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One Sentence Summary: In-depth characterization of normal and adult T-ALL methylomes 26 
identify clinically aggressive hypermethylated subgroup sensitive to DNA hypomethylating 27 
agents. 28 

Abstract: Adult T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological 29 
malignancy still associated with poor outcome calling for new therapeutic options. DNA 30 
methylation landscapes of adult T-ALL remain largely uncharacterized. Here, we systematically 31 
analyzed the DNA methylation profiles of normal thymic sorted T-cell subpopulations and 143 32 
primary adult T-ALLs as part of French GRAALL 2003-2005 trial. Our results indicated that T-33 
ALL is epigenetically distinct consisting of five major subtypes (C1-C5) which were either 34 
associating with co-occurring DNMT3A/IDH2 mutations (C1), TAL1 deregulation (C2), TLX3 (C3), 35 
TLX1/in cis-HOXA9 (C4) or in trans-HOXA9 (C5) overexpression. Integrative analysis of DNA 36 
methylation and Gene expression identified potential cluster-specific oncogenes and tumor 37 
suppressor genes. Importantly, in addition to an aggressive hypomethylated subgroup (C1), our 38 
data identified an unexpected subset of hypermethylated T-ALL (C5) associated with poor 39 
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outcome and primary therapeutic response. Using mouse xenografts, we showed that 1 
hypermethylated T-ALL samples displayed therapeutic response to the DNA hypomethylating 2 
agent, 5-Azacitidine, which significantly delayed tumor progression suggesting epigenetic-based 3 
therapies as a novel treatment option in hypermethylated T-ALL 4 

[Main Text: ] 5 

Introduction 6 

T-ALL (T-cell Acute Lymphoblastic Leukemia) is an aggressive hematological malignancy, most 7 
common among children (10-15% of ALL) and young adults (20-25% of ALL) (1, 2). Although 8 
intensive chemotherapy results in high cure rates, survival remains particularly poor in relapsing 9 
patients (3) calling for novel targeted therapeutic approaches. Both pediatric and adult T-ALLs 10 
harbor common oncogenic driver mutations leading to deregulation of specific transcription 11 
factors (TFs), including basic helix-loop-helix family members (TAL1, TAL2, LYL1 and 12 
BHLHB1), LIM-only domain family members (LMO1 and LMO2), homeobox genes (TLX1, TLX3, 13 
HOXA, NKX2-1, NKX2-2) as well as oncogenic TFs such as MYB and MYC (4). Investigation of 14 
transcriptional signatures identified molecular subgroups with specific driver oncogenes and 15 
maturation arrest stages including TAL1/LMO (mature or late cortical stage), TLX1, TLX3 and 16 
NKX2-1/NKX2-2 (early cortical stage), LYL1, MEF2C and HOXA (immature stage) (5). In addition 17 
to these oncogenic drivers, numerous additional recurrent genetic alterations have been described, 18 
including mutations in genes involved in the NOTCH1 pathway (NOTCH1, FBXW7) and deletion 19 
or epigenetic silencing of CDKN2A, both observed in more than 70% of T-ALLs (6). Past work 20 
has demonstrated that cancer-specific changes in DNA methylation (DNAm) include both global 21 
hypomethylation and focal hypermethylation changes at discrete loci, associated with distinct 22 
histone modification patterns and chromatin conformations, creating functional chromatin states 23 
(7). T-ALL is among a subset of cancers with the highest frequency of mutations in enzymes 24 
regulating epigenetic processes, suggesting that deregulation of the epigenetic landscape may play 25 
an important role in T-ALL leukemogenesis (8, 9). Notably, genes involved in establishing DNAm 26 
patterns are frequently mutated in adult T-ALL. DNMT3A mutations are found in about 18% of 27 
cases and are associated with an adverse outcome (10, 11). Mutations in TET family genes and 28 
IDH1/2 are also frequent (12-14).  29 

Several studies have utilized DNAm as a marker to characterize cancer samples in search of 30 
markers for relapse prediction, molecular classification or mechanisms involved in disease 31 
transformation (15-17). In pediatric T-ALL, DNAm analysis identified two distinct CpG island 32 
methylator phenotype (CIMP) groups, in which CIMP-negative patients displayed a significantly 33 
higher cumulative incidence of relapse as compared to CIMP-positive patients, suggesting 34 
prognostic relevance of aberrant DNAm profiles in T-ALL (18-20). Similar observations have also 35 
been made recently in adult T-ALL (21). Given the potential therapeutic impact of epigenetic 36 
anomalies, in particular their reversible nature by hypomethylating agents, we analyzed genome-37 
wide DNAm patterns of primary adult T-ALL samples. Our results indicate that T-ALL is 38 
heterogeneous and consists of epigenetically distinct subgroups with characteristic clinical 39 
features. Of note, we identify an unexpected hypermethylated T-ALL subgroup of poor clinical 40 
outcome, which is likely to benefit from targeted therapy. 41 

 42 

 43 
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 1 

Results  2 

DNA methylation blueprints identify distinct epigenetic subgroups of T-ALL 3 

To better understand the role of DNAm in T-ALL leukemogenesis, we performed genome-wide 4 
DNAm analysis using Illumina Infinium Methylation EPIC BeadChip (EPIC arrays) in a series of 5 
143 primary adult T-ALL samples, as well as on sorted normal thymic T-cell subpopulations (see 6 
Methods section). Patient clinical, phenotypic, and oncogenetic characteristics are described in 7 
Table 1. Using unsupervised clustering, we classified T-ALL samples within the cohort into five 8 
distinct, robust and stable sub-clusters (Figure 1A, B and see methods and Supplementary 9 
Figure S1). These data-driven de novo clusters showed variable degrees of genome-wide DNAm 10 
levels compared to normal thymic populations (Figure 1C). Based on their genome-wide DNAm 11 
level, we named the clusters C1, C2, C3, C4 and C5, with C1 displaying the lowest level of DNAm 12 
and C5 the highest.  13 

Additional characterization of the clusters revealed a significant association with thymic 14 
maturation arrest stages and key oncogenetic alterations (Figure 1D-G). C1 represented the 15 
smallest cluster (n = 14 samples, 9.8%) and was characterized by an Early Thymic Precursor (ETP) 16 
phenotype (7/11; P < 0.01), an immature maturation arrest stage (9/12; P < 0.01) and under-17 
representation of classical T-ALL oncogenic drivers (HOXA, TAL1, TLX1 and TLX3). C2 was 18 
associated with a more mature αβ-lineage maturation arrest stage (28/31; P < 0.01) and was mainly 19 
characterized by TAL1 deregulation (SIL-TAL1 or upstream-neoenhancer positive) (16/33; P < 20 
0.01). Of note, all but one of the TAL1 deregulated cases (16/17) clustered together, suggesting 21 
that they display similar DNAm signature regardless of the molecular mechanism leading to TAL1 22 
deregulation. Importantly, overall genome-wide methylation levels of C1 and C2 showed no 23 
significant changes compared to normal thymic subpopulations despite the differences in 24 
maturation arrest stages or genetic alterations (Figure 1C). In contrast, clusters C3, C4, and C5 25 
displayed significant genome-wide hypermethylation compared to normal thymic subpopulations 26 
(t-test, P < 0.001; Figure 1C) and were enriched for overexpression of HOX gene family members. 27 
Although TLX1 and TLX3 proteins are very similar, TLX1 and TLX3 deregulated leukemia 28 
clustered separately. C3 contained samples enriched for overexpression of TLX3 (14/22) and a 29 
TCRγδ phenotype whereas C4 contained samples displaying TLX1 overexpression (25/38), and 30 
cis-activated (resulting from cis-deregulation by translocation into the TCRβ locus) HOXA9 31 
overexpression (7/37) along with IMβ/pre-αβ (αβ lineage) maturation arrest stages. C5 samples 32 
were most significantly hypermethylated compared to normal thymic subpopulations (Figure 1C; 33 
t-test, P < 0.001) and were characterized by trans-activated (translocations involving MLL, 34 
MLLT10 rearrangements, SET-NUP214) HOXA9 overexpression (16/30) and ETP and immature 35 
maturation arrest stages, as described (22). Importantly, ETP-ALLs clustered in C1 and C5, which 36 
displayed distinct hypo-, and hyper- methylation profiles respectively, suggesting a high degree of 37 
heterogeneity within ETP-ALLs, and that an ETP phenotype alone cannot drive or result from 38 
methylation changes.  39 

Besides the classical T-ALL driver events - CNVs and mutational alterations for a targeted 40 
panel of genes that are frequently altered in T-ALL were also studied (see methods; 41 
Supplementary Figure S2A) (22). Among genes involved in establishing DNA methylation 42 
patterns, DNMT3A was the most frequently mutated (14%) followed by TET2 (5%), IDH2 (4%), 43 
TET3 (3%) and IDH1 (1%). Comparison of mutational events within each cluster against all other 44 
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clusters identified thirteen genes, which were preferentially mutated in particular epigenetic 1 
clusters (Figure 1H; Fisher’s exact test, FDR < 0.05; Supplementary Table S1). Whereas 2 
DNMT3A, TET2/3, IDH1 mutations alone did not seem to be significantly associated with any 3 
specific methylation cluster, all IDH2 mutations co-occurred with DNMT3A mutations. A large 4 
fraction of these co-occurring IDH2/DNMT3A mutations (5/6) were found within the C1 subgroup, 5 
suggesting their potential synergistic role for the underlying leukemogenesis (23) (Figure 1H). In 6 
the entire cohort, DNMT3A mutations were largely of loss-of-function/dominant-negative type, 7 
with 30% (6/20) involving the R882 hotspot, thereby affecting the methyltransferase domain 8 
(Supplementary Figure S2B). Mutations in IDH2 occurred at the known oncogenic hotspot R140 9 
(Supplementary Figure S2C) (24).  10 

