

Implementation of an in-house real-time reverse transcription-PCR assay for the rapid detection of the SARS-CoV-2 Marseille-4 variant

Marielle Bedotto, Pierre-Edouard Fournier, Linda Houhamdi, Anthony Levasseur, Jeremy Delerce, Lucile Pinault, Abdou Padane, Amanda Chamieh, Hervé Tissot-Dupont, Philippe Brouqui, et al.

▶ To cite this version:

Marielle Bedotto, Pierre-Edouard Fournier, Linda Houhamdi, Anthony Levasseur, Jeremy Delerce, et al.. Implementation of an in-house real-time reverse transcription-PCR assay for the rapid detection of the SARS-CoV-2 Marseille-4 variant. Journal of Clinical Virology, 2021, 139, pp.104814. 10.1016/j.jcv.2021.104814 . hal-03281582

HAL Id: hal-03281582 https://amu.hal.science/hal-03281582

Submitted on 24 Apr 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1	TITLE PAGE
2	Type of article: Short communication
3	
4	Full-length title:
5	Implementation of an in-house real-time reverse transcription-PCR assay for the rapid
6	detection of the SARS-CoV-2 Marseille-4 variant
7	Short title (for the running head): qPCR for the SARS-CoV-2 Marseille-4 variant
8	
9	Author list: Marielle BEDOTTO ¹ , Pierre-Edouard FOURNIER ^{1,2} , Linda HOUHAMDI ¹ ,
10	Anthony LEVASSEUR ^{1,2} , Jeremy DELERCE ¹ , Lucile PINAULT ¹ , Abdou PADANE ³ ,
11	Amanda CHAMIEH ^{2,4} , Hervé TISSOT-DUPONT ¹ , Philippe BROUQUI ^{1,2} , Cheikh
12	SOKHNA ^{5,6} , Eid AZAR ⁴ , Rachid SAILE ⁷ , Souleymane MBOUP ³ , Idir BITAM ⁸ ,
13	Philippe COLSON ^{1,2} , Didier RAOULT ^{1,2} *
14	Affiliations: ¹ IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille,
15	France; ² Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD),
16	Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and
17	Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France; ³ Institut de
18	Recherche en Santé, de Surveillance Épidémiologique et de Formations (IRESSEF),
19	arrondissement 4 rue 2D1, pôle urbain de Diamniadio, Dakar, Sénegal; ⁴ Saint George
20	Hospital University Medical Center, University of Balamand, Beirut, Lebanon; ⁵ Vecteurs -
21	Infections Tropicales et Méditerranéennes (VITROME), Campus International IRD-UCAD de
22	l'IRD, Dakar, Senegal; ⁶ Aix-Marseille Univ., Institut de Recherche pour le Développement
23	(IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Vecteurs - Infections
24	Tropicales et Méditerranéennes (VITROME), 27 boulevard Jean Moulin, 13005 Marseille,
25	France; ⁷ Laboratory of Biology and Health, Faculty of Sciences Ben M'sik, Hassan II

- 26 University of Casablanca, Morocco; ⁸ Ecole supérieure en sciences de l'aliment et des
- 27 industries agro-alimentaires, Alger, Algeria.
- 28 * Corresponding author: Didier RAOULT, IHU Méditerranée Infection, 19-21 boulevard
- 29 Jean Moulin, 13005 Marseille, France. Tel.: +33 413 732 401, Fax: +33 413 732 402; email:
- 30 didier.raoult@gmail.com
- 31
- 32 Keywords (5): SARS-CoV-2; Covid-19; variant; Marseille-4; qPCR; diagnosis; molecular
- 33 epidemiology
- 34 Word counts: abstract: 243; text: 1,000
- 35 **Figures:** 2; **Table:** 1; **References:** 12.

