticed that FER reported to be associated with mortality in sepsis
caused by pneumonia [15] was associated with mortality in septic patients in our study
on the basis of an FDR of 5%. FER that is a protein tyrosine kinase acting downstream
of cell-surface receptors, has been shown to influence leucocyte recruitment in response
to LPS [46] to inhibit neutrophil chemotaxis [47], and to alter the endothelial response to
LPS stimulation [48]. Furthermore, the strongest associations were found within cytokine-
inducible SRC homology 2 (SH2) domain protein (CISH) and MAPKAPK3. MAPKAPK3 is
involved in the MAP Kinase pathway, which is known to regulate the activation of immune
cells. CISH is the first member of the suppressor of cytokine signaling (SOCS) family. An
association has been shown between CISH polymorphisms and susceptibility to infectious
diseases including malaria, bacteremia or tuberculosis [25]. In addition, rs414171-T allele
that was associated with susceptibility to bacteremia, tuberculosis and malaria has been
shown to reduce the promoter activity of CISH and its expression in human PBMCs after
stimulation by IL-2 [25,49]. Since CISH is known to suppress STAT5 in T cells, it has been
proposed that decreased levels of CISH lead to enhanced activation of STAT5 and enhanced
activation of Treg lymphocytes, and as a consequence, a suppressed immune response
against bacteria and other pathogens [25].

Noticeably, the CISH locus was highlighted by our bioinformatic analyses, which
aimed to annotate and prioritize SNPs associated with mortality and the SNP in linkage
disequilibrium with them. Since more than 95% of the SNPs associated with mortality
or the SNPs in linkage disequilibrium with them were located in non-coding regions, we
hypothesized that the vast majority of the causal genetic variants are regulatory variants.
More generally, most of the GWAS variants are non-coding, emphasizing the potential
role of regulatory variants in complex diseases [50,51]. Moreover, we investigated 1439
non-coding SNPs including SNPs associated with mortality and SNPs in linkage dise-
quilibrium with them. Among those SNPs, rs143356980 was the best candidate using
the IW-scoring method and was ranked in 13th position on the basis of the intergenic
TAGOOS score. Interestingly, it is located near the CISH gene, and is in strong linkage
disequilibrium with four SNPs highly associated with late mortality in patients with septic
shock; these includes rs2239751, which has been also associated with tuberculosis [52,53],
and persistent hepatitis B virus infection [54]. Furthermore, rs143356980 is located within
a super-enhancer for monocytes and T lymphocytes, according to the database by Hnisz
et al. [33]. Using the CRISPR-Cas9 genome editing method, we showed that the sequence
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containing rs143356980 has an enhancer activity on the CISH gene in unstimulated K562
cells and K562 cells stimulated with either LPS or IFNγ. Using the luciferase reporter
assay, we showed the effect of rs143356980 on the enhancer activity in unstimulated K562
cells and K562 cells stimulated with IFNγ. More specifically, rs143356980-T decreased
the enhancer activity compared to rs143356980-C allele. In all, these results suggest that
genetic variation within the enhancer containing rs143356980 influences CISH gene ex-
pression, Jak/Stat signal transduction, and the risk of death in septic shock patients. It is
not excluded, nevertheless, that other SNPs within the same enhancer or other regulatory
regions alter CISH gene expression and susceptibility to sepsis. These include rs414171,
which has been shown to reduce CISH expression in human PBMCs after stimulation by
IL-2 [25,49]. rs143356980 and other genetic variants in an enhancer may act through the
same mechanisms, leading to susceptibility to sepsis.

Since the expression of CISH is induced through the stimulation of other receptors,
genetic variation altering CISH expression may have functional consequences in other cells.
CISH expression is induced in response to EPO, IL-2, IL-3, IL-5, GM-CSF in hematopoietic
cells, leading mostly to the activation of STAT5 [55,56]. In addition, CISH is an inducible
gene in NK cells stimulated by IL-15, and deletion of CISH increased proliferation, IFNγ

production and cytotoxicity against tumors [57]. Since NK cells in septic patients have been
shown to produce low levels of IFNγ and to have a decreased cytotoxicity activity [58],
low levels of CISH may influence susceptibility to sepsis through an NK cell dependent
mechanism. GM-CSF expression is induced in macrophages infected by M. tuberculosis,
leading to CISH expression and an increased replication of M. tuberculosis [59]. Moreover,
LPS and IFNγ induce the expression of CISH in human monocytes, as shown in a tran-
scriptomic study [60]. Similarly, we report in the present study an increase of the CISH
expression in K562 cells stimulated either by LPS or IFNγ. The functional effect of CISH
expression levels remains, however, to be investigated in monocytes or macrophages in
septic patients.