PTEN alterations were enriched in C2 (enriched in TAL1 deregulated cases). PTEN 11 
mutations were mostly loss-of-function INDELs thereby dysregulating the PI3K signaling 12 
pathway, in line with the higher frequency of PTEN alterations in TAL1 deregulated and mature 13 
T-ALL cases (25, 26). The C2 subgroup was also characterized by a lower frequency of mutations 14 
affecting both epigenomic regulators in general and the JAK-STAT pathway. C3 was particularly 15 
enriched for WT1 and STAT5B mutations affecting the JAK-STAT pathway (25). C4 demonstrated 16 
a significantly higher frequency of BCL11B mutations. Importantly, SUZ12 and EZH2 alterations, 17 
both critical components of the PRC2 complex, clustered in the C5 subgroup. A large fraction of 18 
NF1 alterations and a low frequency of CDKN2A deletions were also observed in this subgroup.  19 

Altogether, based on methylation profiles we have identified five robust subgroups of T-20 
ALL, and demonstrated that epigenetic clusters correlate with the driver oncogenes and are 21 
associated with distinct maturation arrest stages. In particular, we have identified a novel 22 
uncharacterized subgroup (C1) with co-occurring DNMT3A/IDH2 mutations. 23 
 24 
T-ALL methylomes differ from thymic T-cell subpopulations but DNA methylation predicts 25 
maturation arrest stages of epigenetic clusters 26 

We compared T-ALL samples with a series of sorted normal thymic subpopulations including 27 
thymic CD34+, 4ISP (Immature Simple positive CD4+), DP and TCR-/CD3- (Double Positive 28 
CD4+ CD8+ TCR- CD3-), DP and TCR+/CD3+ (Double Positive CD4+ CD8+ TCR+ CD3+), 29 
SP4 (Single positive CD4+) and SP8 (Single Positive CD8+) cells (see Methods section). We first 30 
analyzed the dynamics of DNAm changes during normal T-cell maturation; principal component 31 
analysis (PCA) robustly separated different subpopulations, suggesting significant heterogeneity 32 
in the T-cell precursor methylomes and thereby implicating epigenetic programming as an 33 
underlying part of T-cell development (Figure 2A). We next performed differential methylation 34 
analysis, which identified a set of differentially methylated probes (DMPs) for each thymic 35 
subpopulation (tDMPs) (Supplementary Figure S3A)(Supplementary Table S2). CD34+ cells 36 
contained the highest number of tDMPs (n = 7385), followed by the more mature SP4/SP8 cells 37 
(n = 5148 and n = 6145 respectively) with varying degrees of overlap between the subpopulations 38 
(Supplementary Figure S3B). Genes associated with precursor CD34+ cell-specific tDMPs were 39 
affiliated with the gene ontology terms including chemotaxis or cell migration, in line with the 40 
process by which migratory hematopoietic precursors from the bone marrow respond to homing 41 
signals from thymic epithelial cells before restricting towards the thymic lineage (Figure 2B). In 42 
contrast, 4ISP cells were significantly enriched for terms associated with lymphocyte activation 43 
and differentiation, and immune system development, suggesting lineage commitment towards T-44 
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cell development (Figure 2C). Similar terms were also enriched for the mature subpopulations 1 
(Supplementary Figure S3C-F).  2 

To further characterize tDMPs, we identified eight sub-clusters (tDMP1-tDMP8) based on 3 
the kinetics of DNAm changes (Figure 2D and 2E) (Supplementary Table S3). tDMP1 and 4 
tDMP2 consisted of hypermethylated probes which became slightly hypomethylated in terminal 5 
stages, and were associated with processes such as cellular morphogenesis and cell development 6 
(Supplementary Figure S4A, B). Clusters tDMP3, tDMP4, and tDMP5 showed a continuous gain 7 
of DNAm, suggesting silencing of cellular pathways associated with cell adhesion, cell 8 
communication, regulation of GTP-ase activity and the PI3k pathway (Figure 2E and 9 
Supplementary Figure S4C, D, E). In contrast, clusters tDMP6, tDMP7 and tDMP8 contained 10 
genes associated with DMPs which showed progressive hypomethylation during differentiation. 11 
These clusters were exclusively associated with T-cell differentiation and activation and the 12 
adaptive immune system, implying the presence of a core set of CpGs whose hypomethylation is 13 
critical for T-cell maturation (Supplementary Figure S4F-H).  14 

As a complementary to the DNAm analysis of thymopoiesis, we also analyzed the gene 15 
expression data from 6 distinct thymic cell types generated by Roels et al (CD34+CD1-, 16 
ISPCD28+, DPCD3-, DPCD3+, SPCD4+ and SPCD8+) (27). Gene expression profiles of well-17 
known candidate genes involved in thymopoiesis showed an inverse correlation with their 18 
promoter DNAm levels (Supplementary Figure S5A). We further characterized the dynamics of 19 
gene expression and promoter DNAm profiles by comparing each mature thymic cell type to the 20 
CD34+ immature early thymic precursors. Both differential expression and differential promoter 21 
DNAm analysis revealed a linearly increasing number of differentially regulated genes along the 22 
maturation stages (Supplementary Figure S5B). Next we identified a common set of genes which 23 
were both differentially expressed and showed a differential promoter methylation - which further 24 
revealed a core subset of genes which are both transcriptionally and epigenetically regulated in 25 
thymic developmental processes (N = 942) (Supplementary Figure S5B-C, Supplementary 26 
Table S4). In addition, expression of these genes showed significant inverse correlation with their 27 
promoter DNAm levels with high expressed genes showing least methylation and vice-versa 28 
(Supplementary  Figure S5D, E). Large fraction of these genes also overlapped with the genes 29 
identified in recent single cell based assays thereby further validating the results (data not shown) 30 
(28). 31 

Next, we sought to investigate whether tDMPs can recapitulate the known hierarchy of T-32 
cell maturation stages. Using an unsupervised, distance-based neighbor joining approach, tDMPs 33 
robustly reconstructed T-cell developmental stages, with the phylogenetic tree leading to either 34 
mature SP4 or SP8 cells originating from precursor thymic CD34+ cells (Figure 2F). Phylogenetic 35 
trees constructed using random CpGs failed to infer the same, thereby hinting at a critical role of 36 
tDMP-associated genes in T-cell development (Supplementary Figure S6A and S6B). Of note, 37 
similar to DNAm, DEGs involved in thymopoiesis were also able to reconstruct the thymic 38 
developmental trajectory (Figure 2F, inset plot) suggesting a possible coordinated regulation of 39 
DNAm and gene expression profiles. We then hypothesized that T-ALL samples display distinct 40 
DNA methylomes compared to normal thymic subpopulations and that these DMPs are distinct 41 
from tDMPs associated with T-cell differentiation. To address this, we performed PCA on the 42 
entire sample cohort of primary T-ALL and normal T-cell subpopulations. This analysis showed 43 
clear separation of T-ALL samples from normal T-cell subpopulations, irrespective of their 44 
maturation stage, inferring that T-ALL are highly heterogeneous in their methylome (Figure 2G; 45 
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left panel). We repeated the PCA analysis by excluding tDMPs and did not observe any significant 1 
changes, suggesting that T-ALL differed in their DNA methylomes compared to thymic 2 
subpopulations (Figure 2G; right panel). Unsupervised hierarchical clustering showed similar 3 
results, suggesting that in addition to the DNAm signature obtained from the cell-of-origin, a 4 
significant number of DNAm changes in T-ALL are primarily related to leukemogenesis and are 5 
T-ALL specific. Interestingly, a subset of leukemic samples clustered close to normal 6 
subpopulations, implying a lower deviation of their methylome (Supplementary Figure S6C, D).  7 

Finally, we asked how T-ALL clusters diverge from normal T-cell development. In order 8 
to investigate this in an unsupervised way, we first performed PCA on the entire cohort (thymic 9 
subpopulations and T-ALL) using only tDMPs as reference. This analysis recovered the known 10 
developmental trajectory of T-cell subpopulations, and the possible ordering of T-ALL clusters 11 
relative to the trajectory (Figure 2H). We next projected DNAm of T-ALL samples onto the 12 
normal thymic developmental tree, which highlighted the possible deviation of T-ALL samples 13 
from the normal developmental trajectory, thereby indicating potential maturation arrest stages 14 
(Figure 2I). We then calculated the average methylation of T-ALL samples belonging to the same 15 
one of earlier identified clusters C1 to C5, and rebuilt the developmental trajectory. This display 16 
showed the hierarchical ordering of clusters along the normal T-cell developmental path, with C5, 17 
and C1 being derived from earlier T-cell maturation stages, followed by C3, C4, and C2 - in line 18 
with the respective maturation arrest stages (Figure 2I; inlet plot). Of note, all five epigenetic 19 
clusters were positioned between ISP and DP TCR- stages of T-cell development suggesting an 20 
early epigenetic divergence occurring between the cortex to subcapsular thymic zones (29). Taken 21 
together, our results suggest the potential role of DNAm in predicting the normal T-cell 22 
developmental trajectory and the order of maturation arrest stages for the five epigenetic T-ALL 23 
subgroups. 24 

