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Abstract

Protein-patterning has emerged as a powerful means to interrogate adhering cells.

Yet, the tools to apply a sub-micron periodic stimulus and the analysis of the re-

sponse are still being standardized. We propose a technique combining electron-beam

lithography and surface functionalization to fabricate nano-patterns compatible with

advanced imaging. The repetitive pattern enables a deep-learning algorithm to re-

veal that T cells organize their membrane and actin network differently depending on

whether the ligands are clustered or homogeneously distributed - an effect invisible to

the unassisted human eye even after extensive image analysis. This fabrication and

analysis tool-box should be useful, both together and separately, for exploring general

correlation between a spatially-structured sub-cellular stimulation and a subtle cellular

response.
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Introduction

Nanopatterning of biomolecules on inorganic surfaces is currently an important tool for

bioengineering and cutting-edge cell biology studies. Experiments on cellular interactions

with such patterned surfaces provide insights into the mechanisms of cell adhesion, acti-

vation and signalling. This knowledge in turn is used to optimize the performance of, for

example, artificial soft tissue grafts and prostheses.1–4 In the context of cell biology and bio-

engineering, arrays of solid-supported submicro/nano scaled protein dots are currently used

to influence cell architecture and to decipher cell function. There is therefore tremendous

interest in the cell biology, as well as specialized fields like immunology and neuroscience,

biophysics and bioengineering/biomedical community to study the interaction of cells with

patterned substrates.5–7 However, there are only few techniques to make such substrates,

that must fulfil a long list of requirements ranging from non-toxicity, to large surface cover-

age, to being fully compatible with state-of-art optical imaging.8,9 Self-assembly, including by

DNA-origami10–13 and serial-writing are two popular tools to create nano-bio-patterns. The

advantage of serial-writing, for example using an electron-beam is that the control over the

pattern geometry is total .14,15 The advantage conferred by regular geometry is exploitable

in image analysis, including, by deep learning, a strategy that has become important in

recent times.16–19 An additional advantage is conferred when the pattern is metal-free,9,20

since specialized techniques like TIRF and super-resolution imaging become impossible in

presence of high density metal features due to their interaction with light, including the risk

of generating a plasmonic response.

T-cells are particularly intriguing candidates for testing a possible correlation between

the distribution of a clustered stimulus, and the response of the cell. Sub-micron sized clus-
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ters of the T cell receptor (TCR), called TCR µ-clusters, play a crucial role in amplification

of feeble signals, provided by rare agonist peptides, to cell scale and eventually organism

scale response.21–23 Actin is a key player in this amplification but, though it is known that

TCR molecules interact with the actin cytoskeleton, the structural link between the two is

yet to be elucidated. Specifically, whether or not the geometry of the TCR µ-clusters is

reflected in actin organization24–27 is not known.

Early studies established that micron-scale patterning of ligands can drastically reorganise

surface receptor distribution in T cells and completely disrupt the formation of late-time

ordered synapses,28,29 an effect also seen when barriers are put to prevent ligand-receptor

pairs from reorganizing,30,31 which however may not reorganize the actin.31 At early times

during T cell spreading, TCR microclusters get coupled to the actin retrograde flow32 and are

implicated in force transduction.33,34 Modification of T-cell membrane protein distribution,35

and colocalisation of TCR-microclusters with patterned ligands of TCR,36,37 was previously

demonstrated. Ligand presentation as nano-scale pattern also impacts T cell spreading and

activation, however, the interpretation remains complex38–40

In order to explore the role of TCR µ-clusters in determining actin architecture, we exploit

previous finding that clustering of TCR-ligands or antibodies against the TCR complex can

induce clustering of TCRs themselves8,36,37,41 to generate stable TCR µ-clusters arranged in

an array. We leverage the ability of e-beam lithography to create flawless arrays of a repeated

motif, to decipher the impact of presenting TCR-ligand-clustering on actin organization. We

present T-cells with a regular array of metal-free nano-dots of functionalized proteins, with

size ranging from 250 nm to 700 nm diameter, and displaying an antibody against the CD3

domain of the T cell receptor. This new protocol combines e-beam lithography with step-

wise surface functionalisation.9,42,43 The actin in T cells is imaged in total internal reflection

fluorescence (TIRF) microscopy and the membrane in reflection interference contrast mi-

croscopy (RICM). The images are analysed using a novel application of deep learning where
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the ability of a binary classifier to correctly classify a presented local cell-feature, influenced

or not by the ligand micro-cluster, is taken as the indicator of dissimilarity between the two

categories. We show that indeed the TCR clustering does impact the local actin organization

and membrane topography, though the nature of the resulting effect could not be identified.