ABSTRACT

2	
3	Introduction. The SARS-CoV-2 pandemic has been associated with the occurrence since
4	summer 2020 of several viral variants that overlapped or succeeded each other in time. Those
5	of current concern harbor mutations within the spike receptor binding domain (RBD) that may
6	be associated with viral escape to immune responses. In our geographical area a viral variant
7	we named Marseille-4 harbors a S477N substitution in this RBD.
8	Materials and methods. We aimed to implement an in-house one-step real-time reverse
9	transcription-PCR (qPCR) assay with a hydrolysis probe that specifically detects the SARS-
10	CoV-2 Marseille-4 variant.
11	Results. All 6 cDNA samples from Marseille-4 variant strains identified in our institute by
12	genome next-generation sequencing (NGS) tested positive using our Marseille-4 specific
13	qPCR, whereas all 32 cDNA samples from other variants tested negative. In addition, 39/42
14	(93%) respiratory samples identified by NGS as containing a Marseille-4 variant strain and
15	0/26 samples identified as containing non-Marseille-4 variant strains were positive. Finally,
16	2,018/3,960 patients SARS-CoV-2-diagnosed in our institute, 10/277 (3.6%) respiratory
17	samples collected in Algeria, and none of 207 respiratory samples collected in Senegal,
18	Morocco, or Lebanon tested positive using our Marseille-4 specific qPCR.
19	Discussion. Our in-house qPCR system was found reliable to detect specifically the
20	Marseille-4 variant and allowed estimating it is involved in more than half of our SARS-CoV-
21	2 diagnoses since December 2020. Such approach allows the real-time surveillance of SARS-
22	CoV-2 variants, which is warranted to monitor and assess their epidemiological and clinical
23	characterics based on comprehensive sets of data.

25	TEXT
26	
27	1. Introduction
28	Since the onset of the SARS-CoV-2 pandemic in December 2019 in China, almost 100
29	million cases have been reported worldwide as on January 28th, 2021
30	(https://www.ecdc.europa.eu/en/covid-19-pandemic). This has been associated with the
31	occurrence since summer 2020 of several viral variants that overlapped or succeeded each
32	other in time [1-3]. Those of current concern harbor mutations within the spike glycoprotein,
33	particularly within the spike receptor binding domain (RBD) that leads to viral entry into host
34	cells by binding to the ACE2 receptor (Figure 1) [4]. Such SARS-CoV-2 variants include the
35	20I/501Y.V1 [3], 20H/501Y.V2 [5], and 20J/501Y.V3 [6] strains that harbor a N501Y
36	substitution in the spike RBD and were reported in the UK and in South Africa, as highly
37	transmissible, and in Brazil, respectively. In our geographical area we detected 10 viral
38	variants since June 2020 [1]. One of them, we named Marseille-4, harbors a S477N
39	substitution in the spike RBD that has been associated with an improved binding affinity to
40	ACE2 [6] and a broad resistance to monoclonal neutralizing antibodies [7]. It predominates in
41	Marseille since August 2020, has been reported to spread in Europe since early summer and
42	was classified as the Nextstrain 20A.EU2 lineage [1, 2]. The continuous emergence of new
43	SARS-CoV-2 variants, including some of substantial concern regarding their transmissibility
44	and their possible ability to evade immune responses [8-10], warrants to set up strategies for
45	their detection and surveillance. SARS-CoV-2 incidence is currently substantial in several
46	countries including France, and in our institute we for instance diagnose >100 new cases
47	daily. Therefore, alternative strategies to sequencing are useful for variant screening. We
48	aimed to implement an in-house one-step real-time reverse transcription-PCR (qPCR) assay
49	that specifically detects the SARS-CoV-2 Marseille-4 variant.