Methylation changes in normal and T-ALL-associated regulatory elements 25 

To further understand the heterogeneity among the epigenetic clusters, we compared each cluster 26 
with the normal thymic subpopulations to identify DMPs (FDR < 0.05, |meth change| > 0.2) 27 
(Supplementary Table S5). This analysis revealed varying degrees of DMPs with C1 (34424 28 
hyper/21478 hypo) and C2 (48538 hyper/ 27757 hypo) displaying approximately equal proportion 29 
of hyper- and hypo- methylated probes. In contrast C3 (76873 hyper/ 22272 hypo), C4 (97297 30 
hyper/ 26728 hypo), and C5 (101198 hyper/ 14503 hypo) contained large number of 31 
hypermethylated probes (Figure 3A). Further genomic and CpG annotations of the DMPs showed 32 
no significant differences in their overall distribution within clusters however, hypermethylated 33 
DMPs were strongly enriched in promoters and CpG islands across all the clusters 34 
(supplementary Figure S7A). Recent evidence showed that DNAm changes in regulatory regions 35 
play a critical role in maintaining cellular identity, and malignant transformation in both solid and 36 
leukemic cancers (30, 31). Consequently, we generated the promoter (H3K4me3) and enhancer 37 
(H3K27ac/H3K4me1) landscape of normal thymic cell types at various developmental stages 38 
(Immature CD34+, EC (Early Cortical CD4+ CD8+ TCR/CD3-), LC (Late Cortical; CD4+ CD8+ 39 
TCR/CD3+), SP4 (Single Positive; CD4+, TCRαβ+), SP8 (Single Positive CD8+, TCRαβ+)) using 40 
the data collected from the BLUEPRINT consortium (32). We defined three types of enhancers 41 
(active, poised and putative) based on the presence or absence of H3K27ac, and H3K4me1 histone 42 
marks (Supplementary Figure S7B and S7C). In addition, we also collected H3K27ac and 43 
H3K4me3 ChIP-seq profiles for 12 primary T-ALLs belonging to four distinct methylation 44 
clusters (7 to C2, 2 to C4 and 3 to C5). PCA analysis based on the histone marks still retained the 45 
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DNAm-based clustering (Figure 3B and 3C). We next identified super-enhancers (SEs) and 1 
typical enhancers (TEs) for each normal T-cell and T-ALL methylation cluster. SE-associated 2 
genes from both normal and T-ALL contained genes known to be involved in T-cell maturation, 3 
and T-ALL leukemogenesis, respectively (Supplementary Figure S7D) (Supplementary Table 4 
S6). Interestingly, a number of SEs identified in T-cell subtypes increased with the developmental 5 
stages but, we observed significantly higher number of SEs in T-ALL compared to normal T-cells 6 
(P < 0.001; t-test) (Figure 3D).  7 

Next, we performed an enrichment analysis, which further revealed the dynamics of 8 
DNAm changes in T-ALL associated regulatory elements (Figure 3E). Hypermethylated DMPs 9 
across all five clusters were mainly enriched within known TSS (+/-1000 base pairs) and active 10 
promoters (H3K4me3 peaks) derived from normal T-cell developmental datasets. Of note, we also 11 
observed enrichment of hypermethylated DMPs within normal thymus derived poised enhancers 12 
(H3K4me1+/H3K27ac-), suggesting a potential shut-down of enhancers that could be primed for 13 
activation in later T-cell developmental stages (33). In contrast, hypomethylated DMPs were 14 
enriched within intergenic regions. T-ALL associated SEs and TEs were largely enriched for 15 
hypomethylated DMPs suggesting active downstream expression of SE associated genes. Given 16 
the role of SEs in disease progression, hypomethylation of T-ALL specific regulatory elements 17 
suggests a DNAm mediated activation of SEs and further cancer progression (34).  18 

Several studies have reported the binding of core oncogenic or cell specific master TFs 19 
within enhancer elements (35, 36). We therefore checked for the enrichment of TF motifs within 20 
100 bps of hypomethylated DMPs located within T-ALL derived SEs and TEs. This revealed 21 
specific TF dynamics within each cluster (Figure 3F) (Supplementary Table S7). For example, 22 
C2 was enriched for TAL1, RUNX1/2, GATA4/6, MYB TF motifs, which have been reported to 23 
form auto-regulatory loops in TAL1 deregulated T-ALLs thereby driving oncogenesis (37). C1 was 24 
primarily associated with bZIP and “myeloid like” motifs such as CEBP, CHOP, GATA1/2, PU1 25 
and AP1, in accordance with the samples being enriched for Immature/ETP geno/phenotypes 26 
(Figure 1D). Similarly, C5 was enriched for HOXA cluster-specific homeobox TFs.  27 

Altogether, our results show diverging roles of DNAm in chromatin regulation by which 28 
disease associated enhancers are frequently hypomethylated, leading to probable chromatin 29 
activation, whereas normal developmental associated promoters are possibly repressed by 30 
hypermethylation. In addition, enrichment of several key oncogenic TF motifs within disease 31 
associated enhancers highlights the active ongoing oncogenic transcriptional programs. 32 

 33 

Integrative analysis of DNAm and Gene expression among epigenetic subgroups 34 
 35 

To understand the influence of DNAm on gene expression in T-ALL clusters, we generated 36 
the expression profiles by means of RNA-sequencing for a total of 48 samples (C1 = 4, C2 = 13, 37 
C3 = 6, C4 = 7, C5 = 14) including 4 normal total thymus control. In the PCA analysis of the RNA-38 
seq data, although the samples tended to cluster according to their methylation cluster, the 39 
distinction between the different leukemia groups appeared much less clear than based on their 40 
methylation signature. Interestingly, total thymus samples were clustered with C2 samples similar 41 
to DNAm results. (Figure 4A). In addition, clusters showed clear expression of their candidate 42 
driver transcription factors (Figure 4B). We performed differential gene expression (DGE) 43 
analysis by comparing each cluster against total thymus samples. This analysis revealed a varying 44 
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degrees of gene expression changes with C1 displaying the lowest and C5 the highest number of 1 
DE genes (DEGs) (Supplementary Table S8). Significant portion of these DE genes were up-2 
regulated suggesting an activated gene expression profiles (Figure 4C). In order to measure the 3 
genome-wide influence of DNAm on gene expression, we performed correlation analysis between 4 
gene expression and the corresponding promoter DNAm levels of all protein coding genes (N = 5 
15,912 genes) across all 44 T-ALL samples (Figure 4D). Only a fraction of genes (N = 235) 6 
significantly correlated with their promoter DNAm levels (FDR < 0.1). The fact that DNA 7 
methylation levels at promoter regions do not necessarily correlate with gene expression levels has 8 
also been observed in multiple studies(38, 39). However, except for C1 cluster, we globally found 9 
an expected inverse correlation between DE genes and their promoter DNAm levels - with up-10 
regulated genes displaying lower methylation levels compared to down regulated genes (Figure 11 
4E). Therefore, in order to better depict DNAm clusters, we identified cluster-specific genes with 12 
significant inverse correlation between DNAm and gene expression in a robust manner. We used 13 
all the DMPs (from Figure 3A) within promoter regions and studied their corresponding gene 14 
expression (Figure 4F). Careful cataloging of these genes revealed several interesting cluster-15 
specific genes, already involved in oncogenic processes, with an inverse correlation between 16 
DNAm and gene expression. In C1 cluster - enriched in immature, ETP-ALL, co-occurring 17 
DNMT3A/IDH2 mutations and myeloid features - among genes hypomethylated and 18 
overexpressed, we identified the myeloid factors, AZU1, CSF3, the oncogenic genes EGFL7(40), 19 
FES(41), SLC2A5(42) involved in AML, S100A6 involved in several solid tumor types(43-45) and 20 
JDP2(46). Similarly, we also found several other cluster-specific candidate oncogenes such as 21 
CD160(47), CD47(48), FOSL1(49) in C2, MAPK8(50-53) and MYEOV(54, 55) in C3, and CAPG, 22 
RGS17(56, 57), FAM83A(58), LGALS(59), NCR1(60) and EMP1(61) in C5. On the other hand, 23 
DNA hypermethylation, a hallmark of cancer, has been extensively involved in tumor suppressor 24 
genes (TSG) inactivation. In line with this concept, we found among genes hypermethylated and 25 
down regulated several candidate TSGs, especially in cluster C5, which displayed the highest 26 
number of repressed DEGs:  NPTX1(62) in C4, ALS2CL(63), AMPH(64), CMTM8(65), 27 
DEPDC7(66), HOOK1(67), MITF(68), MPPED2(69), PCDH9(70), RARRES1(71), RASEF(72), 28 
RNF180(73), S100A16(74) and SLFN5(75) in C5. Despite the limited number of RNAseq data 29 
available in this series, our gene expression analysis reinforces the biological relevance of the 30 
methylation-based clustering and leads to the identification of potential cluster-specific oncogenes 31 
and tumor suppressor genes. 32 

  33 

Subgroup C5 associates with poor outcome in GRAALL-treated patients 34 

CIMP-negative T-ALL patients have been shown to be significantly associated with higher 35 
cumulative incidences of relapse compared to CIMP-positive patients, suggesting a prognostic 36 
relevance of DNAm profiles in both pediatric and adult T-ALL (19, 21). Evaluation of the 37 
prognostic relevance of the five DNAm clusters revealed diverse levels of overall survival (OS) 38 
and event-free survival (EFS) (P = 0.08 and P = 0.045, respectively) with C4 and C1 displaying the 39 
most favorable and most unfavorable outcomes respectively (P = 0.002 OS and P = 0.01 EFS) 40 
(Supplementary Figure S8A and S8B). Based on genome-wide DNAm levels (see Figure 1C), 41 
we classified five clusters into three groups with significantly different methylation levels, C(1+2), 42 
C(3+4) and C(5) which displayed hypomethylation, intermediate-hypermethylation and high-43 
hypermethylation respectively. In line with previous reports, patients in the hypomethylated C(1+2) 44 
subgroup demonstrated shorter OS (5-year OS probability; 50% [95% CI = 35% to 63%] vs 71.5% 45 
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[95% CI = 58% to 81%]; P = 0.031) and EFS (5-year EFS probability; 44% [95% CI = 30% to 1 
57%] vs 69% [95% CI = 55% to 79%]; P = 0.015) as compared to the intermediate-2 
hypermethylated C(3+4) subgroup. Interestingly, the high-hypermethylated C(5) subgroup displayed 3 
distinct clinical outcome and had significantly poorer survival probability as compared to the C(3+4) 4 
subgroup (5-year OS probability; 53% [95% CI = 34% to 68%] vs 72% [95% CI = 58% to 81%]; 5 
P = 0.037) and EFS (5-year EFS probability; 46% [95% CI = 28% to 62%] vs 69% [95% CI = 6 
55% to 79%]; P = 0.045). Patients in both C5 and C(1+2) showed similar shorter OS and EFS (Figure 7 
5A and 5B). Importantly, the adverse prognosis associated with C(5) and C(1+2) did not seem to be 8 
related to the same clinical parameters. C5 patients demonstrated poor early response with 9 
significantly slower D8 prednisone and D15 bone marrow responses, and higher post-induction 10 
Minimal Residual Disease (MRD) levels (prednisone response; 28.1% vs 54.2%, Bone marrow 11 
response; 21.9% vs 66.7% and negative post-induction MRD; 38.1% vs 78.3% respectively) unlike 12 
to the C(1+2) patients who relapsed despite a good initial response (Table 2). In both EFS and OS 13 
multivariate analyses, the difference between C(1+2) and C(3+4) remained statistically significant as 14 
the difference between C(5) and C(3+4) lost this significance (Supplementary Table S9). Overall, 15 
these data identified a subset of hypermethylated T-ALL with poor primary therapeutic response, 16 
paving the way for specific targeted therapeutic schedules. 17 