Forty-five genes that encode proteins contained the SNPs associated with early or late
mortality or the SNPs in linkage disequilibrium with the SNPs. Enrichment in biological
pathways (Kyoto encyclopedia of genes and genomes-KEGG and BIOCARTA) was used to
investigate the involved underlying biological functions. Since no significant enrichment
based on the 45 genes was found, we mapped the proteins encoded by these 45 genes on a
high-quality protein–protein interaction network [30]. Thirty proteins out of the 45 proteins
were included in the whole protein–protein network, leading to identify a sub-network
that contains 27 proteins associated with mortality and their 298 direct interactors. For
example, CISH and PTPN11 shared five direct interactors, whereas CISH and FER shared
one interactor. This suggests that genetic variants altering the function or the expression
of proteins belonging to the sub-network may act in combination to influence mortality
in septic shock patients. Furthermore, this subnetwork was enriched for 79 significant
pathways, including Toll-like receptor, IL-6, Jak-STAT, and T cell receptor signaling path-
ways as well as aldosterone-regulated sodium reabsorption. Thus, the dysregulation of the
renin-angiotensin-aldosterone system and the dysregulation of the monocyte/macrophage
activation or the T-cell activation may be involved in sepsis-induced associated organ
failure. In the same way, sepsis-associated SNPs were enriched in the super-enhancers of
adrenal gland that produces aldosterone; furthermore, sepsis-associated SNPs were highly
enriched in the super-enhancers of monocytes and Th lymphocytes. Moreover, Davenport
et al. recently reported that patients with higher early mortality had an increased expres-
sion of negative regulators of TLR signaling, and a downregulation of human leucocyte
antigen class II genes and most genes implicated in T cell activation [61]. The clinical
relevance of these findings is strongly supported by the significant benefits of associating
clinical traits with SNPs to predict early and late death [62] (Figure 1D,E).

Our results suggest that genetic variations in different genes including CISH alter the
activation of immune cells and, in turn, increase the risk of both early and late mortality
in patients with septic shock. To provide greater homogeneity to our GWAS study, only
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European patients with septic shock were selected. This allowed us to look for SNP
in strong linkage disequilibrium with SNPs associated with mortality, and to annotate
them for their molecular function. Furthermore, we looked for the potential functional
significance of the identified SNPs using protein–protein interactions and bioinformatics
tools predicting regulatory SNPs. Finally, we performed experimental studies confirming
the regulatory effect of a bona fide candidate SNP.

In conclusion, this GWAS analysis identified new loci relevant for mortality in Eu-
ropean patients with septic shock. Here, we provide evidence for (i) different covariates
and SNPs that influence early or late mortality, supporting the concept to separate early
and late mortality; (ii) different SNPs strongly associated either with early or with late
mortality; (iii) a protein–protein sub-network highlighting biological pathways, such as
the Jak/stat pathway; (iv) the combination of clinical traits and SNPs may better predict
early and late mortality; (v) a regulatory effect of a sequence containing candidate SNPs
on CISH expression, and a high effect of rs143356980 on the enhancer activity suggests an
important role of this region on the immune response modulation in patients. However,
independent GWAS testing the same SNPs or replication studies focused on the same
phenotypes in septic shock patients are required to confirm our association results. Further
studies depicting the effect of the transcription level of CISH on the intensity of the immune
response in monocytes/macrophages, crucial during sepsis development are needed.