2. Material and methods

51 SARS-CoV-2 genomes from our institute sequence database and from the GISAID 52 database (https://www.gisaid.org/ [11]) were used to design a primer pair and a hydrolysis 53 probe. These sequences target a fragment of the nsp4 gene that contains nucleotide position 54 9,526 of the viral genome [in reference to genome GenBank Accession no. NC_045512.2 55 (Wuhan-Hu-1 isolate)] where is located a hallmark mutation G>U of the SARS-CoV-2 56 Marseille-4 variant. The sequences of the qPCR primers and probe are shown in Table 1. The 57 qPCR was performed by adding 5 μL of extracted viral RNA to 15 μL of reaction mixture containing 5 µL of 4X TaqMan Fast Virus 1-Step Master Mix (Thermo Fisher Scientific, 58 59 Grand Island, NY, USA), 0.5 µL of forward primer (10 pmol/µL), 0.5 µL of reverse primer 60 (10 pmol/ μ L), 0.4 μ L of probe (10 pmol/ μ L), and 8.6 μ L of water. PCR conditions were as 61 follows: reverse transcription at 50°C for 10 min, then a hold at 95°C for 20 sec followed by 62 40 cycles comprising a denaturation step at 95°C for 15 sec and a hybridization-elongation 63 step at 60°C for 60 sec. This qPCR was run on a LC480 thermocycler (Roche Diagnostics, 64 Mannheim, Germany).

65

66 **3. Results**

67 Firstly, we tested a panel of 38 cDNA samples from each of the 10 variants named 68 Marseille-1 to Marseille-10 that we identified by genome next-generation sequencing (NGS) 69 and circulated since summer 2020 in our geographical area (6 from Marseille-4 strains, 5 from 70 Marseille-5 strains, 5 from Marseille-3 strains, 4 from Marseille-1 strains, and 3 from strains 71 classified in each of the variants Marseille-2, Marseille-6, Marseille-7, Marseille-8, Marseille-72 9, and Marseille-10) [1]. All 6 Marseille-4 samples tested positive whereas all 32 samples 73 from other variants tested negative. Secondly, we tested 42 samples identified in our institute 74 by genome NGS [1] as being from patients infected with a SARS-CoV-2 Marseille-4 variant:

75 39 of them (93%) were positive using our Marseille-4 specific qPCR. Thirdly, we tested 26 76 samples identified by next-generation genome sequencing as containing SARS-CoV-2 strains 77 that were not Marseille-4 variants (including 17 N501Y variants, 5 Marseille-2 variants, 3 78 clade 20A strains and 1 clade 20C strain): none of them were positive using our Marseille-4 79 specific qPCR. Positive and negative predictive values of Marseille-4 detection by our qPCR 80 were 100% and 90%, respectively. Finally, we tested with our Marseille-4 specific qPCR the 81 respiratory samples from 4,339 patients SARS-CoV-2-diagnosed in our institute. None of 22 82 patients' samples collected in June, 20 (5.6%) of 357 patients' samples collected in July, and 83 2,018 (51%) of 3,960 patients' samples collected in December 2020 and January 2021 tested 84 positive (Figure 2). These results are congruent with those obtained based on genome NGS 85 that showed that the Marseille-4 variant emerged in our geographical area in July and has 86 been predominant since August 2020 [1]. In addition, we found that 10 (3.6%) of 277 87 respiratory samples collected in Algeria in September-October tested positive using our 88 Marseille-4 specific qPCR, while none of 94 respiratory samples collected in Senegal in 89 September-October, of 94 samples collected in Morocco in November 2020, and of 19 90 samples collected in Lebanon in October 2020, tested positive.

91

92 **4. Discussion**

Our in-house qPCR system was found reliable to detect specifically the Marseille-4 variant and allowed estimating it is involved in more than half of our SARS-CoV-2 diagnoses since December 2020. This assay is currently routinely used in our clinical microbiology and virology laboratory to screen systematically all samples found SARS-CoV-2-positive using the first-line qPCR diagnosis assay, which allows the real-time classification of viral strains in about half of the diagnoses (Figure 2). In case of negativity of this Marseille-4 specific qPCR, samples are tested using alternative qPCR assays that are specific to other variants that