In vivo responses to hypomethylating agents  18 

As we observed significant differences in the DNAm patterns and overall levels in the leukemic 19 
subgroups, we reasoned that epigenetic treatment with DNMT inhibitors (hypomethylating agents) 20 
could be of potential interest in the treatment of, particularly hypermethylated T-ALL. The TLX1+ 21 
ALL-SIL cell line (belonging to C4) was transduced to stably express luciferase and transplanted 22 
in NSG mice. At day 2 post-transplantation, mice (n = 3-5 per group) received a daily dose of 23 
5mg/kg intra-peritoneal 5-azacytidine for two courses of five days with an interval of two days, 24 
with bioluminescence measurement of bulk leukemic engraftment. This preventive 5-azacytidine 25 
in vivo treatment significantly delayed leukemic engraftment and increased the overall survival of 26 
the treated mice (P = 0.0067 respectively) (Figure 6A, B). In order to test all cluster subtypes 27 
using more relevant models of human T-ALL, we established Patients Derived Xenografts (PDX) 28 
from five primary T-ALL samples (Supplementary Figure S9). Mice were treated in-vivo in a 29 
“curative-like” setting (two courses, starting when peripheral blood blast counts exceeded 1%). 30 
Leukemic blast expansion was regularly measured by flow cytometry analysis. For the PDX lines 31 
derived from three patients UPNT-M149, UPNT-670 and UPNT-529, belonging respectively to 32 
the hypermethylated C3, C4, and C5 clusters, 5-azacytidine treatment significantly increased 33 
survival, delayed tumor expansion (P = 0.001, P = 0.01 and P = 0.02 respectively) and led to 34 
drastic, albeit transient, decreases in leukemic burdens (Figure 6C, 6D and 6E). In contrast, for 35 
the two hypomethylated C2 patients UPNT-525 and UPNT-894 (Figure 6F, 6G), curative 36 
treatment had no significant effect and in contrast was associated with a rapid increase of 37 
peripheral blast counts and death of the recipient mice. Of note, we observed increase in the tumor 38 
burden upon termination of the treatment which might be due to the short duration of the treatment 39 
(2 weeks) being insufficient in the complete clearance of blast cells thereby resulting in the 40 
recurrence of residual clones surviving the treatment. 41 

Altogether, these results, although obtained in a limited number of mice, indicate the 42 
efficacy of DNMT inhibitor treatment in T-ALLs with a hypermethylated profile, including those 43 
belonging to the poor prognosis C5 cluster. Aberrant hypermethylation could be a predictive factor 44 
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for therapeutic response and the use of hypomethylating agents for a subset of T-ALLs with 1 
unfavorable prognosis. 2 

Discussion  3 
Historically, epigenetic studies in T-ALL have focused on promoter regions (18, 19, 76, 77). We 4 
now provide extensive DNAm analysis in a large cohort of 143 primary adult T-ALL samples 5 
using Illumina Infinium Methylation EPIC arrays covering over 850,000 CpGs across promoters 6 
and regulatory regions. Using an unbiased approach, we identified five epigenetic clusters, four of 7 
which are associated with activation of distinct oncogenic TFs identified by expression-based 8 
studies (5, 25). In addition, we identified a novel and likely adult-specific subgroup of T-ALL with 9 
co-occurring DNMT3A and/or IDH2 mutations (78), which showed hypomethylation, and an 10 
immature/ETP phenotype. Patients in this group were associated with poor prognosis. These 11 
results highlight the role of developmental stage specific oncogenic events, which remodel the 12 
underlying methylome to drive leukemogenesis. Importantly, features associated with these 13 
DNAm clusters complement the previously reported gene expression-based analyses (25). For 14 
example, expression-based studies have shown extensive overlap in expression signatures between 15 
TLX1 and TLX3 T-ALLs, whereas these two oncogenic subgroups are robustly separated in their 16 
DNAm patterns and methylation-based arrest stages, suggesting more profound differences in 17 
deregulated pathways. HOXA9 deregulated samples showed large differences in their DNAm 18 
based on the mode of overexpression. Samples with HOXA9 deregulation clustered in two distinct 19 
subgroups, those displaying deregulation in cis (under the influence of the TCRβ enhancer) 20 
clustered with TLX1 deregulated samples (C4) displaying early cortical maturation arrest stages 21 
whereas, HOXA9 samples in trans (under the influence of SET-NUP214, MLLT10 or MLL fusions) 22 
formed a distinct hypermethylation cluster (C5), associated with a more immature maturation arrest 23 
stage (22). C5 was also enriched in PRC2 alterations (SUZ12 and EZH2 mutation/deletion). Murine 24 
models of ETP-ALL driven by Ezh2 and Tp53 inactivation have also been characterized by 25 
hypermethylation of T-cell developmental genes, thereby promoting leukemic transformation 26 
(79). The loss of Ezh2 in murine ETPs induced the pathogenic epigenetic switch from H3K27me3 27 
to DNA hypermethylation of pivotal T-cell development regulators, such as Runx1, but sustained 28 
the expression of stem cell signature genes and promoted the transformation of ETPs, supporting 29 
a pathogenic role for inactivating PRC2 mutations in ETP-ALL. It would be interesting to compare 30 
these observations with human primary T-ALLs. DNAm clearly separated immature/ETP ALLs 31 
into C1 hypomethylated DNMT3A/IDH2-rich and C2 hypermethylated trans-HOXA/PRC2 groups, 32 
paving the way for distinct therapy. TAL1 deregulated samples, irrespective of the mechanism of 33 
deregulation (SIL-TAL1, or upstream neo-enhancers (80)) clustered together, suggesting a 34 
disruption of common downstream pathways (81, 82). TAL1 is one of the most frequently 35 
deregulated driver oncogene in T-ALL (approximately 30% of cases) either through deletions 36 
(SIL-TAL1; 10-20%), oncogenic neoenhancer (20%) (80) or rare V(D)J-mediated translocations 37 
[t(1;14); 1-2%]. In about 40% of TAL1+ cases, however, such lesions are absent, and TAL1 is 38 
overexpressed due to unknown mechanisms. In cluster C2, only 16/34 samples displayed either the 39 
SIL-TAL1 deletion or oncogenic neoenhancer suggesting that this cluster may also contain samples 40 
with TAL1 overexpression due to as yet unexplained/unidentified mechanisms of deregulation. 41 

Cluster C1, enriched for co-occurring DNMT3A/IDH2 mutants, was completely devoid of 42 
any previously recognized TF overexpression, but all DNMT3A/IDH2 mutated cases also harbored 43 
NOTCH1 mutations, in line with previous observations, highlighting the synergistic role of 44 
deregulated epigenome and NOTCH1 signaling pathways in disease progression (83, 84). High 45 
variant allele frequency of DNMT3A mutations indicated a large fraction of homozygous or 46 
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compound heterozygous mutations (data not shown) suggesting a distinct DNMT3A mutation 1 
spectrum in T-ALL as compared to acute myeloid leukemia cases (83-86). In the context of disease 2 
progression, higher variant allele frequency combined with significantly older age group (data not 3 
shown) suggests that DNMT3A clones could have arisen early in hematopoiesis, prior to T-cell 4 
lineage restriction. This hypothesis is further corroborated by recent evidence for age related 5 
DNMT3A mutations in T-ALL (11). This early acquisition of DNMT3A in T-cell progenitors 6 
further could acquire secondary genetic hits (such as NOTCH1/IDH2) upon thymic entry, thereby 7 
deregulating the methylome during T-cell development. Interestingly, unlike co-occurring 8 
IDH2/DNMT3A mutations, single mutations in epigenetic factors (DNMT3A, IDH1, TET2/3) 9 
involved in DNAm were not associated with a specific methylome, raising the question of the role 10 
played by such genomic alterations in leukemogenesis. Cluster-specific methylome analysis 11 
revealed non-random and systematic distribution of DMPs, with significant hypermethylation of 12 
T-cell developmental associated active promoters and poised enhancers, whereas T-ALL 13 
associated enhancers showed significant hypomethylation. Our results echo similar observations 14 
of enhancer hypomethylation in solid tumors as well as in leukemia (30, 31). Moreover, 15 
identification of disease-associated TFs within the enhancer elements suggests an enhancer 16 
dependent active oncogenic transcriptional program mediated by hypomethylated chromatin (34, 17 
36). Similar to cluster specific somatic and epigenetic alterations, our integrated gene expression 18 
and DNAm analysis further highlights the combined effects of DNAm and gene expression in T-19 
ALL pathogenesis. For example, SLC2A5 which is hypomethylated as well as overexpressed in 20 
C1, is also overexpressed in a subset of AML and in childhood Philadelphia chromosome positive 21 
ALL and associated with poor outcome. The encoded protein which is a fructose transporter 22 
responsible for fructose uptake by the small intestine and enhances fructose use of leukemic cells 23 
(42, 87).  JDP2 – a bZIP family transcription factor specific to C1 - has been identified as a novel 24 
oncogene in ETP T-ALL and shown to be associated with poor prognosis (46). Importantly, 25 
enrichment of myeloid like genes and bZIP family transcription factors in C1 is also corroborated 26 
by independent motif analysis results (Figure 3F). Another gene - EMP1 specifically 27 
hypomethylated/overexpressed in C5, has been shown to be associated with poor outcome in 28 
pediatric ALL and to confer prednisolone resistance (61). Interestingly, our clinical study showed 29 
also an association of C5 with a poor early prednisone response. 30 