4. Materials and Methods
4.1. Patients, Database, and Study Design

The flow chart of the study shown in Figure 1A is also shown in Figure S1, providing
all steps and reasons for the final size of the cohort used for GWAS. The studied cohort was
kindly provided through a formal contract between Eli Lilly and Company (Eli Lilly and
Company; Indianapolis, IN, USA), the owner of the PROWESS database, and the senior
author of the present study (DP). The RCT PROWESS was a multi-center, randomized,
double-blind, placebo-controlled study evaluating the efficacy of activated protein C (aPC)
in severe sepsis. The bioethics committees for each study center approved the trial protocol
and written consent was obtained from all participants or their next of keen. The DNA
collection was included in the trial with the intent of testing for factor V polymorphisms,
and consultation with bioethics committees confirmed that no additional consent was
necessary for further genetic investigations on anonymized samples. The entry criteria and
clinical phenotyping for the PROWESS study have previously been reported [63].

The recent report of the RCT PROWESS SHOCK [3] showed that aPC treatment did
not improve outcome in septic shock patients in comparison with the placebo group. This
allowed us to further investigate the PROWESS database, selecting exclusively septic shock
patients, and pooling placebo and treated individuals. aPC treatment was, nevertheless,
included as a covariate and was tested for the studied phenotypes. The patients who were
selected in the present study do meet the sepsis-3 definition [64], having at least two or
more organ failures.

The clinical characteristics, co-morbidity presence, and day 1 plasma IL-6 levels
as a marker of systemic inflammation [65] were collected (Table 4). Because different
mechanisms may drive early mortality compared to late mortality (after 7 days) [20,66],
the association with outcome was separated into early (before day 7) and late (between
day 7–day 28) death.
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Table 4. Characteristics of patients.

Initial Cohort
(n = 832)

Survivors after
7 Days (n = 698)

All Cohort Dead before
Day 7 Alive at Day 7 Dead before

Day 28
Alive at
Day 28

n = 832 n = 134 n = 698 n = 111 n = 587

Age (year) 67.3 ± 22.7 a 70.8 ± 13.1 65.8 ± 24.0 71.4 ± 14.8 63.4 ± 24.5
Male sex (%) 467 (56.1) 78 (58.2) 389 (55.7) 66 (59.5) 323 (55)

Drotrecogin alpha (%) 407 (48.9) 59 (44) 348 (49.9) 44 (39.6) 304 (51.8)
Prior and preexisting conditions (%)

Hypertension 297 (35.7) 53 (39.6) 244 (35.0) 43 (38.7) 201 (34.2)
Myocardial infarction 129 (15.5) 30 (22.4) 99 (14.2) 28 (25.2) 71 (12.1)

Congestive
cardiomyopathy 67 (8.1) 7 (5.2) 60 (8.6) 20 (18) 40 (6.8)

Diabetes 169 (20.3) 30 (22.4) 139 (19.9) 27 (24.3) 112 (19.1)
Pancreatitis 30 (3.6) 5 (3.7) 25 (3.6) 4 (3.6) 21 (3.6)

Liver disease 14 (1.7) 3 (2.2) 11 (1.6) 4 (3.6) 7 (1.2)
COPD b 226 (27.2) 39 (29.1) 187 (26.8) 36 (32.4) 151 (25.7)
Cancer 169 (20.3) 33 (24.6) 136 (19.5) 29 (26.1) 107 (18.2)

Apache II score 25 ± 10 28 ± 11.8 25 ± 10 28 ± 9 24 ± 10
SOFA score c 8 ± 3 9.5 ± 3 8 ± 3 8 ± 3 8 ± 3

log(IL-6) d 6.4 ± 3.1 7.4 ± 4.0 6.1 ± 2.9 6.3 ± 2.6 6.1 ± 2.9
a Values are median ± inter-quartile interval. b COPD denotes chronic obstructive pulmonary disease, and APACHE II Acute Physiology
and Chronic Health Evaluation II. c The organ components of the Sequential Organ Failure Assessment (SOFA) scores were provided by the
PROWESS dataset. We calculated the sum of the organ component SOFA scores except for the neuronal ones (not included in the database).
d IL-6 plasma levels measured at day 1 were expressed in logarithm base 10 due to scattered values. Due to rounding, not all percentages
gave a total of 100.