To fabricate the protein nano-dot array, we adapt a two stage strategy. In the first stage

(SI fig. 1-4), carried out in a clean room, a glass cover-slide is cleaned and spin-coated with

an e-beam lithography resist. An electron beam is used to write the desired pattern on the

resist, followed by standard lithographic development to remove unexposed area to obtain a

surface covered with pillars of cross-linked resist. Each slide has 6 square regions (500 µm X

500 µm), each patterned with dots arranged in a centred-hexagonal lattice with putative dot

diameter and lattice spacing of 700 nm and 2 µm (called E700), 400 nm and 1 µm (E400),

or 250 nm and 1 µm (E250) (Fig. 1 a). Aluminium metal is evaporated on the substrate

and finally, the pillars of cross-linked resist are removed by chemical lift-off. At this point,

the slide is covered with a layer of aluminium with holes exposing bare glass underneath.

The second stage, consisting of surface functionalization (Fig. 1 b and SI Fig. 7), is

carried out in a standard wet-laboratory, following a protocol previously established in the

context of patterns created from self-assembled colloidal beads.9,42 Briefly, the steps consist

of vapour deposition of an organo-silane (APTES) on to the exposed glass and deposition of

a place-holder protein (biotin-BSA) from solution. This is followed by chemical removal of

the aluminium layer, leaving behind islands of biotin-BSA on bare glass. The glass is then

back-filled either with a co-polymer of poly(L-lysine) and poly(ethylene glycol) (PLL-PEG),

or with a supported lipid bilayer (SLB, see SI for details). The biotin-BSA islands can then

be functionalized with neutravidin and finally a biotinylated protein, here anti-CD3, which

targets the TCR complex in T cells (Fig. 1 b).

In order to visualize the pattern, we used fluorescent neutravidin (NaV) which shows up

as an array of dots within a sea of invisible PLL-PEG or SLB (Fig. 1 c and SI Fig. 3, While

PLL-PEG or SLB can be equivalently used, the data presented herein are from PLL-PEG
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back-filling unless otherwise specified.) The images are used to characterise the patterns in

terms of the dot size and contrast between the dots and the background (Fig. 1 d,e). The

regularity of the pattern was exploited to treat the data in reciprocal space to accurately

locate the motifs and to enable measurement in case of sub-optical resolution 250 nm size (see

SI Fig. 6). The size is reported as the full width at half maximum (FWHM) of the intensity

profile of the dots, which in vast majority of the cases has a roughly Gaussian intensity

profile but may sometimes be deformed, either showing an asymmetry or a depression in

intensity at the center. The measured values agree reasonably well with the putative size.

We used the patterns to explore the open question of whether or not the clustering of T

cell receptors, whose engagement leads to actin polymerization and cell spreading, explicitly

influences the actin architecture in T cells. T cells from the Jurkat cell line were allowed

to interact with patterns bearing anti-CD3 for thirty minutes after which they were fixed

and the F-actin (or TCR) was marked using fluorescent phalloidin (or antibody) following

standard procedures (see SI for details). This duration of spreading ensures that the cells

are fully spread but have not yet started retracting. The substrates, bearing the fixed cells,

were imaged in the NaV channel to visualize the dots, and in the actin (or TCR) channel

to visualise the cytoskeleton (or TCR). In addition, they were also imaged in reflection

interference contrast microscopy (RICM) that clearly demarcates the extent of cell spreading

and reveals membrane topography.42

As can be seen in Fig. 2 a, the cells spread on the patterned surface, forming contacts of

variable intimacy (as seen from grey scales in RICM). Unlike in some of our previous work

with cells on similar patterns formed by self-assembled colloidal beads, no correlation be-

tween membrane topography, as revealed by RICM grey scale, is immediately discernible.36,43

The spread-area of the whole cell was quantified as described before.36,43 Interestingly, the

pattern-type does not influence the area. Rather, it is correlated with the average surface

density of the protein (as inferred from the fluorescence intensity) as expected from previous

work36(Fig. 2 b). Gathering data from those samples that have similar surface density,
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no statistical difference between cell area on different pattern-types was found (Fig. 2 c).