 31 
Another significant finding of this study is the recapitulation of the maturation arrest stages 32 

based on DNAm. Lymphopoiesis is a complex process mediated by expression of several TFs and 33 
cell surface markers in a stage specific manner (29). Our DNAm based phylogenetic trees robustly 34 
captured these developmental stages, thereby illustrating the prominent role of DNAm in 35 
regulating thymopoiesis. These results further highlight previous observations in mouse 36 
hematopoiesis, wherein DNAm dynamics orchestrate myelopoiesis and lymphopoiesis to form 37 
different terminal DNAm patterns (88). Similar observations have also been made in human 38 
lymphopoiesis, in which DNAm dynamics during B cell maturation display a continuum of 39 
changes (89). By combining T-ALL samples, these phylogenetic trees robustly recaptured the 40 
known clinically relevant subgroups, thereby reflecting developmental arrest at different stages of 41 
thymic maturation. Similar results have also been observed in an independent analysis using open 42 
chromatin signals highlighting the conserved epigenetic marks at several layers (90). Overall, our 43 
results show an early occurrence of C5, and C1 clusters, characterized by in trans overexpression 44 
of HOXA and mutations in myeloid-like genes such as DNMT3A/IDH2 respectively, whereas C3 45 
(enriched in TLX3 cases) and C4 (enriched in TLX1 and cis HOXA deregulated cases) showed 46 
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intermediate arrest stages. Finally, C2 enriched in TAL1 deregulated samples occurred latest, in 1 
keeping with the known late cortical maturation stage arrest of the TAL1 deregulated T-ALL 2 
subgroup (5). The combined observation of hypomethylated disease enhancers and maturation 3 
arrest stages further highlight the plasticity induced by DNAm in tumor progression.  4 

Importantly, unlike previous transcriptional studies, we identified patient clusters with 5 
clinical relevance and an unexpected subgroup of highly hypermethylated patients (C5) associated 6 
with unfavorable outcome similar to hypomethylated patients and who could benefit from targeted 7 
therapy (91, 92). Epigenetic drugs such as (93)￼(94)￼(95)￼. Our results from use of 8 
hypomethylating treatment of T-ALLs with known methylation status suggest that 5-azacytine 9 
could be a promising therapeutic option in hypermethylated T-ALL. In contrast, hypomethylated 10 
samples showed poor response to treatment, suggesting that a certain degree of aberrant 11 
hypermethylation is required to observe treatment efficacy. Follow-up studies are required to 12 
confirm the therapeutic potential of hypomethylating agents in T-ALL and it would be interesting 13 
to study their efficacy in combination with other compounds such as conventional chemotherapy 14 
or epigenetic therapy, such as an EZH2 inhibitor. 15 

Materials and Methods 16 
Study Design: Blood or bone marrow from a total of 143 adult patients diagnosed with T-ALL 17 
(15-60 years old) from two successive French ALL cooperative groups (n = 22 from GRAALL-18 
2003 and n = 121 from GRAALL-2005) were analyzed. The GRAALL-2003 protocol was a 19 
multicenter Phase II trial, which enrolled 76 adults with T-ALL between November 2003 and 20 
November 2005, of whom 50 had sufficient diagnostic tumor material available for NGS study but 21 
only 22 had enough high-quality DNA for EPIC array (96). The multicenter randomized 22 
GRAALL-2005 Phase III trial was very similar to the GRAALL-2003 trial, with the addition of a 23 
randomized evaluation of an intensified sequence of hyper-fractionated cyclophosphamide during 24 
induction and late intensification (97). Between May 2006 and May 2010, 261 adults with T-ALL 25 
were randomized in the GRAALL-2005, of which 185 had available diagnostic material for NGS 26 
study but only 121 had enough high-quality DNA for EPIC array. In this study, the main criterion 27 
for inclusion was the availability of high-quality DNA. Survival outcomes of the 143 patients did 28 
not differ from those of the remaining 194 T-ALL patients. As expected in retrospective studies, 29 
initial white blood cell count (WBC) was higher in the study cohort. A full comparison of the 30 
clinical features of each group is shown in Supplementary Table S10. All samples contained 31 
>80% blasts. Phenotypic and oncogenetic characteristics were obtained as described (22, 98, 99). 32 
Informed consent was obtained from all patients at enrolment. All trials were conducted in 33 
accordance with the declaration of Helsinki, approved by local and multicenter research ethical 34 
committees. The GRAALL-2003 and -2005 studies were registered at 35 
http://www.clinicaltrials.gov as #NCT00222027 and #NCT00327678, respectively. 36 
 37 
Univariate and multivariate survival analysis for OS and EFS: Since methylation subgroups were 38 
strongly associated with maturation arrest and tumor biology, we only considered age, log(WBC), 39 
CNS involvement, prednisone response, and D8 bone marrow response as covariates to avoid 40 
multicollinearity. Methylation clusters were reduced to a 3-class variable with intermediate 41 
methylation clusters (C(3+4)) considered as baseline. Covariates finally used in the multivariate cox 42 
model were those associated with outcome in univariate analyses (P < 0.1). As shown in 43 
Supplementary Table S9, univariate analysis for EFS identified age, prednisone response, BM 44 
response, CNS involvement, and methylation clustering as covariates in the multivariate model. 45 
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Univariate analysis for OS identified age, prednisone response, CNS involvement, and methylation 1 
clustering as covariates for multivariate analysis. 2 

Thymic subpopulations sorting: Human thymic subpopulations were obtained from children 3 
undergoing cardiac surgery. Informed consent was obtained from parents and the study was 4 
approved by the Ethics committee (CPP Ile de France II, project number 2012-03-04). Thymii 5 
were dissociated into single cell suspensions. Six specific subpopulations were purified by sorting 6 
using FACS ARIA III (BD Biosciences): thymic CD34+, 4ISP (Immature Simple positive CD4+), 7 
DP-TCR-/CD3- (Double Positive CD4+ CD8+ TCR- CD3-), DP-TCR+/CD3+ (Double Positive 8 
CD4+ CD8+ TCR+ CD3+), SP4 (Single positive CD4+) and SP8 (Single Positive CD8+). For the 9 
immature subpopulation, thymocytes were pre-purified by depletion of CD3 and CD8 positive 10 
fraction by magnetic activated cell sorting using CD3 MicroBeads (Miltenyi, Bergisch Gladbach, 11 
Germany, Cat #130-050-101) and CD8 MicroBeads (Miltenyi, Cat#130-045-201) respectively. 12 
Antibodies used for cell labelling of CD3-/CD8- thymic fraction: CD1a FITC, clone NA1/34 13 
(Dako, Glostrup, Denmark Cat#F7141), CD34 APC (BD Biosciences, Erembodegem, Belgium 14 
Cat#345804), CD8 PC7 (Beckman Coulter, Brea, CA, USA, Cat#737661), CD3 Alexa-700 (BD 15 
Biosciences, Cat#557943), CD4 V450, clone RPA-T4 (BD Biosciences, Cat#60345), CD45 V500, 16 
clone HI30 (BD Biosciences, Cat#560777). Final purity after sorting was over 95%. Total thymus 17 
DNA was used as control. 18 

Targeted Next-generation sequencing: Nextera XT (Illumina, San Diego, CA, USA) DNA 19 
Libraries were prepared according to the manufacturer’s instructions and sequenced using the 20 
Illumina MiSeq sequencing system. The custom NGS panel comprised genes coding for factors 21 
involved in molecular pathways known to be mutated in T-ALL, namely cytokine receptor and 22 
RAS signaling (NRAS, KRAS, JAK1, JAK3, STAT3, STAT5B, IL7R, BRAF, NF1, SH2B3 and 23 
PTPN11), hematopoietic development (RUNX1, ETV6, GATA3, IKZF1, EP300), chemical 24 
modification of histones (SUZ12, EED, EZH2, KMT2A, KMT2D and SETD2) and DNAm 25 
(DNMT3A, IDH1, IDH2, TET2, TET3). This panel was originally inspired by the genes found to 26 
be preferentially altered in pediatric ETP-ALL (Zhang et al. 2012) and we have reported a subset 27 
of the results described in the current paper in previous clinic-biological and genetic analyses (11, 28 
13). Mutational data was later integrated with copy number and analyzed with maftools 29 
Bioconductor package. 30 

MLPA T-ALL panel: CNV for a targeted panel of genes were studied using SALSA MLPA P383 31 
T-ALL probemix (MRC-Holland, Amsterdam, Netherland). 32 

