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Linking rapid erosion of the 
Mekong River delta to human 
activities
Edward J. Anthony1, Guillaume Brunier1, Manon Besset1, Marc Goichot2, 
Philippe Dussouillez1 & Van Lap Nguyen3

As international concern for the survival of deltas grows, the Mekong River delta, the world’s third 
largest delta, densely populated, considered as Southeast Asia’s most important food basket, and 
rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed 
to subsidence and coastal erosion. Several dams have been constructed upstream of the delta 
and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-
scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once 
strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river’s 
discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported 
significant decrease in coastal surface suspended sediment from the Mekong that may be linked to 
dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, 
and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for 
displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega 
delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be 
exacerbated by future hydropower dams.

River deltas crucially depend on sustained sediment supplies in order to maintain delta shoreline posi-
tion and to balance subsidence. Because they are increasingly starved of sediment trapped behind dam 
reservoirs, many of the world’s river deltas are becoming vulnerable to accelerated subsidence and ero-
sion, losing large tracts of land and becoming more exposed to flooding and sea-level rise1,2. This grow-
ing vulnerability has significant political, economic and environmental consequences for many of the 
world’s deltas, and calls for strong coordinated international efforts in terms of research and policy geared 
towards maintaining or restoring delta sustainability3,4. These concerns are embodied, for instance, in the 
International Council for Science’s (ICSU) endorsement of the initiative ‘Sustainable Deltas 2015’.

Nearly a generation after other large Asian river deltas, rendered vulnerable to erosion, sea-level 
rise and flooding by dams constructed in the 1970 s and 1980 s5, the Mekong delta now faces a major 
sustainability challenge. The Mekong River basin (Fig. 1) is 12th in size in world rankings and drains six 
countries. It also has the world’s third largest delta6. The Mekong delta hosts a population of nearly 20 
million7. Crucial to the food security of Southeast Asia, it provides 50% of Vietnam’s food8. Significantly, 
it accounts for 90% of Vietnam’s rice production making this country the world’s second most important 
rice exporter, and 60% of its seafood, both with export values of several billion US$. Furthermore, the 
delta is a very active area for overall agriculture and animal husbandry8. The delta is also the terminus 
of a river that has the most concentrated fish biodiversity per unit area of any large river basin in the 
world. It ranks second only to the Amazon in overall biodiversity9.
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These important advantages are increasingly threatened by a number of rapid drivers of development, 
notably planned large-capacity dams10 (Fig. 1b) that are rendering the Mekong delta an iconic example 
of an economic, social, political and environmental hotspot. The extent to which hydropower dams are 
expected to affect the lower Mekong basin countries has come to the fore, especially after commence-
ment, in November 2012, of the construction of the Xayaburi dam (reservoir capacity: 1.3 km3) in Lao 
PDR, amidst international concern and protest from the Government of Vietnam, and from scientists 
and environmental awareness groups11,12. The hydropower dam issue has been thoroughly discussed in a 
number of studies in terms of its potential social, political and ecological impacts13–16, and of the crucial 
problem of sediment-trapping and its consequences on the future geomorphic stability of the delta17–22. 
In addition to the problems expected from hydropower dams, large-scale aggregate mining in the beds of 
the mainstem Mekong River and distributary channels of its populous delta in Cambodia and Vietnam 
(Fig. 1b) has steadily increased since 2000, spurred by strong development pressures23,24. The pernicious 
effects of this activity on the environment23 have tended to receive much less attention than those of 
hydropower dams.

In the wake of this concern regarding the effects of dams, and, to a lesser extent, of river-bed mining, 
on fluvial sediment supply and on the future stability of the Mekong delta, erosion of the delta’s shoreline 
has become a particularly important issue, highlighted in recent academic studies25–30 and in numerous 
newspaper reports31. It has been shown from analysis of maps and Landsat satellite images spanning 
the period 1950–2014 that delta erosion has progressively increased, especially along the muddy South 
China Sea coast, whereas the delta distributary mouths sector has shown a fluctuating trend tentatively 
attributed to shifts in flood discharge levels and associated sediment supply29. In combination with sub-
sidence, which has been shown to have been accelerated by massive groundwater extraction in this 
populous delta32, coastal erosion exacerbates the vulnerability of the delta. It poses threats to the safety 
and livelihood of subsistence farmers and fishers33, as shown by the relocation of over 1200 households 
in coastal settlements affected by severe erosion in 201431, and the common recourse to the Vietnamese 
army in setting up hasty coastal defences along eroding sectors of the delta in the South China Sea.

