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 12 

Abstract 13 
 14 
The onset of industrialization entailed the increase in soil artificialization worldwide. 15 

Soils from artificialized zones (SAZ) are the result of urban, industrial, traffic, mining or 16 

recreational land use. Knowledge of their characteristics is a prerequisite for evaluating 17 

the ability of SAZ to perform key functions and provide soil ecosystem services. Based 18 

on a selection of 102 papers published between 1991 and 2017, this article aims at 19 

providing a quantitative vision of the pedological characteristics of the different 20 

categories of SAZs as a function of the land use and soil type (natural profile, soil 21 

developed on allochthonous material). We show that, overall, the inherent 22 

characteristics of SAZ topsoil generally depend on the soil type - soil of allochthonous 23 

material being more stony and poorer in the < 2 µm fraction - while manageable 24 

characteristics are a function of both the soil type and the land use, with the exception of 25 

pH that is mainly driven by the land use. However, a good characterization of SAZs 26 

requires a more systematic description, sampling and analysis to obtain comprehensive 27 

knowledge of their characteristics as several features are still too rarely measured such 28 
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as cationic exchange capacity, electrical conductivity, soil depth, and nutrient 29 

concentrations. Sealed soils are still too rarely considered despite their large surface 30 

area. Such a characterization would allow a better management of the ecosystem 31 

services that SAZs fulfill.  32 

 33 

Keywords: urban soils, mining soils, industrial soils, recreational soils, traffic soils, 34 

artificialization, land use, soil properties, anthropogenic impact 35 

 36 
 37 

Introduction 38 

 39 

As Vitousek et al. (1997) highlighted several years ago, man has profoundly modified 40 

terrestrial ecosystems, including the soil compartment. This change is particularly 41 

extreme in the case of artificialized environments. In these environments, the question 42 

arises of the persistence of the soil functions as defined by e.g. Robinson et al., (2009) 43 

and Dominati et al. (2010). These functions depend on the soil characteristics. Some of 44 

them, considered as inherent, are therefore little impacted by human activities that 45 

initially focused on agriculture (Karlen et al., (1997); Robinson et al., (2009); Dominati et 46 

al., (2010)). However, for artificialized soils such as Technosols for example, the 47 

hypothesis of no human impact on the so-called inherent characteristics is no longer 48 

valid (Barles et al., 1999). More generally, the actual effect of artificialization on the 49 

pedological profile and associated soil characteristics is still insufficiently documented, 50 

with in particular the absence of synthesis except for organic matter, nutrients or 51 

contamination (e.g. Joimel, 2016). It is essential, however, to determine the soil 52 

characteristics in order to assess the functions they provide, such as 1) water flow and 53 
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retention, 2) retention and cycling of nutrients, 3) physical stability and support, 4) 54 

maintenance of biodiversity and habitat, and 5) preservation of the natural soil heritage 55 

(Commission of the European Communities, 2006; Bone et al., 2010). Knowledge of both 56 

their inherent and manageable (Dominati et al., 2010) characteristics is therefore a 57 

prerequisite for evaluating the ability of soils in artificialized areas (SAZ) to provide 58 

services in order to propose appropriate management.  59 

 60 

Artificialized areas are generally identified according to their land-use as defined by the 61 

European Corine Land Cover inventory (CLC) that differentiates (i) urban fabric; (ii) 62 

industrial, commercial and transport units; (iii) mine, landfill; and (iv) artificial non-63 

agricultural. The soils of these artificialized zones were categorized by the International 64 

Union of Soil Sciences (IUSS) in 1998 with land use as the determining factor (the 65 

SUITMA categorization for Soils of Urban, Industrial, Traffic, Mining and Military Areas).  66 

It is postulated that a given land use implies a certain degree of soil artificialization 67 

understood as degradation as shown by Vasenev et al. (2012) who point out the 68 

"increasing human load" when moving from recreational areas to residential and 69 

industrial areas. It is also implicitly postulated that the more "artificialized" the soils are, 70 

the more degraded they are (Kurucu and Chiristina, 2008; Vasenev et al., 2012; Peng et 71 

al. 2013; Morel et al., 2015) and that they will be unable to perform their functions, 72 

leading eventually to the abandonment of artificial soils considered as sterile. 73 

Attempts at characterizing the impact of artificialization by comparing SAZ 74 

characteristics with those of soils under natural vegetation or agriculture are rare, 75 

except within the study by Joimel et al. (2016) for French SUITMAs. They showed that 76 

SUITMAs exhibit a greater variability of characteristics than that recorded for forested 77 

or agricultural soils. The reasons for this variability may lie in that: 78 
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1- all the SUITMAs were grouped together while specificities might occur among the 79 

different land uses;  80 

2- each SUITMA category contains soils with contrasted levels of artificialization 81 

and thus different pedological profiles, ranging from (pseudo)natural soils to 82 

Technosols (Morel et al., 2005; Rossiter, 2007; IUSS Working Group World 83 

Reference Base, 2015).  84 

This paper aims at (i) providing a quantitative vision of the pedological characteristics of 85 

the different categories of soils of artificialized zones (SAZ) in relation to a soil profile 86 

categorization that we developed based on the descriptions available in the literature 87 

(called soil types hereafter), and in comparison to those of other environments (natural 88 

vegetation and cultivated soils), and (ii) identifying some of the drivers of their 89 

variability (land use or soil type). The level of contamination is beyond the scope of this 90 

paper. 91 

 92 

2. Methodology 93 

 94 

2.1. Building the corpus of scientific papers  95 

 96 

In France, in 2017, a pluridisciplinary and collective scientific state-of-the-art on the drivers 97 

and the environmental, social and economic effects – positive and adverse- of soil 98 

artificialisation was published (Béchet et al., 2017). Among a global corpus of about 2500 99 

scientific references a corpus of 970 articles on SUITMAs was constituted from an 100 

automatic query on the Web of Science (WoS) on the basis of the script presented in SI-101 