PDX and 5-azacytidine treatment of xenografted mice: 5-azacytidine was purchased from Sigma 33 
Aldrich (St. Louis, MO, USA) and was prepared in 0.9% NaCl and stored as recommended by the 34 
manufacturer. Treatment protocol: at Day 0 (D0), 1x106 human leukemic cells were resuspended 35 
in 100 μL of PBS buffer and injected retro-orbitary in NSG mice. For ALL-SIL cell line, at D2, a 36 
group of mice received as “preventive” treatment 5 mg/kg/day 5-Azacytidine intra-peritoneal (IP) 37 
for 5 days twice with 2 days break. Untreated mice received the same volume of NaCl IP. Primary 38 
PDX models were treated with the same 5-azacytidine courses but in a “curative-like” setting, 39 
starting when peripheral blood blast counts exceeded 1%. Leukemic engraftment in peripheral 40 
blood was studied by flow cytometry using mouse-CD45 and human-CD45 antibodies. Mice were 41 
sacrificed when the blast fraction was more than 80% or if mice presented clinical signs of disease 42 
(loss of weight >10%, neurological signs, tumor development). During the treatment, mice were 43 
constantly supervised for weight loss, behavioral disorders such as hyperactivity, physiological 44 
disorders such as increased respiratory rate, hair loss, neurological signs which revealed no 45 
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obvious treatment induced side effects. Mouse study was approved by national ethic committee: 1 
PROJET APAFIS # 8853 N° 2017020814103710. 2 

Data analysis: 3 

EPIC arrays: Intensity Data (IDAT) files from EPIC arrays were processed and normalized with 4 
RnBeads Bioconductor package (100). Probes with high SNP probability and bad detection P-5 
values were filtered out. EPIC arrays were also used for copy number analysis using conumee 6 
Bioconductor package, and further processed with GISTIC2 to identify recurrent copy number 7 
aberrations. Probes located in regions with altered copy numbers were excluded from downstream 8 
analysis (Supplementary Figure S1C).  9 

Clustering and dimension reduction: To identify epigenetic clusters, we used Non Negative 10 
Factorization (NMF) on the top 5% of most variable probes (n = 38,583) (101). NMF decomposes 11 
a matrix into two smaller matrices whose product sufficiently recomposes the original matrix. 12 
Critical step in NMF is identifying the number of factors. We used the method described by Brunet 13 
et al where, NMF is run on a range of values and a cophenetic correlation coefficient (measure of 14 
goodness of fit) was determined (102). An optimal number of clusters was identified for which 15 
cophenetic correlation reaches its maximum value (Supplementary Figure S1A). Furthermore, 16 
to measure the fitness of identified clusters, we repeated the above clustering procedure for varying 17 
number of probes (5000 up to 38583). Clusters were stable and reached maximum cophenetic 18 
correlation coefficient at n = 5. Finally, we used 5 clusters generated by using N = 38,583 probes 19 
for all downstream analysis. These 5 epigenetic clusters were also robust as measured by rand-20 
index, and samples showed little to no changes in cluster assignments as the number of probes 21 
used for clustering increased (Supplementary Figure S1B). Moreover we randomly sampled 80% 22 
of the initial cohort (N = 114) and repeated the clustering. Rand Index - a similarity score between 23 
two clustering results - was measured between original clusters and new clusters generated on 24 
subsamples. We repeated the entire process 10 times and results showed high similarity (Rand 25 
index 0.85 – 0.99) to the original clustering (data not shown). Clusters were later visualized using 26 
Uniform Manifold Approximation and Projection (UMAP). 27 

Statistical analysis: DMPs (FDR < 0.1 and |methylation change| > 20%) were identified for every 28 
cluster by comparing them to 12 normal thymic samples using Limma Bioconductor package 29 
(103). Differential gene expression analysis was performed using DESeq2 Bioconductor package 30 
adjusting for batch covariates wherever required. Survival analysis was performed with Surv R-31 
package. For predicting T-cell developmental trajectory and T-ALL maturation arrest stages, we 32 
calculated Manhattan distance between samples with dist function in R. Phylogenetic trees were 33 
later constructed from distance matrix using neighbor joining method, and visualized in R with 34 
ape package. All data analysis, visualization, and test statistics were performed in R statistical 35 
environment (version 4.0), and complete source code used for data analysis is provided as 36 
Supplementary Data S1. 37 

ChIP-seq analysis: BAM files for ChIP-seq datasets were obtained from the BLUEPRINT (32). 38 
Peak calling was performed using MACS2 with parameters --bdg --SPMR --nomodel --extsize 200 39 
–q 0.05. Peaks overlapping with UCSC blacklisted regions were excluded. ChIP-seq results were 40 
visualized using deepTools. SEs were identified and annotated for every T-ALL and normal 41 
thymic samples with Rose software. Consensus SEs for each T-ALL cluster (Supplementary 42 
Figure S7D) were generated by merging H3K27ac BAM files from samples belonging to same 43 
cluster. Enrichment analysis of DMPs within regulatory regions was performed with LOLA 44 
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Bioconductor package. Enrichment of all vertebrate motifs around 100 base-pairs of hypo-1 
methylated CpG probes was done using findMotifsGenome.pl from homer tools. As a background 2 
we randomly selected a subset of ca. 850,000 EPIC probes (n = 183,896; corresponding to total 3 
number of unique DMPs identified across all 5 clusters). Significant motifs were chosen based on 4 
P < 1e-5. Since homer motif database lacked the motifs for TAL1 TF, we re-analyzed public 5 
datasets containing ChIP-seq for TAL1 (GSM935496) thereby defining de-novo motif. This was 6 
later included in the homer database for downstream analysis. 7 

Supplementary Materials 8 

Supplementary Figures 9 

• Supplementary Figure-S1. Identification of epigenetic clusters. 10 

• Supplementary Figure-S2: Genomic landscape of adult T-ALL. 11 

• Supplementary Figure-S3: Gene expression analysis of T-ALL clusters 12 

• Supplementary Figure-S4: Differentially Methylated Probes associated with T-cell 13 
maturation (tDMPs). 14 

• Supplementary Figure-S5: Characterization of Differentially Methylated Probes associated 15 
with T-cell maturation (tDMPs) based on methylation dynamics. 16 

• Supplementary Figure-S6: Gene expression dynamics during Thymopoiesis 17 

• Supplementary Figure-S7: Influence of thymic maturation associated Differentially 18 
Methylated Probes (tDMPs) 19 

• Supplementary Figure-S8: Defining normal and disease associated enhancers. 20 

• Supplementary Figure-S9: Overall Survival (OS) and Event Free Survival (EFS) of 21 
methylation clusters. A and B. 22 

Supplementary Tables 23 
• Supplementary Table S1: Significantly mutated genes in every cluster compared to rest 24 

of the clusters (Related to Figure 1H). (XLSX) 25 

• Supplementary Table S2: Differentially methylated probes identified in each of the 26 

normal thymic cell-types (Related to Figure-2). (XLSX) 27 

• Supplementary Table S3: Differentially methylated probes identified in each of the 28 

normal thymic cell-types classified into 8 subgroups based on methylation dynamics 29 

(Related to Figure-2D, E, and Supplementary Figure S4). (XLSX) 30 

• Supplementary Table S4: Genes which are both differentially expressed and showing a 31 

differential promoter methylation in normal thymic cell types (Related to Supplementary 32 

Figure S5B). (XLSX) 33 

• Supplementary Table S5: Differentially methylated probes found in each cluster along 34 

with the genomic annotations (Related to Figure 3A). (XLSX) 35 
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• Supplementary Table S6: Super and Typical Enhancers identified in normal thymic cell-1 

types, and in T-ALL clusters (Related to Figure 3D, and Supplementary Figure S7D). 2 

(XLSX) 3 

• Supplementary Table S7: Significantly enriched TF motifs detected within 100 base pair 4 

vicinity of hypo-methylated probes located within the super or typical enhancer regions 5 

from T-ALL clusters (Related to Figure 3F). (XLSX) 6 

• Supplementary Table S8: Differentially expressed genes in cluster compared to total 7 

thymus (Related to Figure 4C). (XLSX) 8 

• Supplementary Table S9: Univariate and Multivariate analyses of EFS and Overall 9 

Survival. 10 

• Supplementary Table S10: Clinical characteristics and outcome of the study cohort 11 

versus non-investigated patients (GRAALL-2003/05 trials). 12 

Supplementary Data S1: Complete source used for data analysis. 13 
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 1 