The vulnerability of the Mekong delta thus involves a conjunction of various hot issues that are attract-
ing international scientific and political attention, underpinned by the tensions raised by the planned 
large hydropower dam projects11,12,14, and the threats such projects pose for the sustainability of the 

Figure 1.  The Mekong River delta in Vietnam, the world’s third largest delta. (a) The delta covers an 
area of about 60,000 km2 and comprises a dense network of canals and dykes, some of which are shown 
here. The map was drawn from base maps of National Geographic and Esri (Source: http://goto.arcgisonline.
com/maps/NatGeo_World_Map). Map projection is in UTM 48 N coordinates with WGS 84 datum. The 
hydrographic network and bathymetry were drawn from59. Canals were drawn from NatGeo_World_Map 
in ESRI ArcGIS 10.2 Desktop. (b) Map with relief, derived from59, shows five of the six Mekong river basin 
countries and existing and planned dams. Country boundaries were drawn from the World Countries dataset 
showing the boundaries as they existed in December 2013 (Source: Esri, DeLorme Publishing Company, 
CIA World Factbook). Dams were mapped from data provided by10,11,14,18.

http://goto.arcgisonline.com/maps/NatGeo_World_Map
http://goto.arcgisonline.com/maps/NatGeo_World_Map
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world’s river deltas3,4. Here, we focus on the important issue of the erosion of the Mekong delta. First, 
we analyse recent high-resolution satellite images spanning nearly a decade to provide a precise picture 
of the state-of-health of the delta’s shoreline. We then explore the direct and indirect mechanistic links 
between delta erosion and the impacts of some of the human activities and effects evoked above, notably 
a decreasing sediment supply. The scale and breadth of these activities in the Mekong basin and delta, 
compounded by the less clearly identified effects of climate change7,34,35, mediate coastal erosion of the 
delta in complex ways that still need to be clearly elucidated. Quantifying the scale and rates of coastal 
erosion, and identifying how such erosion is mechanistically linked to human activities, are important 
steps in assessing the increasing vulnerability of this mega delta, and in the search for solutions aimed 
at mitigating such vulnerability.

Late Holocene growth and physiography of the Mekong River delta
The Mekong delta prograded rapidly in a relatively sheltered bight in the South China Sea under the 
influence of high fluvial sediment supply 5300 to 3500 years ago, developing from an estuary into a 
delta36,37. This > 200 km seaward growth resulted in increasing exposure of the delta to ocean waves that 
led to a more wave-influenced mode of progradation characterised by the construction of numerous 
sets of beach ridges in the sector of the distributary mouths26. Under this increasingly wave-influenced 
regime, the rate of seaward delta growth over the last 3000 years has been of the order of 16 m/year in this 
sandy beach-ridge dominated sector of the delta, while at the same time, westward longshore transport of 
much of the muddy load debouching at the mouths has resulted in a progradation rate of up to 26 m/year 
in the Ca Mau sector (Fig. 2a) in the southwest36–38. The lower Mekong delta is thus characterised by two 
dominant coastal landform types, numerous sandy beach-ridge sets with large inter-ridge depressions of 
sand and finer sediment along a 250 km stretch of coast from the multiple distributary mouths to Bac 
Lieu, and a prograded mud-dominated coast westwards of Bac Lieu that forms the remaining 350 km of 
shoreline along the rest of the South China Sea and in the Gulf of Thailand (Fig. 2a).

The mean water discharge of the Mekong at Kratie, in Cambodia (Fig. 1b) is 14,500 m3/s7. The annual 
hydrological regime is seasonal (Fig.  2b) with a southwest Monsoon flood season (May-October) dur-
ing which river-borne sediment is delivered to the delta and coastal ocean through several distributary 
mouths associated with the two main branches, the Bassac and the Mekong (Fig. 1a). Estimates of the 
mean annual suspended sediment load of the Mekong are uncertain. Depending on limited measure-
ments and on the methods of computation, these estimates range from 50 to 160 Mt17–19,39–42. This large 
range variability is also reflected in the uncertainty regarding the amount of sediment trapped behind 
existing dams, which has been quantified as ranging from relatively significant18 to negligible19. The bed-
load in transit at Kratie has been estimated at about 3 Mt a year41. The amount of sediment deposited 
in the Mekong delta plain in Vietnam has been estimated as ranging from 1% in a low flood year to 6% 
in a high flood year relative to the total sediment load at Kratie21. Similar estimates for the Cambodian 
part of the delta range from 19 to 23%. During the high-flow southwest Monsoon season, the fraction 
of mud transported to the sea has been estimated as ranging from 48 to 60% of the total load at Kratie21. 
This load is essentially stored in the nearshore area close to the distributary mouths during the high-flow 
season43–46, as illustrated by a 10-year mean (2003–2012) for the month of October, of suspended partic-
ulate matter (SPM) concentrations (Fig. 2c) derived from MERIS satellite data46. The shorter low-flow dry 
season is characterised by southwestward alongshore redistribution of part of this load, as highlighted by 
the 10-year MERIS SPM mean for January (Fig. 2c).