4.2. Cell Line and Culture Conditions

The chronic myelogenous leukemia cell line K562 (CCL-243) was obtained from the
American Type Culture Collection (ATCC, Manassas, VA, USA) and maintained in RPMI
(Sigma, St. Louis, MO, USA, L9143) supplemented with 20% FBS (Gold, PAA) at 37 ◦C and
5% CO2. For cell stimulation, 106 K562 cells were incubated with IFN-γ (Miltenyi, Bergisch
Gladbach, Germany, 130-096-484) at 100 ng/mL for 6 h or LPS (Sigma, St. Louis, MO, USA,
L9143) at 100 ng/mL for 24 h.

4.3. Single Nucleotide Polymorphism (SNP) Selection

Briefly, genomic DNAs were pre-amplified using a GenomePlex whole genome am-
plification kit from Sigma-Aldrich (St. Louis, MO, USA). An Illumina Human 1M-Duo
BeadChip (Illumina, San Diego, CA, USA) was used for genotyping as previously re-
ported [18]. Thus, 1,199,187 SNPs were genotyped for each individual. The SNPs were
selected according to minor allelic frequencies, call rates and the Hardy–Weinberg equi-
librium. As a first step for quality control, we applied “check.marker” based method
implemented in the R package GenABEL [67] to assess the call rate for the SNPs. The SNPs
with minor allele frequencies below 1% and genotyping rates below 95% were removed
from the dataset, resulting in 948,573 SNPs. The individuals with a call rate below 95%
were excluded from the analyses, resulting in 1411 individuals (Figure 1A and Figure S1).

The individuals were further selected on the basis of a population stratification anal-
ysis. First, a multidimensional scaling using Euclidean distances (principal component
analysis) was applied using the cmdscale method implemented in the “stats” package [68].
Second, the “kmean” partitioning algorithm (R stats package) was used [68]. This resulted
in three clusters, the largest one bringing together essentially CEU individuals. The two
other clusters were composed of 122 and 113 individuals, respectively. Thus, 1176 individ-
uals comprising the largest cluster were kept for further analysis (Figure S1). A departure
from the Hardy–Weinberg expectation was assessed and deviating SNPs (p < 0.05) were
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excluded, resulting in 896,358 SNPs. The genotype rate was then re-evaluated, and individ-
uals displaying more than 5% of the missing genotypes were excluded, resulting in 1173
individuals. Within this cohort, only patients who underwent septic shock were selected
for the association analyses (n = 832) (Figure 1A and Figure S1).

4.4. Association Analyses and Statistical Methods

The clinical characteristics, presence of comorbidities and levels of IL-6 in the plasma
(taken as a marker of systemic inflammation) [65] were recorded (Table 4). The plasma
levels of IL-6 measured at day 1 were expressed in logarithm base 10 due to scattered
values. The organ components of the sequential organ failure assessment (SOFA) score
were provided by the PROWESS dataset. The SOFA score that is an evaluation of the
severity is based on scores reflecting the function of the respiratory, cardiovascular, hepatic,
coagulation, renal, and neurological systems. Table 4 shows statistics for all the European
patients with septic shock, and for the deceased and surviving patients before and after
7 days. A logistic regression analysis was performed to assess the association of (i) early
or (ii) late mortality with covariates (Table 5), using the glm function from the R software.
Covariates with p-values below (or equal) to 0.2 were selected by univariate analysis and
further included in the multivariate logistic regression model. The best model was chosen
on the basis of the Akaike Information Criterion in a backward and forward stepwise
procedure [69]. Only covariates having a p-value below or equal to 0.05 in the model were
used for the genetic association analyses (Table 5). The significant covariates were taken
into account in further analyses.

Table 5. Significant covariates for GWAS.

Survival at Day 7 Survival between Day 7 and Day 28

p-Value OR (CI) a p-Value OR (CI)

Age (years) 4.98 × 10−4 1.03 (1.01; 1.05) 1.62 × 10−3 1.03 (1.01; 1.05)
Gender (M/F) NS NS NS NS
Hypertension NS NS NS NS

Myocardial
infarct NS NS NS NS

Cardiomyopathy NS NS 1.53 × 10−3 3.11 (1.52; 6.24)
Chronic

obstructive
pulmonary

disease (COPD)

NS NS NS NS

Diabetes NS NS NS NS
Liver disease NS NS NS NS
Malignancy NS NS NS NS
Pre-infusion

APACHE score NS NS NS NS

Log of baseline
IL-6

concentration
2.64 × 10−6 1.29 (1.16; 1.44) NS NS

Treatment by
Activated Prot C

or not
NS NS 2.22 × 10−2 0.56 (0.33; 0.91)

baseline SOFA
score (without

neuro
component)

4.77 × 10−2 1.10 (1.00; 1.22) 1.74 × 10−2 1.14 (1.02; 1.27)

a Confidence Interval.