Figure-1: Epigenetic clusters in T-ALL. A. Heatmap of spearman correlation coefficient values 2 
between all leukemic samples. Top annotation bars indicate cluster sizes (n) and titles 3 
respectively (top to bottom). B. Uniform Manifold Approximation and Projection (UMAP) 4 
plot of T-ALL samples color-coded according to the cluster. C. Violin plots depicting 5 
genome-wide DNAm values for every cluster. (*** P < 0.001 two tailed t-test for 6 
differences in mean). D. Heatmap showing association between maturation arrest stages 7 
(row) and T-ALL samples (columns). Each column represents a sample, and their 8 
corresponding cluster assignments are displayed as a colour coded bottom annotation bar. 9 
Rows are ordered according to T-cell maturation stages (from top most immature to bottom 10 
most mature). Gray bars indicate data not available. E. Bar plots displaying significant 11 
association between clusters and maturation arrest stages (Fisher's exact test; P < 0.01). 12 
Bars are annotated with the ratio of samples belonging to a maturation arrest stage (as 13 
indicated by the bar title), and total number of samples within the clusters for which 14 
annotations are available, with the corresponding fraction on Y-axis. Bottom gray bars 15 
indicate number of samples in background with the highlighted maturation arrest stage. F. 16 
Heatmap showing association between genetic events (row) and T-ALL samples 17 
(columns). Each column represents a sample, and their corresponding cluster assignments 18 
are displayed as a color-coded bottom annotation bar. Rows are ordered according to 19 
genetic events (either somatic epigenetic mutations or deregulated TFs). Gray bars indicate 20 
data not available. G. Bar plots displaying significant association between clusters and 21 
genetic events (Fisher's exact test; P < 0.01). Bars are annotated with the ratio of samples 22 
with the (as indicated by the bar title), and total number of samples within the clusters for 23 
which annotations are available, with the corresponding fraction on Y-axis. Bottom gray 24 
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bars indicate number of samples in background with the highlighted genetic event. H. 1 
Cluster specific mutations found across the cohort (Fisher's exact test; FDR < 0.05).  2 
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Figure-2: DNA methylation predicts T-cell differentiation and maturation arrest stages of 1 
T-ALL clusters. A. Principal Component Analysis (PCA) shows separation and ordering 2 
of T-cell subtypes according to different maturation stages (clockwise from bottom left to 3 
bottom right). The red curve indicates the direction of increasing T-cell maturation stages. 4 
B and C. Functional characterization of Differentially Methylated Probes (DMPs) from 5 
CD34 cells (B) and ISP cells (C), shows enrichment of cell-type specific biological 6 
processes. Vertical red bar indicates P = 0.001 (Hypergeometric test). D. Heatmap of 7 
DMPs from T-cell maturation stages categorized into distinct subgroups (tDMP1-tDMP8) 8 
based on dynamics of changes in DNAm across cell-types. E. Average DNAm of tDMP 9 
subgroups across T-cell subtypes (x-axis). F. T-cell developmental phylogenetic tree 10 
inferred from tDMPs shows the ordering of T-cell subtypes. Inset plot shows similar 11 
phylogenetic tree inferred from 1000 most differentially variably expressed genes. G. PCA 12 
of normal (colored) and T-ALL samples (in gray) with (left) and without (right) tDMPs 13 
shows little to no changes in variance explained by first two principal components. H. PCA 14 
of normal T-cell and T-ALL methylomes using tDMPs. Normal T-cell subpopulations (n 15 
= 12) are depicted in diamond shapes and T-ALLs (n = 143) are circles - color coded 16 
according to the cluster (C1 – C5). The known T-cell developmental trajectory starting from 17 
CD34 is shown as a red curve overlaid on top of normal T-cell population. I. Phylogenetic 18 
tree of the entire cohort (n = 143 T-ALLs; n = 12 normal T-cells) constructed using tDMPs 19 
shows ordering of T-ALL samples (color coded according to their corresponding clusters) 20 
along T-cell developmental pathway (left to right). Normal T-cell are in thick black circles 21 
labelled for cell-types. Inlet panel shows a simplified phylogenetic tree constructed with 22 
average DNAm levels of epigenetic clusters along with normal T-cell types (in diamond 23 
shapes) shows order of maturation arrest stages of T-ALL subtypes (in circles) along the 24 
T-cell developmental pathway (left to right). 25 
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 1 

Figure-3: Characterization of Differentially Methylated Probes (DMPs) associated with T-2 
ALL clusters. A. Numbers of hyper- and hypomethylated DMPs identified in each T-ALL 3 
cluster (C1- C5) as compared to normal pooled thymic subpopulations. B and C. Principal 4 
component analysis of primary T-ALL samples based on active H3K27ac peaks (peaks 5 
2500 bp away from known TSS) (B) and H3K4me3 peaks (C). Samples are color coded 6 
according to their corresponding cluster. D. Dot plot for enrichment of hyper- and 7 
hypomethylated DMPs across all 5 clusters (X-axis) in various regulatory regions (Y-axis) 8 



Page 29 of 44 
 

as highlighted in the left side of the plot. Dots are color coded for significance and size of 1 
the dots represents P values in log10 scale. E. Boxplot of number of super enhancers 2 
identified in each T-ALL samples, clusters and thymic cell types (X-axis) (*** t-test; P < 3 
0.01). F. Disease associated TF motifs detected among hypomethylated DMPs (+/- 100bp) 4 
enriched within T-ALL associated super and typical enhancer regions. 5 

 6 

 7 
Figure-4: Integrated analysis of DNA methylation and gene expression. A. Principal 8 
component analysis of gene expression data for 48 samples (44T-ALL + 4 total thymus). Samples 9 
are color coded for their T-ALL cluster. B. Heatmap of known T-ALL oncogenes. Top annotation 10 
bars depict validated genetic annotations. C. Barplot of number of differentially expressed genes 11 
(DEGs) in each cluster compared to total thymus samples (FDR < 0.1).  Up and down regulated 12 
genes are color coded for their fold change range. D. Histogram of Pearson correlation coefficient 13 
between promoter* DNAm and gene expressions of all protein coding genes (N = 15,912 genes) 14 
across all tumor samples (N = 44). E. Distribution of gene expression (Up and Down regulated 15 
genes from panel C) and their corresponding promoter* DNAm for every cluster. Notches indicate 16 
95% CI around the median. (*** P < 0.001, t-test for differences in mean). F. Scatter plot of gene 17 
expression and DNAm differences in DMPs between tumor and normal samples for all 5 clusters 18 
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(C1-C5). Dark gray color indicates genes also found to be significantly differentially expressed 1 
(FDR < 0.1; from panel C). Selected genes known to be associated with the T-ALL pathogenesis 2 
are highlighted in red and annotated. 3 
*Promoter DNAm is estimated by averaging the beta values from probes within 1200 bp upstream 4 
and 800 bp downstream of known TSS. 5 

 6 

 7 

 8 

Figure-5: Prognostic impact of DNA methylation. A. Overall Survival (OS) for patients 9 
classified into hypomethylated (C1+2), intermediate hypermethylated (C3+4), and 10 
hypermethylated (C5) subgroups. Risk table indicates number of individuals at risk for a 11 
given time point. P-values are derived from log-rank test. B. Event Free Survival (EFS) for 12 
patients classified into C1+2, C3+4, and C5 subgroups. 13 
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 1 
Figure-6: Efficacy of 5-Azacytidine treatment among T-ALL clusters. 5-Azacytidine 2 
treatment in PDX mice models. Leukemic cells (n = 1,000,000) were injected into NSG mice (day-3 
0). A. Survival (left panel) and tumor burden measured by bioluminescence (right panel) for NSG 4 
mice injected with ALL-SILL cell line (predicted cluster C4; n = 5 for untreated; n = 4 for treated) 5 
after 2 weeks of preventive treatment with 5-Azacytidine (treatment initiation at day 2 post-6 
injection, 5mg/kg/day for 5 days a week for two weeks) (red line) or NaCl (green line). Tumor 7 
burden was measured as a function of luminescence (Y-axis) from tumor cells at different time 8 
points (X-axis). B. Bioluminescence radiance signals (photons/cm2/sr) for mice treated with 5-9 
Azacytidine or NaCl (untreated) at day 45 post-transplantation for ALL-SIL cell line.. C-G. 10 
Survival (top panel) and leukemic burden (%blast cells) measured by flow cytometry in peripheral 11 
blood (bottom panel) for five PDX mice models. C. UPNT-M149 (predicted C3; n = 4 to 5 per 12 
group), D. UPNT-670 (cluster C4; n = 4 to 5 per group), E. UPNT-529 (C5; n = 3 per group), F. 13 
UPNT525 (cluster C2; n = 4 to 5 per group) and G. UPNT-894 (cluster C2; n = 3 to 5 per group) 14 
under untreated (NaCl; green line) or treated for 2 weeks with 5-Azacytidine in a curative-like 15 
manner (when blasts count reached 1% in blood, 5mg/kg/day for 5 days a week for two weeks) 16 
(orange line). P-values are calculated by comparing untreated group with rest of the groups using 17 
log-rank test.  18 

 19 

 20 

 21 

 22 
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Table 1: Characteristics of the 143 T-ALL patients^ 1 
Characteristic Value 
Median age at study entry (range) – year 29.9 (16.3-59.1) 
Sex ratio (Male/Female) – no. 107/36 
T-cell Receptor subsets analyzed – no./total no. (%)  

  Immature (IM0. IMδ. IMγ) 33/127 (26) 
  IMβ/pre-αβ 66/127 (52) 
  TCRαβ+ 14/127 (11) 
  TCRγδ+ 14/127 (11) 

Early T-cell precursor (ETP) Immunophenotype – no./total no. (%) 25/125 (20) 
High risk patients* – no./total no. (%) 61/143 (43) 
Oncogenetic category – no./total no. (%)  

  TLX1 28/137 (20) 
  TLX3 19/137 (14) 
  SIL-TAL1/TAL1-neoenhancer 17/137 (12) 
  CALM-AF10 6/137 (4) 
  None of the above 67/137 (49) 

HOXA deregulation+ – no./total no. (%)  
  Cis 7/127 (6) 
  Trans 17/127 (13) 
  Unknown 11/127 (9) 

Mutations in epigenetic factors – no./total no. (%)  
  DNMT3A 20/143 (14) 
  IDH1 3/143 (2) 
  IDH2 6/143 (4) 
  TET2 7/143 (5) 
  TET3 4/143 (3) 

Early response – no./total no. (%)  
  Prednisone response 80/143 (56) 
  Bone marrow response 78/140 (56) 
  Complete remission 134/143 (94) 

^Percentages may not total 100 because of rounding up.  
*High risk: NOTCH1/FBXW7WT OR NOTCH1mut + [KRAS, NRAS, PTEN]mut 
+Cis: HOXA over expression under the influence of TCRβ enhancer  

  Trans: HOXA over expression under the influence of SET-NUP214, MLLT10 or MLL fusion 