100	circulate at a lower incidence level than the Marseille-4 variant, or they are submitted to next-
101	generation sequencing in case of cycle threshold value (Ct) \leq 18 with the SARS-CoV-2 qPCR
102	diagnosis test [1, 12]. Such approach based on qPCR assays targeting specifically SARS-
103	CoV-2 variants allows their real-time surveillance, which is warranted to monitor and assess
104	their epidemiological and clinical characterics based on comprehensive sets of data. In
105	addition, in-house qPCR assays can be implemented rapidly, easily and at low cost on various
106	open qPCR microplate platforms, which may allow adapting continuously the diagnosis
107	strategies to the emergence and dynamics of SARS-CoV-2 variants.
108	
109	
110	Credit authorship contribution statement
111	Conceived and designed the experiments: DR, PC. Contributed materials/analysis tools: MB,
112	PEF, LH, JD, LP, IB, AC, HTD, PB, CS, RS, EA, SM, PC. Analyzed the data: MB, PC, DR.
113	Wrote the paper: PC, MB, DR.
114	
115	Funding
116	This work was supported by the French Government under the "Investments for the Future"
117	program managed by the National Agency for Research (ANR), Méditerranée-Infection 10-
118	IAHU-03 and was also supported by Région Provence Alpes Côte d'Azur and European
119	funding FEDER PRIMMI (Fonds Européen de Développement Régional-Plateformes de
120	Recherche et d'Innovation Mutualisées Méditerranée Infection), FEDER PA 0000320

121 PRIMMI.

122

123 Declaration of Competing Interest

124 The authors have no conflicts of interest to declare. Funding sources had no role in the design

125 and conduct of the study; collection, management, analysis, and interpretation of the data; and

126 preparation, review, or approval of the manuscript.

127

- 128 Ethics
- 129 This study has been approved by the ethics committee of our institution (N°2020-029).
- 130

131 Acknowledgments

- 132 This manuscript text has been edited by a native English speaker.
- 133

134 **References**

- P.E. Fournier, P. Colson, A. Levasseur, et al. Emergence and outcome of the SARSCoV-2 "Marseille-4" variant. IHU Pre-prints (2021) doi: https://doi.org/10.35081/xcrm6t77.
- E.B. Hodcroft, M. Zuber, S. Nadeau, et al. Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020, medRxiv (2020) doi: https://doi.org/10.1101/2020.10.25.20219063.
- K. Leung, M.H. Shum, G.M. Leung, T.T. Lam, J.T. Wu. Early transmissibility
 assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom,
 October to November 2020, Euro. Surveill. 26 (2021) 2002106.
- [4] A.C. Walls, Y.J. Park, M.A. Tortorici, A. Wall, A.T. McGuire, D. Veesler. Structure,
 Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein, Cell 181 (2020)
 281-92.
- 147 [5] H. Tegally, E. Wilkinson, M. Giovanetti, et al. Emergence of a SARS-CoV-2 variant of
 148 concern with mutations in spike glycoprotein, Nature (2021) Mar 9. doi:
 149 10.1038/s41586-021-03402-9. Epub ahead of print.
- 150 [6] M. Mejdani, K. Haddadi, C. Pham, R. Mahadevan. SARS-CoV-2 receptor binding mutations and antibody-mediated immunity. bioRxiv (2021) doi: https://doi.org/10.1101/2021.01.25.427846.
- [7] Z. Liu, L.A. VanBlargan, L.M. Bloyet, et al. Identification of SARS-CoV-2 spike
 mutations that attenuate monoclonal and serum antibody neutralization, Cell. Host
 Microbe 29 (2021) 477-488.e4.
- 156 [8] D. Harrington, B. Kele, S. Pereira, et al. Confirmed Reinfection with SARS-CoV-2
 157 Variant VOC-202012/01. Clin. Infect. Dis. (2021) ciab014. doi: 10.1093/cid/ciab014.
 158 Online ahead of print.