The global actin organization was homogenous (Fig. 2 d) as quantified by a peripherality

parameter p defined as ratio of average intensity of the whole cell and that at the center.

Theoretically, this parameter is expected to be � 1 if the actin is peripherally distributed

(as is the case on homogeneously coated substrate42 and ≤ 1 if it is homogeneous. Here,

actin is seen to be mostly homogeneous on patterned substrates with 0.6<p<1.5 for majority

of cells (see SI for definition of p), however, few cells also show peripheral organization.

At the cluster-scale, TCR is seen to be clustered according to the underlying NaV pat-

tern36,43 (see SI Fig. 7), but visual inspection and conventional image analysis do not show

any hint of the presence of the underlying dots on the local topography of membrane imaged

in RICM or the local architecture of the actin cytosckeleton imaged in TIRF (Fig. 2 a). The

repeated identical clusters however provide an opportunity to delve further into the question

to ascertain whether or not ligand clustering has an effect on local cell architecture. The

repeated motifs provide a template to extract, from the image of a whole cell, the structure

of actin or membrane on top of a ligand cluster (on) or next to a ligand cluster (off). A

classifier is then trained to distinguish ‘on’ from ‘off’, and its ability to successfully do so

for unseen data with better than random accuracy is taken as a marker for real difference

between ‘on’ and ‘off’ architecture.

Briefly (see SI for details, SI Fig. 8-11, code available at https://github.com/ahmed344/AI-

based-detection-of-T-cell-features), first the spatial coordinates of the lattice are identified

and a square-shaped zone is designated around each lattice point. These zones are ‘on-dot’.

Next the lattice is shifted such that the new lattice-points are at the centroid of the triangles

forming the original lattice, and similar ‘off-dot’ zones are created. For each cell, there are

three image-channels: the NaV-channel imaging the underlying ligand array, the cell imaged

in TIRF actin-channel and the cell imaged in RICM channel. For each channel, on or off

dot mini-images are cut according to the on and off zones defined before (Fig. 3 a-d).

The on and off dot mini-images of actin (or the RICM mini-images) are fed to an image
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classifier convolutional neural network (CNN) with 3 convolution layers. For each cell, the

mini-images are randomly divided into two sets - a training-set with about 80% of the data

and a validation-set with the rest. The model is trained for 5000 epochs. At each epoch,

the model can only see the labels of the training data-set in order to fit its parameters to

correct its classification (quantified as the loss factor) for the next epoch. The labels of

the validation data-set remains unseen during fitting, but are used to calculate the loss and

accuracy corresponding to the validation data-set. At the end of one training cycle (5000

epochs), the accuracy (defined as the proportion of correct identification) of the trained

model corresponding to minimum loss is reported. Due to the small number of mini-images,

the details of how the data is split into the training and validation data-sets affects the

ability to fit a classifier network to the data. To account for this limitation, for each cell

the training is repeated 100 times, each for a different partition of training and validation

data-sets (see Fig. 3 e for a summary). As always, an accuracy of 1 corresponds to all the

mini-images being classified correctly, and a value of 0.5 is expected if the classification is

totally random. It is noticed that for the majority of cells, the accuracy is largely skewed

towards values greater than 0.5 for most choice of the sets, and reaches the value of 1 for at

least one choice of sets (Fig. 3 f).

To eliminate the possibility of bias, we compare these experiments with a negative control,

consisting of exactly the same experiment except that the cells now adhere to a homoge-

neously coated surface. A “fake” lattice is imposed on the images and mini-images on and

off dots are prepared, and exactly the same algorithm is applied. Here, the accuracy is less

skewed towards larger values and only two cells reach an accuracy of 1 for at least one choice

of sets (Fig. 3 g).