The Mekong delta is exposed to low-to-moderate energy waves from the southwest during the south-
west Monsoon season (Fig. 2d) that generate weak longshore currents towards the northeast, a situation 
that favours the mud storage in the river mouth sector. The northeast Monsoon season is characterised 
by higher waves (Fig. 2d) responsible for the active alongshore sediment transport westwards from the 
mouths (Fig. 2c). This wave-induced transport is reinforced by wind stress and by tidal currents asso-
ciated with a tidal range that decreases from about 3.5 m at mean spring tides along the mouths of the 
Mekong, where tides are semi-diurnal, to less than 1 m in the Gulf of Thailand where they are diurnal. 
The gulf coast of the Mekong is also relatively sheltered from the higher-energy northeast Monsoon 
waves. The strong westward drift of mud and the resulting massive accumulation in the lower-energy sec-
tor of the Gulf of Thailand over the last 3000 years (Fig. 2a) mediated the asymmetric shape of the delta.

Mekong delta shoreline changes
The shoreline change patterns of the Mekong delta over the period 2003–2012 are described in terms of 
three sectors: the sand-dominated delta distributary mouths (DDM), the mud-dominated South China 
Sea (SCS) coast, and the mud-dominated Gulf of Thailand (GT) coast. Erosion is essentially affecting 
the muddy sectors with shoreline retreat rates commonly exceeding 50 m/yr in places, especially along 
the 180 km-long SCS coast nearly 90% of which is in retreat (Fig.  3). Over 50% of the > 600 km-long 
Mekong delta coast has been in erosion between 2003 and 2012 but with noteworthy variations (Fig. 4). 
Although erosion has been less severe along the lower-energy GT coast it nevertheless concerned over 
60% of this 200 km-long coast. These changes have entailed significant levels of deltaic land loss along 
the muddy SCS and GT coasts (Table 1) that are raising concerns in Vietnam. The delta lost over 5 km2 
of coastal lands between 2003 and 2012, which is significant for a hitherto strongly advancing delta. 
The Mekong delta lost the equivalent of 1 and a half football fields every day between 2007 and 2012. 
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Figure 2.  Progradation, discharge, delta-front sediment dynamics, and hydrodynamic setting of the 
Mekong River delta. (a) Gross progradation over the last 3000 years (adapted from38, after37, with permission 
from Elsevier; base map from National Geographic and Esri (Source: http://goto.arcgisonline.com/maps/
NatGeo_World_Map); hydrographic network and bathymetry on base map were derived from59; (b) Monthly 
water discharge at Kratie (see Fig. 1b) from data provided by7; (c) Suspended particulate matter (SPM) 
in the coastal zone off the Mekong delta estimated from the MEdium Resolution Imaging Spectrometer 
(MERIS) on board the Envisat satellite platform46 (with permission from Elsevier). The SPM concentrations 
were obtained from about 2000 MERIS images covering the period 2003–2012, which coincides with the 
years covered by the SPOT satellite imagery used to monitor shoreline change. The authors used the MERIS 
third reprocessing as the input parameter in various algorithms that have been validated against extensive 
in situ datasets collected in various coastal waters and off the Mekong delta in March 2012 to convert the 
remote sensing reflectance, Rrs into SPM or bbp. The spatio-temporal patterns of SPM and bbp retrieved by 
the authors from these different algorithms are highly coherent due to the fact that bbp variability in coastal 
waters is driven by the SPM concentration variability to a first order. Monotonic changes of SPM and bbp 
over the period investigated by the authors were assessed from non‐parametric seasonal Kendall statistics 
on the SPM and bbp monthly temporal series. This test is robust against non‐normality, missing data and 
extreme values, and accounts for the presence of seasonality in the series. The images show a strong seasonal 
climatology of concentrations in October (high river-discharge season, supply to the sea) and January (low 
river discharge, coastal transport westward); (d) Wave roses for the Gulf of Thailand and South China Sea 
(Wavewatch III data from National Center for Environmental Prediction (NCEP): http://polar.ncep.noaa.gov/
waves/download.shtml?) and monthly wave parameters (average (av) and maximum (max) wave heights (H) 
and periods (T)) from the Bach Ho Island Station (see Fig. 1b) located 150 km offshore of the mouths of the 
Mekong (data from30 with permission from the Coastal Education and Research Foundation).

http://goto.arcgisonline.com/maps/NatGeo_World_Map
http://goto.arcgisonline.com/maps/NatGeo_World_Map
http://polar.ncep.noaa.gov/waves/download.shtml?
http://polar.ncep.noaa.gov/waves/download.shtml?
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This rampant erosion contrasts with the massive growth of the delta towards the southwest over the last 
three millennia (Fig. 2a). The net loss rate is mitigated by the sandy DDM sector, which shows mild net 
accretion, notwithstanding an irregular alongshore pattern of erosion and advance (Fig. 3).