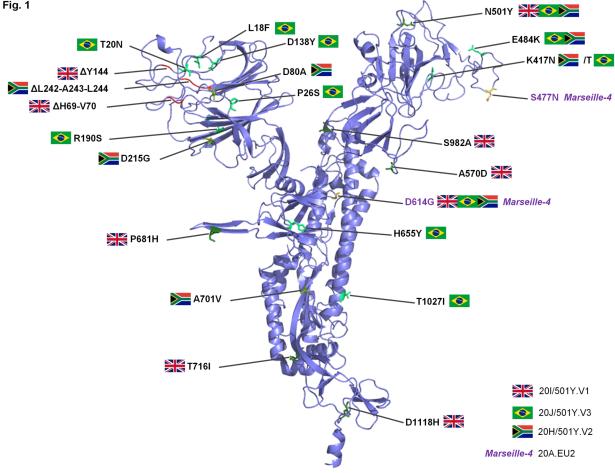
- P. Colson, M. Finaud, N. Levy, J.C. Lagier, D. Raoult. Evidence of SARS-CoV-2 reinfection with a different genotype, J. Infect. (2020) S0163-4453(20)30706-4. doi:
 10.1016/j.jinf.2020.11.011. Online ahead of print.
- [10] J.I. Cohen, P.D. Burbelo. Reinfection with SARS-CoV-2: Implications for vaccines,
 Clin. Infect. Dis. (2020) ciaa1866. doi: 10.1093/cid/ciaa1866. Online ahead of print.
- [11] S. Elbe, G. Buckland-Merrett. Data, disease and diplomacy: GISAID's innovative contribution to global health. Glob. Chall. 1 (2017) 33-46.
- 166
 167 [12] G. Haddad, S. Bellali, A. Fontanini, et al. Rapid Scanning Electron Microscopy
 168 Detection and Sequencing of Severe Acute Respiratory Syndrome Coronavirus 2 and
 169 Other Respiratory Viruses. Front. Microbiol. 11 (2020) 596180.

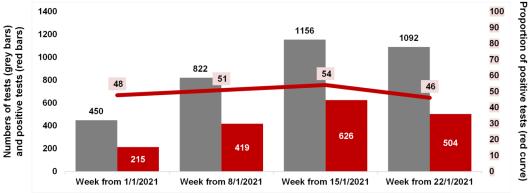
171

FIGURES

175	Figure 1. Three-dimensional structure of the SARS-CoV-2 spike protein showing amino acid
176	substitutions and deletions for major SARS-CoV-2 variants including the Marseille-4 variant
177	Structure prediction was performed using the Phyre2 web portal
178	(http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index) and visualized using the Pymol tool
179	v.1.8 (https://pymol.org/2/). Amino acid substitutions and deletions are showed with a country flag for
180	the variants first detected in UK (20I/501Y.V1), South Africa (20H/501Y.V2) and Brazil
181	(20J/501Y.V3), or with the label "Marseille-4.
182	
183	Figure 2. Number and proportion of Marseille-4 variants detected by qPCR in respiratory samples
184	from patients diagnosed with SARS-CoV-2 in our institute
185	The graph shows the weekly numbers of patients tested by our Marseille-4 specific qPCR assay (grey
186	bars) and the weekly numbers (red bars) and proportions (red curve) of positive tests in January 2021.
187	Systematic testing of RNA extracts obtained from nasopharyngeal samples of patients newly-
188	diagnosed with SARS-CoV-2 was implemented in our institute from January 1st, 2021 using our
189	Marseille-4 specific qPCR assay.
190	

TABLE


Table 1. Primers and probe of the Marseille-4 variant-specific qPCR


Name	Sequence (5'-3')	Positions *
Primers:		
Pri_IHU_C4_5_MBF	GAGGTTTAGAAGAGCTTTTGGTGA	9,460-9,483
Pri_IHU_C4_5_MBR	CCAGGTAAGAATGAGTAAACTGGTG	9,549-9,573
Probe (6FAM-labelled):		
Pro_IHU_C4_5_MBP	CCTTATTTCATTCACTGTACTCTG	9,520-9,543

197 * in reference to SARS-CoV-2 genome GenBank Accession no. NC_045512.2 (Wuhan-Hu-1

198 isolate). The nucleotide carrying the mutation specific to the Marseille-4 variant is covered

199 by the probe and underlined.