Comparing the histograms of accuracy for the E700 substrates (Fig. 3 h), it is con-

firmed that the accuracy distributions on the two kinds of substrates are very different. On

homogeneous substrates, the accuracy distribution peaks close to 0.5 (median = 0.57, me-

dian absolute deviation (MAD) = 0.05), as expected for random classification. However,
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the distribution on the patterns is skewed further towards 1 (median = 0.64, MAD = 0.1),

corresponding to correct classification of ‘on’ or ‘off’ dot. We therefore conclude that on a

homogeneous substrate, there is no discernible difference in actin organization between ‘on’

or ‘off’ dot as expected since the designation ‘on’ or ‘off’ is perfectly arbitrary. However,

on a pattern, there is indeed a difference between organization ‘on’ and ‘off’ dot. Stronger

conclusions can be drawn for the RICM data based both on individual cells (SI Fig. 13)

and histograms (Fig. 3 i, homogeneous: median = 0.58, MAD = 0.08; pattern: median =

0.75, MAD = 0.12). For both actin and RICM data, a statistical comparison of the distri-

bution of the accuracy in the pattern and homogeneous case using Mann-Withney-Wilcoxon

rank test for unpaired data confirms the conclusion that the populations are indeed different

(p < 0.0001). Similar conclusions can be drawn for the E400 substrates (SI Fig. 14, 15).

It is important to note that our approach differs from the classical classification problem

where two categories of objects to be classified are a priori known to be different. In that

case, after training, the CNN is usually required to classify any number of unseen data,

enabling automation of repetitive or specialized tasks. Here, we are using the classifier to

test whether the two categories of objects are sufficiently different. The CNN is first shown

images that come from two different origins, and thus form two different categories, even

though it is not known if they are actually different in terms of appearance. The CNN is then

required to categorise randomly selected images - correct classification, with the success rate

significantly better than random assignment, means that the images are indeed different in

appearance, even though the nature of this “hidden feature” is not revealed by this approach.

This ‘blind’ deep-learning approach is not dependent on any specific model or any as-

sumption about the architecture of the T cell. A priory, TCR distribution could be expected

to impact actin architecture even though no such effect was so far reported at the sub-micron

scale. The method introduced here unambiguously shows that clustering of TCR does indeed

locally modify the cytoskeleton, a conclusion that could not be conclusively drawn based on

conventional image analysis (SI Fig. 16-18). A posteriori analysis hints that some cells
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may show actin depletion on top of ligand/receptor clusters (SI Fig. 18) but further experi-

ments with super-resolution microscopy or even electron microscopy on roofed-cells may be

necessary to reveal the detailed structure and mechanism of the modification. Our coupled

patterned stimulation / AI based analysis workflow will be fully applicable to superresolution

images.

The nano-fabrication and the analysis technique presented here can each be used indepen-

dently of the other. The nano-fabricated surfaces are very versatile in terms of geometry(see

SI Fig. 19) as well as chemistry. Being composed only of organic molecules with minimal

interaction with light, they can be used with any optical technique, even if the clusters are

dense, quite challenging with more commonly used gold nano-dots due to possibility of cre-

ating surface excitations. The presence of identical repeated clusters of stimulation, here

anti-CD3 µ-clusters, generates large number of presumably identical response – which, when

contrasted with response off the stimulation-zone, can be catagorised in a binary fashion.

The binary data can then be fed to an AI classifier, which classifies the data into on-cluster

or off-cluster response. The new idea here was to use the ability of the classifier to correctly

classify, as a marker of difference. This ‘blind’ strategy can be generalised to any situation

where a subtle response is expected but its nature is not known a priori. Once the presence

of a response is ascertained, it may then be easier to detect it. Beyond specific uses similar

to one here, this recipe can be used in design of high-throughput diagnosis where on one

hand sub-cellular and repeated stimulations increase the number of readouts per cell, and

on the other hand a ‘blind’ deep-learning strategy, dependent on presence of large amount

of input data, simplifies analysis and interpretation.
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Figure 1: Pattern characterisation. a. Top: Overview of a patterned cover slip. Each
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size and spacing of the dots; the smaller the dots, the darker the color). From left to right
- name (putative diameter - pitch): E700 (700 nm-2µm), E400 (400 nm-1µm), E250 (250
nm-1µm). Bottom: bright field (transmission) / scanning electron microscopy (SEM) image.
b. Schematic of the patterned substrates (not to scale, side view and its zoom). c. Examples
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