The results also show interesting aspects when the two periods (2003–2007, 2006/7–2011/12) of image 
analysis are compared (Fig.  4, Table  1): (i) a strong decrease in accretion in the DDM sector (from 
0.78 km2/yr to 0.26 km2/yr), and (ii) exacerbation of shoreline retreat and land loss along the muddy SCS 
sector (mean retreat rate from about 6.4 m/yr to over 12.5 m/yr throughout the 180 km of the muddy 
SCS sector, and land loss from 2 km2/yr to over 2.7 km2/yr). Although the net land loss decreased in the 

Figure 3.  Graphs of shoreline (m/year, error ± 0.5 m/yr) and coastal area (km2/year, error ± 0.005 km2/yr) 
change rates for the Mekong River delta between 2003 and 2011/12 analysed from high-resolution SPOT 
5 satellite images (top). The map (bottom) shows shoreline accretion and erosion sectors divided into three 
sectors: the sand-bound delta distributary mouth (DDM) sector comprising beaches with mildly developed 
aeolian dunes, the muddy South China Sea (SCS) where past deltaic progradation rates were highest, and the 
muddy Gulf of Thailand (GT), both colonised by mangroves increasingly replaced by shrimp farms. Erosion 
rates along the SCS coast increase towards the southwest with distance from the river mouths but probably 
also as a function of a close-to shore-normal exposure to northeast Monsoon waves in conjunction with a 
decreasing tidal range for the most critically eroding southwestern part. Base map from National Geographic 
and Esri (Source: http://goto.arcgisonline.com/maps/NatGeo_World_Map); hydrographic network and 
bathymetry from59.

http://goto.arcgisonline.com/maps/NatGeo_World_Map
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GT sector (from about 0.87 km2/yr to just over 0.57 km2/yr), erosion affected more of the coast (from 
62 to 64%).

Discussion
The high-resolution satellite images show that the hitherto strongly prograding Mekong delta is now 
dominated by rampant erosion. The 2003–2012 land loss rate of nearly 2.3 km2/year along the SCS coast 
(Table 1) largely exceeds a loss rate of 1.2 km2/year over the period 1885–1985 determined from maps47. 
The recent period has also been characterised by a swing from secular progradation of the GT coast47 
to the present generalised erosion. The percentage of eroding delta shoreline over the period 2003–2012 
has also increased from 40% between 1973 and 200329 to over 50%.

Large deltas such as that of the Mekong are complex features the shoreline positions of which can 
change under the influence of a large range of factors, notably sediment supply, routing and storage, 
subsidence, sea level, and waves and currents. We argue here that a decreasing sediment supply is the 
main factor underpinning the erosion that now affects more than 300 km of the Mekong delta shoreline 
(Fig.  5). We also argue that ancillary mechanistic links between human-induced changes in the delta, 
including accelerated subsidence, and patterns of sediment routing and storage, may also be contributing 
to shoreline erosion (Fig. 6).

The temporal trend in SPM concentrations at the mouths of the Mekong provide a reasonable proxy 
highlighting a decrease in Mekong river sediment supply (Fig. 5a) in recent years46. Beyond the strongly 
seasonal variability in suspended sediments in coastal waters under the Mekong’s influence (Fig.  2c), 
a robustly determined long-term trend of about − 5% in SPM concentration per year between 2003 
and 2012 was computed from the MERIS data46. This annual fall in SPM was attributed to a persistent 
decrease in Mekong river sediment output during the critical high-flow season when the river supplies 
sediment to the sea46. For the period 1997–2012, it was further shown from analysis of significant off-
shore wave heights and directions (http://www.ncep.noaa.gov/), and wind speed and direction derived 
through cross-calibration and assimilation of ocean surface wind data from SSM/I, TMI, AMSR-E, 
SeaWinds on QuikSCAT, and SeaWinds on ADEOS-2 (http://podaac.jpl.nasa.gov/node/31) that this 
decrease in suspended sediments was not related to the hydrodynamic regime (involving, for instance, 
weaker sediment resuspension) in the South China Sea, which showed no significant changes over the 
period of analysis46. Furthermore, no significant changes in Mekong flood discharge likely to explain the 
5% annual drop in the Mekong’s suspended sediment supply to the South China Sea between 2003 and 
2012 have been found46,48.

The 2003–2012 mean MERIS coastal ocean climatology for the dry-season month of January46 further 
suggests a clear link between coastal erosion and SPM concentrations. The alongshore-uniform January 

Figure 4.  Net recent shoreline changes along the Mekong delta expressed in percentages of advance 
(dark blue), retreat (red) and stability (which includes the error band, grey) for the three sectors of delta 
coast. 