 2 

 3 

 4 

 5 

 6 

 7 
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Table 2: Clinical characteristics of the three prognostic subgroups 1 
  C(1+2) C(3+4) C(5) P-value† 
  N= 48 N=63 N=32   
Clinical Subsets Analyzed         
Median age in years (range) 26.2 (16.3-59.1) 30.5 (16.4-57.2) 31.4 (18.8-59) 0,3 
age >45 years- no./total no. (%) 6/48 (13%) 6/63 (10%) 5/32 (15%) 0,67 
Sex ratio, Male/Female- no. 38/10 46/17 23/9 0,7 
WBC (G/L), median (range) 69.9 (0.9-604.4) 37 (4.1-645) 31.2 (2.2-241.6) 0,3 
CNS involvement- no./total no. (%) 7/48 (15%) 8/63 (13%) 5/32 (16%) 0,9 
Early Response         
Prednisone response- no./total no. (%) 26/48 (54%) 44/63 (70%) 9/32 (28%) 0,001 
Bone marrow response- no./total no. (%) 30/45 (67%) 41/63 (65%) 7/32 (22%) <0.001 
MRD (TP1) <10-4- no./total no. (%) 18/23 (78%) 33/39 (85%) 8/21 (38%) 0,001 
Complete remission- no./total no. (%) 44/48 (92%) 61/63 (99%) 29/32 (94%) 0,4 
WBC (G/L), white blood cells; CNS, central nervous system; MRD (TP1), post-induction minimal residual disease; †Fisher’s exact test or 
Mann-Whitney tests were used where appropriate. 
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 1 
 2 
 3 
Supplementary Figure-S1: Identification of epigenetic clusters. A. Cophenetic correlation (Y-axis) measured 4 
for a range of values (2...10, X-axis). Optimum value is chosen at which the correlation value reaches maximum 5 
followed by no-change or decrease in correlation metric. Same step was performed for varying number of probes 6 
as represented by the lines with color gradient. Arrowhead represents the optimal value chosen for downstream 7 
analysis (N = 5). B. Cluster stability was measured by re-running clustering with n=5 for different number of 8 
probes as indicated in the top annotation bar. Heatmap represents spearman-correlation coefficient between 9 
samples. Inner panel shows pairwise Rand-index values which indicates similarity between two clustering 10 
results. C. Pre-processing and QC steps involved in analyzing raw Illumina EPIC arrays. R packages used in 11 
particular steps are mentioned within parenthesis in italics.  12 
 13 
 14 
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 2 
Supplementary Figure-S2: Genomic landscape of adult T-ALL. A. Oncoplot depicting genetic alterations for the 3 
targeted panel of genes known to be frequently altered in T-ALL. Each row represents a gene and each column 4 
represents a sample. Genes are grouped according to the pathway as annotated to the right. Samples are sorted 5 
according to the clusters - indicated by the bottom annotation bar. Cells are color coded for mutation and copy-number 6 
status. B and C. Lollipop plot for DNMT3A (B) and IDH2 (C). Recurrent R882 and R140 mutational hotspots in 7 
DNMT3A and IDH2 are named. 8 
 9 
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 2 
Supplementary Figure-S3: Differentially Methylated Probes associated with T-cell 3 
maturation (tDMPs). A. Number of hyper- and hypo methylated tDMPs identified for each 4 
thymic cell type at various T-cell maturation stages. B. Upset plot showing overlap of tDMPs 5 
between T-cell subtypes. C-F. Gene ontology terms enriched for tDMPs associated with DP_TCR- 6 
(C), DP_TCR+ (D), SP4 (E), and SP8 T-cell subtypes (F). Vertical red bar indicates P = 0.001 7 
(Hypergeometric test). 8 
 9 
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 1 
Supplementary Figure-S4: Characterization of Differentially Methylated Probes associated 2 
with T-cell maturation (tDMPs) based on methylation dynamics. A-H. Gene ontology terms 3 
enriched among tDMPs classified into 8 subgroups (tDMP1-tDMP8 respectively). Vertical red bar 4 
indicates P = 0.001 (Hypergeometric test). 5 
 6 

 7 

Supplementary Figure-S5: Gene expression dynamics during Thymopoiesis A. Gene 8 
expression profiles of selected marker genes and their corresponding promoter DNAm dynamics 9 
associated with the specific thymic cell types. Centered and scaled data are plotted. (Gene 10 
expression data obtained from gene expression omnibus dataset with accession number 11 
GSE151081). B. Number differentially methylated promoters, and differentially expressed genes 12 
for each mature thymic cell type compared to CD34 positive ETP cells. Number in parenthesis 13 
indicate common genes showing differential expression as well as differential promoter DANm. 14 
N = 942 indicates unique genes from all 5 cell types. C. Gene ontology terms associated with the 15 
common genes which show both differential promoter methylation and expression (N = 942).  D. 16 
Heatmaps of promoter DNAm and their corresponding gene expression profiles indicate inverse 17 
correlation as quantified by Pearson correlation (E). *** P < 0.001; Bars indicate 95% confidence 18 
interval of correlation coefficient. 19 
 20 
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 2 
Supplementary Figure-S6: Influence of thymic maturation associated Differentially 3 
Methylated Probes (tDMPs). A. Unsupervised T-cell phylogenetic tree constructed from 4 
randomly selected probes (n = 23,069 corresponding to number of unique tDMPs identified during 5 
T-cell development) from EPIC arrays fail to infer known T-cell developmental trajectories. B. 6 
Unsupervised T-cell phylogenetic tree constructed from randomly selected probes (n = 46,138 7 
corresponding to twice the number of unique tDMPs identified during T-cell development) from 8 
EPIC arrays fail to infer known T-cell developmental trajectories. C and D. Unsupervised 9 
clustering (top 5% of most variable methylation probes) of normal thymic subpopulations and T-10 
ALL samples with (C) and without (D) tDMPs associated with T-cell maturation respectively. T-11 
ALL samples are annotated in black in top annotation bar. 12 
 13 
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Supplementary Figure-S7: Defining normal and disease associated enhancers. A. CpG and 3 
genomic annotations of hyper and hypo differentially methylated probes identified in each cluster 4 
compared to pooled normal thymic cells. B. Number of active, poised, and putative enhancers 5 
identified based on the presence or absence of H3K4me1 and H3K27ac histone marks in Thymic 6 
cell types. C. ChIP-seq binding profiles of H3K4me1 and H3K27ac histone marks for three distinct 7 
regulatory genomic regions (Active, Poised and Putative enhancers) in CD34+ thymic cells. 8 
Regulatory regions are displayed as 5 kb regions centered around the peak. Top line plot shows 9 
average signal density whereas bottom heat maps display ChIP-seq signal for individual peaks. 10 
Color gradient reflects the density of ChIP-seq signal. D. Super Enhancers (SEs) identified for 11 
each thymic subpopulation (top panel), and T-ALL clusters (bottom panel) respectively. Key SE 12 
associated genes are highlighted in italics. SEs are highlighted in black whereas typical enhancers 13 
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are in gray; EC = Early Committer [CD3-CD4+CD8+]; LC = Late Committer [CD3+CD4+CD8+]; 1 
SP4 = Single CD4 Positive [CD4+], SP8 = Single CD8 Positive [CD8+]. 2 
 3 

 4 
 5 
Supplementary Figure-S8: Overall Survival (OS) and Event Free Survival (EFS) of 6 
methylation clusters. A and B. OS (A) and EFS (B) for five epigenetic clusters (C1-C5). P-values 7 
are estimated from log-rank test. 8 
 9 

 10 
Supplementary Figure-S9: Key genetic alterations and cluster associations of the xenografted 11 
samples. 12 
 13 
 14 
 15 

 16 

 17 

 18 

 19 
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Supplementary tables: 5 

• Supplementary Table S1: Significantly mutated genes in every cluster compared to rest 6 

of the clusters (Related to Figure 1H). (XLSX) 7 

• Supplementary Table S2: Differentially methylated probes identified in each of the 8 

normal thymic cell-types (Related to Figure-2). (XLSX) 9 

• Supplementary Table S3: Differentially methylated probes identified in each of the 10 

normal thymic cell-types classified into 8 subgroups based on methylation dynamics 11 

(Related to Figure-2D, E, and Supplementary Figure S4). (XLSX) 12 

• Supplementary Table S4: Genes which are both differentially expressed and showing a 13 

differential promoter methylation in normal thymic cell types (Related to Supplementary 14 

Figure S5B). (XLSX) 15 

• Supplementary Table S5: Differentially methylated probes found in each cluster along 16 

with the genomic annotations (Related to Figure 3A). (XLSX) 17 

• Supplementary Table S6: Super and Typical Enhancers identified in normal thymic cell-18 

types, and in T-ALL clusters (Related to Figure 3D, and Supplementary Figure S7D). 19 

(XLSX) 20 

• Supplementary Table S7: Significantly enriched TF motifs detected within 100 base pair 21 

vicinity of hypo-methylated probes located within the super or typical enhancer regions 22 

from T-ALL clusters (Related to Figure 3F). (XLSX) 23 

• Supplementary Table S8: Differentially expressed genes in cluster compared to total 24 

thymus (Related to Figure 4C). (XLSX) 25 
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 1 

Supplementary Table S9: Univariate and Multivariate analyses of EFS and Overall Survival: *continuous 2 
variables. Abbreviations: EFS: event-free survival, OS: overall survival, HR: hazard ratio, CI: confidence interval, 3 
CNS: central nervous system 4 
 5 

GRAALL(2003/05) Study Cohort  
(N=143) 

Non-investigated 
(N=194) 

P-value 

Baseline characteristics 

Male 107 132 0.18 

Median Age (range) - Years  29.9 (16.3-59.1) 34.1 (16.8-59.5) 0.01 

Median WBC ccount (Range) 40.5 (0.9-645.0) 19.8 (0.9-573.0) <0.001 

CNS involvement – no/total (%) 20/143 (14%) 15/194 (8%) 0.07 

Outcome characteristics  
 
Prednisone response – no/total (%) 79/143 (55%) 126/194 (65%%) 0.09 

CR  -– no/total (%) 134/143 (94%) 181/194 (93%) 0.99 

Allo-SCT - – no/total (%) 53/143 (37%) 48/194 (30%) 0.20 

5y-EFS (95%CI) 55% (47-63) 57% (50-64) 0.72 

5y-OS (95%CI) 60% (51-68) 67% (60-73) 0.30 

Supplementary Table S10: Clinical characteristics and outcome of the study cohort versus non-6 
investigated patients (GRAALL-2003/05 trials). WBC, white blood cell count; CNS, central 7 
nervous system; CR, complete remission; EFS, event-free survival; OS, overall survival; CI, 8 
confidence interval; Allo-SCT, allogeneic stem cell transplantation. 9 
 10 