The GenABEL package [67] was used for the GWAS, assuming an additive mode of
inheritance. It allowed us to perform analyses with adjustment for covariates. The score
test in the “qtscore” function of GenABEL was applied, and yielded a p-value for each
SNP, after correcting for the inflation factor lambda. The Bonferroni correction and false
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discovery rate (FDR) procedure were used to correct for multiple tests in each association
study. The nominal p-value corresponding to a genome-wide risk of 5% was 5.58 × 10−8 on
the basis of the Bonferroni correction. In addition, we used the FDR method that controls
the expected proportion of false positives among associations considered significant. To
this aim, we used the qvalue R library with a threshold set to 5% [67]. The Manhattan
plots for GWAS results were obtained using the GenABEL R library; Manhattan plots show
−log10 of the p-values along all autosomes (Figure 1B,C). Finally, odds ratios and 95%
confidence intervals were calculated using the “glm” function in R for each significant SNP
and for the SNP groups. The adjusted odds ratios that take into account the effect of the
covariates were calculated on this basis. The unadjusted odds ratios were also calculated
without including the covariates in the logistic regression model.

We used the Haploreg database to identify the SNPs in linkage disequilibrium with
the SNPs associated with mortality [70]. The linkage calculation was based on the 1000
genome project data restricted to European individuals, and the SNPs with r2 > 0.8 were
identified. This led to a determination of the chromosomal region that likely contains the
causal SNP.

The receiver operating characteristic (ROC) curves of a logistic regression model
were plotted using the epicalc R package. For the genetic part, the leader SNP of each
associated locus (the SNP with the lowest q-value for each locus) was included in the
logistic regression model. The significance of the difference between the ROC curves was
assessed by the likelihood ratio test.

Student’s t test was used to assess on the one hand the effect of CRISPR-Cas9-mediated
deletion of enhancer on CISH expression in K562 cells, and on the other hand that of
rs143356980 on reporter gene expression in K562 cells. For each type of cells (non-deleted or
deleted K562 cells) and each condition, three experiments were performed with triplicates.
Moreover, mixed linear models were further used to take into account the triplicates within
each of the three experiments.

4.5. Protein–Protein Network and Functional Enrichment

The products of the genes associated with the two phenotypes were mapped on a high
quality human interactome network containing 74,388 binary protein–protein interactions
between 12,865 proteins [30]. Their first neighbors in the network and their interactions
were subsequently retrieved. Then, we searched for a subnetwork based on the interaction
between proteins associated with mortality and their direct interactors. The associated
proteins separated by more than one interactor were discarded. The functional annotation
was performed using the DAVID web tool [71], and the whole interactome was used as
background. The significance of enrichments was computed for each term of the KEGG [72]
and BIOCARTA pathways [73], on the basis of a FDR of 5%.

4.6. SNP Annotation and Prioritization

SNPs in linkage disequilibrium with SNPs associated with early or late death were
identified with haploregV4 [70]; a threshold of r2 ≥ 0.8 was used in the CEU population.
ReMap and RSAT were employed to evaluate the effective transcription factor binding to
the sequence containing the SNP. ReMap integrates the results of transcriptional regulators
ChIP-seq experiments from both Public and Encode datasets [34]. ReMap allowed us
to cross our genomic regions against the ReMap catalog of transcription factor binding
peaks. Regulatory Sequence Analysis Tool (RSAT) was used to explore the sequences
containing the SNPs of interest [35]. Variation-scan that is a RSAT tool was used to assess
the potential effect of the SNP on transcription factor binding and to identify motifs that
may be affected by the SNP. A catalog of super-enhancers in a broad range of human cell
types was used to identify cells or tissues, for which super-enhancers contained SNPs
of interest [33]. The significance of the overlap between SNPs and super-enhancers was
assessed using OLOGRAM, which considers the number of overlapping base pairs with
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a shuffling method conserving inter-region length [74]. The SNipa database was used to
look for eQTLs [75].