Sector

2003–2007 2007–2012

Mean cross-shore 
shoreline change (m/yr)

Net surface area 
change (km2/yr)

Mean cross-shore 
shoreline change (m/yr)

Net surface area 
change (km2/yr)

Delta distributary mouths (220 km) + 4.24 + 0.78 + 5.17 + 0.263

South China Sea (180 km) − 6.41 − 2.019 − 12.53 − 2.715

Gulf of Thailand (200 km) − 2.15 − 0.87 − 2.20 − 0.575

Table 1.   Mean yearly change rates of the Mekong delta shoreline by sector. Sector shoreline lengths are 
shown in parentheses.

http://www.ncep.noaa.gov/
http://podaac.jpl.nasa.gov/node/31
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pattern (Fig. 2c) represents the mud transport and resuspension belt from the river mouths and a minor 
(< 5%) contribution by biological production45, but also no doubt reflects erosion44 of the muddy SCS 
shoreline (Fig. 3) under the energetic wave regime prevailing during this season (Fig. 2d). The significant 
role of infragravity wave energy impinging on the muddy SCS coast following gravity wave dissipation 
by the shoreface and mangroves has been identified30. This highlights the overarching role of the more 
energetic and longer-period northeast Monsoon waves with their larger infragravity component. Small 
inshore (within the 10 m isobath) zones showing an increase in the 10-year mean SPM along critically 
eroding areas of the SCS coast46 (Fig. 5a) are inconsistent with the overall 2003–2012 SPM decrease, and 
may, therefore, reflect sediment resuspended by chronic coastal erosion.

The recent persistent decrease in suspended sediment concentrations off the delta is attributed essen-
tially to dam impoundment of sediment46, and corroborates the conclusions of a study that has quantified 
significant sediment retention by dams at the scale of the Mekong basin18. Although there is a consensus, 
however, on the negative impacts of existing and planned dams on the sediment supply of the Mekong 
to its delta5,18,20–22, the poorly estimated Mekong river load and, therefore, the uncertainty regarding what 
fraction of this load may be trapped behind dams, precludes linking without doubt the present delta ero-
sion to existing dams. Dams are, not, however, the only source of a potential decrease in sediment supply 
to the coast. The massive channel bed mining in the Mekong (Fig. 5b), deemed to be leading to signifi-
cant reductions in bedload supply to the coast48, should be considered a major concern in the stability of 
the delta’s shoreline, especially in the DDM sector, where much of the sand supplied by the river to the 
coast is deposited. Annual extractions were about 27 Mm3 (about 57 Mt) between 2008 and 2012, 86% of 

Figure 5.  Aspects of the recent sediment balance and subsidence in the delta mediated by human 
activities. (a) Map and graph of significant monotonic trend in % per year (seasonal Kendal test, pb 0.05) 
of SPM off the Mekong delta46. Non-significant areas are shown in white. The graph shows time series of 
averaged SPM values as a function of year during low (red dots) and high (black dots) river flow conditions. 
The linear regression equations are shown for each sub-data set, with dashed lines representing the 95% 
confidence interval (with permission from Elsevier). The data show a net reduction of up to 5% a year 
in SPM off the mouths of the delta and along much of the nearshore area in the SCS attributed to dam 
trapping of sediment46. A net annual decrease in SPM of 2 to 4% is also depicted along the GT coast.  
(b) Map of the Mekong delta showing: (i) compaction-based subsidence rates redrawn from32. These rates 
are highest in the most critically eroding southwestern part of the delta; (ii) 10-year (1998–2008) bedload 
budget changes in the My Tho and Bassac channels, characterised by net cumulative losses of 200 Mm3 that 
have been attributed to large-scale commercial river-bed mining48 (with permission from Elsevier). Base 
map from National Geographic and Esri (Source: http://goto.arcgisonline.com/maps/NatGeo_World_Map); 
hydrography, relief, and bathymetry from59.

http://goto.arcgisonline.com/maps/NatGeo_World_Map
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which was sand24. This rate represents nearly 20 times the annual Mekong sand flux estimated at Kratie41. 
A 10-year (1998–2008) comparison of bed depths in two of the distributary channels in the delta, the 
Bassac and My Tho, showed net cumulative losses of 200 Mm3 of bedload48. These losses occurred along 
much of the reaches of the two channels (Fig. 5b), and have been attributed to these massive channel bed 
sand extractions48. This mining activity has generated numerous pools and pits up to 15 m deeper than 
the natural channel bed levels in Cambodia49, and especially Vietnam, where the deepest pools generated 
between 1998 and 2008 are up to 45 m deep48. The numerous pits and pools created by large-scale sand 
mining actively trap bedload transported downstream during the high-discharge season48. This should be 
resulting in a net decrease in sand supply to the DDM sector (Fig. 6). We interpret the present irregular 
pattern of change in this sector (Fig. 3) as reflecting shoreline adjustments to the decreasing sand supply 
caused by massive mining of sand from the channel beds in the delta and upstream of the delta. This 
activity will increasingly impact on rates of progradation in this sector, as suggested by the decrease in 
shoreline advance between 2007 and 2012 (Table 1).

Another mechanism likely to be activated by sand mining is that of enhanced saltwedge intrusion in 
the delta channels in the dry season, a process that leads to up-channel tidal pumping of mud (Fig. 6). 
Up-channel transport of mud from the storage area of the mouths prevails in the lower Mekong chan-
nels during the dry season when river discharge is low and saltwater penetrates up to 40 km upstream43. 
Deeper channels favour stronger upstream intrusion of saltwater and more mud-trapping at the upstream 
edge of the intrusion in estuaries50. In the Mekong, this occurs at a time of the year when mud needs to 
be stored along the coast to dissipate wave energy and mitigate shoreline erosion downdrift of the DDM 
sector. The hypothesis of enhanced up-channel mud pumping from the coastal zone as the distributary 
channels in the lower Mekong delta become deeper as a result of sand mining is supported by increasing 
dry-season inland saltwater intrusion into the delta47,51, which has also been orally confirmed to us, espe-
cially for the lower reaches of the Bassac channel which now require almost continuous dredging of mud 
to maintain navigation for large vessels. The enhanced salt-wedge intrusion further poses the problem 
of increased salinization of cultivated land in the Mekong, especially given the accelerated subsidence 
caused by groundwater exploitation32.

Subsidence rates are highest in the southwestern sector of the delta (Fig. 5b), which essentially com-
prises easily compressible marshes and mud. Relatively high subsidence rates, exceeding 1.5 cm/yr, are 
also characteristic of the sector of coast between Bac Lieu and Ca Mau Point (Fig. 5b), which also shows 
the highest erosion rates in the Mekong delta (Fig. 3). Interestingly, this is also the only area of the delta 
where shoreline erosion has been reportedly persistent since 188547. The secular erosion affecting this 
muddy sector largely antedates dams and the expected effects of channel-bed deepening on mud stor-
age. This erosion may be due to a persistently weak supply of mud released from the DDM mud-storage 

Figure 6.  Inferred mechanistic links between coastal erosion of the Mekong delta and a human-
mediated decrease in sediment available to the delta, as well as the impact of large-scale mangrove 
removal, to make way for shrimp farms, in particular. These links involve competition for a decreasing 
sediment supply marked by a sediment deficit along the coast that results in shoreline erosion. Mud and 
sand sequestering behind dams and large-scale riverbed sand mining are deemed to be the overarching 
causes in the decrease in sediment supply to the coast responsible for delta erosion. Channel mining creates 
pools and pits, generating deepened channels that trap sand coming from upstream in order to restore 
channel geometry. These extractions, and pit and pool infill, are deemed to lower the amount of sand 
attaining the mouths, and to be responsible for the significant slow-down in progradation of the sand-
dominated mouth sector of the delta. Enhanced delta-plain deposition to fill the accommodation space 
created by accelerated subsidence may be having a similar effect on the balance of mud routed to the coast, 
potentially depriving the coastal zone of mud, and favouring accelerated muddy shoreline erosion in the 
GT, and especially, southern sector of the SCS. Possible seasonal but stronger tidal pumping of mud from 
the mud reservoir at the mouths into the artificially deepened deltaic distributary channels may also further 
deprive the coastal zone of mud during the high wave-energy, low-flow season.
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sector as a result of delta-front sediment dynamics, but also possibly to higher incident wave energy due 
to a more normal shoreline orientation relative to the northeast Monsoon waves. According to a coastal 
sediment transport modelling study, this strongly eroding part of the delta presently receives less than 
2% of the fluvial mud exiting in the sector of the mouths44. This finding further reinforces the argument 
that the January SPM along this sector of coast, shown in Fig.  2c, largely reflects coastal erosion and 
sediment resuspension.

Sediment partitioning and storage between the Bassac and the various Mekong distributaries to the 
northeast of the Bassac, more distant from this erosion hotspot, may play a role in this deficit. Aspects 
of mud partitioning and routing in the Mekong delta between its multiple mouths, where mud is stored 
during the high-season discharge before being transported alongshore, and its subaqueous front are, 
however, poorly known. A clearer resolution of variations in the state-of-health of the delta’s shoreline 
will require more comprehensive work on these aspects. If less mud is being supplied from the mouths 
to the rest of the delta, then it may be inferred that the lower rates of erosion of the even more distant 
GT coast, compared to the SCS coast (Table 1), may be due to its less energetic wave regime (Fig. 4d) 
and weak tidal currents associated with its low tidal range. Aspects of sand partitioning are better known. 
Much of the sand supplied by the river is sequestered in the DDM sector where delta progradation has 
been dominated by successive sets of beach ridges26. This trapping of sand in the DDM in the course 
of the formation of the Mekong delta, and up to the present, has been favoured by differential wave 
refraction processes generated by the highly variable shoreline morphology and bathymetry generated 
by a multiple river-mouth system, and by ‘hydraulic-groyne’ effects related to the water discharge from 
the multiple mouths52.