To prioritize all the candidate non-coding SNPs, integrative bioinformatics approaches
was used. TAGOOS that uses a supervised machine-learning algorithm was employed to
classify the potential regulatory SNPs on the basis of a broad range of annotations such as
epigenomic marks or eQTLs [36]. IW-scoring that integrates scores from 11 tools was also
used to prioritize the candidate SNPs [37].

4.7. Genome Editing Using the CRISPR-Cas9 Method

Two gRNAs were designed for each end of the targeted region using the CRISPRdirect
tool [76], as shown in Figure 5B. The gRNAs were cloned into a gRNA cloning vector
(Addgene, Watertown, MA, USA, 41824) as previously described [77]. The sequences of
the forward gRNA and reverse gRNA were CCTCATCAGATAACCTCCAG and ATAGCC-
CTCAGAGGCCCTGC, respectively. One million cells were transfected with 1 µg of the
hCas9 vector (Addgene, 41815) and 1 µg of each gRNA using the Neon Transfection System
(Thermo Fisher Scientific, Waltham, MA, USA). Three days after transfection, transfected
cells were plated in 96-well plates at limiting dilution (0.5 cells per 100 µL per well) for
clonal expansion. Individual cell clones were screened for homologous allele deletion by
direct PCR using Phire Tissue Direct PCR Master Mix (Thermo Fisher Scientific), according
to the manufacture’s protocol. Forward and reverse primers were designed bracketing the
targeted regions to detect deleted and non-deleted clones: GGCTCATTCCCTTGGTCCAG
for the forward primer and GCCACTCTCCAACCACTCTG for the reverse primer. Se-
quencing based on the Sanger method was used to check successful deletion of the sequence
of interest.

4.8. cDNA Synthesis and qRT-PCR

Total RNA was extracted using RNeasy Plus Mini Kit (Qiagen, Hilden, Germany).
500 ng of RNA was reverse transcribed into cDNA using Superscript VILO Master Mix
(Thermo Fisher Scientific). Real-time PCR was performed using Power SYBR Master
Mix (Thermo Fisher Scientific) on a QuantStudio 6 Flex Real-Time PCR System appara-
tus. Forward and reverse primer sequences were AGAGAGTGAGCCAAAGGTGC and
TCTTCTGCAGGTGTTGTCGG, respectively. Gene expression was normalized to that
of GAPDH, as an endogenous control. Relative expression was calculated by the ∆∆CT
method, and all data shown were reported as a fold change over the control.

4.9. Gene Reporter Assays

CISH promoter sequence and the genomic region flanking rs143356980 was amplified
from human genomic DNA. Three constructions were cloned into PGL3 vector. First,
CISH promoter sequence (1573 pb) was cloned upstream of the luciferase gene at the
MluI–XhoI sites in pGL3-basic vector. Second, CISH enhancer sequence (619 pb) containing
rs143356980 was cloned in pGL3-promoter at the BamHI-SalI site. Third, CISH promoter
and CISH enhancer sequence (619 pb) containing rs143356980 were cloned in the previous
places in the pGL3-basic vector. Site directed mutagenesis was used to generate the
rs143356980 mutation C -> T with the Q5®® Site-Directed Mutagenesis Kit (NEB, Ipswich,
MA, USA). A total of 1 × 106 K562 cells were cotransfected with 1 µg of each tested
construct and 200 ng of Renilla vector using the Neon Transfection System (Thermo Fisher
Scientific). Electroporation conditions for K562 cells are described in the CRISPR–Cas9
genome editing section. Six hours after transfection, luciferase activity was measured using
the Dual-Luciferase Reporter Assay kit (Promega, Madison, WI, USA) on a Victor Nivp
(PerkinElmer). For all measurements, firefly luciferase values were first normalized to
Renilla luciferase values (controlling for transfection efficiency and cell number). Data are
represented as the fold increase in relative luciferase signal over the pGL3-Promoter vector.
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