Two final but unrelated points regarding delta erosion and human activities in the populous Mekong 
delta are the impacts of large-scale removal of mangroves and the joint effects of accelerated subsidence 
and of the numerous canals on mud storage and supply to the coast (Fig. 6). The coastal mangrove system 
along the muddy SCS and GT coasts has been classified as ‘fringe mangrove’ occuping a narrow coastal 
band30. The vicissitudes of war and timber overexploitation have had a heavy toll on mangroves in the 
delta, especially heavy downcutting in the 1980 s and 1990 s to provide timber for the construction indus-
try and charcoal, and for conversion into shrimp farms53,54. Sea dykes are also being increasingly built 
along parts of the muddy SCS and GT coasts for protection from marine flooding and for shrimp farms, 
generating a process of ‘mangrove squeeze’ and lowering of the wave-dissipating capacity of mangroves30. 
The marked alongshore variability in erosion rates of the SCS sector (Fig.  3) may reflect differences 
arising from the presence and protective role of mangroves or their absence which enhances erosion. 
However, although the dissipative role of mangroves on waves and the consequent mitigating effect on 
shoreline erosion along the Mekong delta have been emphasised30,55,56, and modelled30, mangrove effi-
ciency is subordinate to sediment supply and is not sustainable under conditions of strong persistent sed-
iment deficit, as illustrated by the mangrove-rich Guianas coast between the Amazon and Orinoco river 
mouths, the world’s longest muddy coast57. Field visits along much of the muddy SCS and GT coast dur-
ing the high-energy season in 2012 confirmed active wave erosion of muddy mangrove-bearing bluffs.

Accelerated subsidence creates additional accommodation space for sediment. A supplementary effect 
of accelerated subsidence, therefore, besides that of contributing to exacerbated muddy shoreline erosion, 
may be that of potential lowering of mud supply to the sea as enhanced delta-plain deposition occurs to 
balance this subsidence. The numerous artificial canals in the delta plain are also likely to have an addi-
tional effect on mud supply to the coast by trapping more mud. The relationship between canals, many 
of which are diked, and delta-plain sedimentation is, however, far from being straightforward, especially 
given the large variability in such sedimentation as a function of flow volume21.

Conclusion and Perspectives
High-resolution satellite images show that the Mekong delta is now largely prone to erosion, with shore-
line retreat over the period 2003–2012 having affected over 50% of the > 600 km-long coast, and even up 
to 90% of the muddy South China Sea coast. A decreasing river sediment supply to the coast is deemed 
to be the prime cause of this erosion, and most likely due to existing dam retention of sediment and 
to massive channel-bed sand mining in the delta, an activity on the increase over the last decade. An 
important recent decrease in mud supply to the coast during the high river-discharge season has been 
highlighted from MERIS staellite images46, whereas decreasing rates of sandy shoreline progradation 
in the mouths sector of the delta are in agreement with large-scale sand mining in the delta channels, 
including in reaches very close to the sea. Annual sand mining rates24 exceed by more than an order of 
magnitude the annual estimated bedload in transit at Kratie41. Sand trapping in the numerous channel 
bed pools and pits created by large-scale mining is expected to lower the sand supply to the beaches 
lining the mouths of the Mekong delta.

Subsidence accelerated by groundwater extraction is highest along parts of the muddy South China 
Sea coast most severely affected by erosion. The Mekong is a large complex asymmetric delta wherein 
competition for a decreasing sediment supply may be prevailing between the delta plain, the distributary 
channel beds, and the river-mouth sector where coastal mud is stored prior to redistribution towards the 
rest of the > 600 km-long delta coast. The inferences drawn from this study suggest seasonal to persistent 
depletion of mud along the muddy South China Sea and Gulf of Thailand sectors of the delta’s coast. This 
reduction in the quantity of coastal mud results in lesser wave energy dissipation, and, consequently, in 
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shoreline erosion. A finer clarification of the mud partitioning processes and sediment budgets involved 
will require, however, robust data on various aspects of sedimentation in the delta.

The uncertainty surrounding the impact of existing dams on the sediment supply to the delta is not 
shared by any of the future impact scenario studies. There is agreement that the planned set of future 
hydropower dams will definitely impact the sediment budget of the Mekong delta18,20–22. These dams, 
together with uncontrolled sand mining, will thus aggravate the on-going erosion of the delta. A recent 
modelling effort aimed at assessing the response of the floodplain hydrology and sediment dynamics 
in the delta to anthropogenic and environmental changes concluded on the overarching role of hydro-
power development, compared to climate change and the combined effects of sea-level rise and deltaic 
subsidence21. Operation of all the planned hydropower projects on the Mekong will reportedly increase 
the sediment-trapping efficiency of dam reservoirs from 11–12 Mt/year to 70–73 Mt/year18. Another 
study suggests that a cumulative sediment reduction of 51% and 96% to the delta will occur under a 
‘definite future’ scenario of 38 dams (built or under construction) and full construction of all planned 
dams, respectively20. These are substantial reductions, whatever the true sediment load of the Mekong. 
The latter scenario implies that once sediment stored in the channels is exhausted by natural downstream 
transport, 96% of the pre-dam (pre-1990) sediment load would be trapped as of year 2020, by which time 
it is assumed that all dams are to be completed20. This depletion stage may be attained well before 2020 
if sand mining in the delta and in the river reaches upstream is to continue at its present rate. Given 
the already high vulnerability of the Mekong delta, the sediment supply necessary to mitigate wave- and 
current-induced shoreline erosion, and balance subsidence and rising sea level, will decrease more drasti-
cally. Erosion of the sediment-starved delta coast will increase, generating further large-scale geomorphic 
reorganization and loss of land and resources for the world’s third largest delta.

Understanding the links between erosion of the Mekong delta and sediment supply reduction by 
dams, channel sand mining, subsidence, and the additional effects of competition for a decreasing sed-
iment load between the delta plain and the shoreline, is imperative for a better apprehension of the 
increasing vulnerability of this mega delta. This understanding, underpinned by more reliable measure-
ments of sediment flux, is also necessary in the search for solutions to mitigate such vulnerability.

Methods
Shoreline change rate.  We chose available high-resolution satellite images that offered not only large 
individual coverage, given the length of the delta shoreline (> 600 km), thus minimizing errors likely to 
arise from smaller areal coverage and multiple operator manipulations, but also robust and accurate 
determinations of shoreline change rates. A total of 43 SPOT 5, level 3, orthorectified colour satellite 
images available for 2003, 2006/2007 and 2011/12 at a scale of 1:10,000 were available. Although SPOT 5 
images also exist for 2014 and 2015, the coverage is incomplete and we therefore chose to limit our study 
to the complete 2003–2012 sets. The images have a high Super-Mode 2.5 m pixel resolution obtained 
from two 5 m pixel resolution panchromatic images (0.48–0.71 μ m) acquired simultaneously with half 
pixel lapse. We used the ArcMap extension module Digital Shoreline Analysis System (DSAS), version 
4.358, coupled with ArcGIS® 10, to digitise rates of change in shoreline position. The brush/plantation 
fringe in sectors of sandy shoreline characterized by beaches and the mangrove fringe in the muddy 
sectors were adopted as good ‘shoreline’ markers, which we verified from extensive field reconnaissance 
in 2011 and 2012 covering over 300 km of delta shoreline. We calculated every 100 m alongshore the 
shore-normal distance of the vegetation line to a base line for the three sets of dates. This distance, 
chosen as a compromise between quality of the interpretation and total length of analysed shoreline 
(606 km) was then divided by the time in years between two dates to generate a shoreline change rate, 
the End Point Rate in DSAS 4.3. A total of 6060 change rates, each corresponding to a DSAS transect, 
were determined for each set of dates. We retained a relatively large uncertainty shoreline change band 
of ± 20 m, which is much more than commonly used in the literature. We then defined the annual error 
(E) of shoreline change rate from the following equation:

= √( + )/ ( )E d1 d2 T 12 2

where d1 and d2 are the uncertainty estimates for the successive sets of images and T time in years 
between image sets. The obtained error band of ± 3.5 m/yr between 2003 and 2012 was further aug-
mented to ± 5 m/yr, which we consider as an extremely cautious error range.

Area change rate.  Coastal area variations (km2) giving land losses or gains associated with changes 
in shoreline position were calculated from 1 km-alongshore segments between two successive image 
dates by dividing area variation by the time in years between dates. The error (ShaE/ km2) was calculated 
using a method similar to that of shoreline change rate for each 1 km segment based on the following 
equation:

= √( + )/ ( )Ea ShaE1 ShaE2 T 22 2

where ShaE1 and ShaE2 are the shoreline area error estimates for the successive sets of images and T time 
in years between image sets. The obtained area error band of ± 0.0035 km2/yr between 2003 and 2012 
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was augmented to ± 0.005 km2/yr. Shoreline and area change rates are reported on a base map derived 
from National Geographic and Esri (Source: http://goto.arcgisonline.com/maps/NatGeo_World_Map). 
The hydrography, relief and bathymetry on all maps are derived from59.
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