1. From this corpus, only papers dealing with pedological characteristics were kept for 102 
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the present review. It was further enriched with additional research on the WoS 103 

including the following key words: urban or mining or industrial and soil and pH or 104 

cation exchange capacity (CEC) or electrical conductivity (EC) or gravel or stone (coarse 105 

elements) or carbonates, or organic matter or compost or C cycles. Articles focusing on 106 

agricultural soils and agricultural activities were excluded as argriculture was not 107 

considered as artificialized soils. Only book chapters and papers in referenced journals 108 

were selected.  109 

Out of this corpus a database was built with all the studies that fulfilled the following 110 

two conditions:  111 

(i) the soils studied could be assigned with the provided information to a given land 112 

use;  113 

(ii) the article contained pedological information and data for surface soil horizons (0 114 

to 0.3 m maximum) and/or a deep horizon (> 0.4 m).  115 

The resulting database contains data gathered from 102 articles published from 1991 to 116 

2017.  117 

In the database, the soils of the considered studies were assigned to a land use category. 118 

Following the CLC classification, we classified the artificialized surfaces into urban, 119 

industrial, mining, traffic and recreational, the latter referring to parks and urban 120 

forests. Since private gardens were referred to as “residential” in most papers, they were 121 

included in the “urban” land-use. The urban class may also include soils from industrial, 122 

recreational or traffic areas when no further information was provided than “soils 123 

sampled in the city of…”, resulting in a relatively heterogeneous category. In addition, in 124 

order to provide a vision of the pedological characteristics of the SAZs with reference to 125 

soils in other environments (forest, cultivated land…), “control” or “natural” soils, which 126 

were explicitly designated as such in the articles, were also entered in the database. 127 
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They were categorized as soils with “natural vegetation”, “crop cover” or “unspecified 128 

cover”. 129 

The soils entered in the database consisted either of a single soil profile or a topsoil 130 

sample; the latter consisted either of a single sample or of the average value of a set of 131 

samples (counted as one, as few authors gave individual data). Based on the information 132 

at hand, and when a minimal description of soil profiles was provided, we were able to 133 

categorize the corresponding soil profiles into four rough classes, namely “natural soil 134 

profile”, “natural truncated soil profile”, “soil profile developed on allochthonous 135 

materials (of natural or technogenic origin)”, and “sealed profile”. When the description 136 

was reduced to "mining soil or urban soils" without any further specification, the soil 137 

was categorized in a fifth class called unspecified unsealed soil profile. 138 

Both manageable and inherent characteristics were entered in the database. Manageable 139 

characteristics are soil water pH, soil organic carbon (SOC) content, cation exchange 140 

capacity (CEC), electrical conductivity (EC) and bulk density. Nutrient concentrations 141 

were either too seldom reported or were measured with methods that were too 142 

different to be compared. Thus, N, P and K were not included in the database. The 143 

inherent characteristics recorded were stoniness (coarse element content) and < 2 µm 144 

fraction content. For each study, we also recorded the morphology of the soil profiles (i.e 145 

description of profile), the type of soil used as a reference, as well as the occurrence and 146 

nature of artefacts (here defined as by-products derived from industrial or artisanal 147 

activities).  148 

Methods used to measure the different parameters varied for the different studies. Only 149 

data obtained with methods considered as comparable were entered in the database. 150 

Nevertheless, a variability due to the various methods used cannot be excluded, that is 151 

the reason why the parameters were presented as classes (see below). Soil water pH 152 
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was measured with the soil/water ratio varying from 1/1 (Chichester and Hauser, 1991; 153 

Johnson and Skousen 1995; Hearing et al., 2004; Howard et al., 2013) to 1/5 (Nikiforova 154 

et al. 2014); soil organic carbon (SOC) content was measured by wet (e.g. Jim, 1998a) or 155 

dry (e.g. Abel et al., 2015a) combustion, CNS analyser (e.g. Hiller 2000; Norra et al., 156 

2008), dichromate oxidation (e.g. Wang et al., 2007; Oliveira et al., 2014; Ahirval and 157 

Maiti, 2016; Pellegrini et al., 2016); cation exchange capacity (CEC) was measured after 158 

ammonium acetate extraction (e.g. Johnson and Skousen, 1995; Jim, 1998a; Fu et al., 159 

2011; Ahirval and Maiti, 2016; Pellegrini et al., 2016) or cobalt hexamine extraction (e.g. 160 

Capilla et al., 2006), electrical conductivity (EC) was measured with the soil/water ratio 161 

varying from 1/2 (Johnson and Skousen, 1995) to 1/2.5 (Greinert, 2015); bulk density 162 

was measured on clods (Jim, 1998a) or by the cylinder methods (e.g. Oliveira et al., 163 

2014; Ahirval and Maiti, 2016); particle size fractionation was performed by sieving and 164 

Stocks law (e.g. Jim, 1998a; Schleuß et al., 1998; Hiller, 2000; Oliveira et al., 2014; 165 

Greinert, 2015) or sieving and the pipette method (e.g. Capilla et al., 2006; Ahirval and 166 

Maiti, 2016; Pellegrini et al., 2016). Coarse elements, when measured, were generally 167 

defined as > 2 mm without specification of an upper boundary size limit (e. g. Hiller, 168 

2000; Beyer et al., 2001; Golubiewski et al., 2006). Schleuß et al. (1998) defined them as 169 

gravels and stones that were less than 0.20 m in size according to the IUSS Working 170 

Group WRB (2015). Jim (1998a) also mentioned boulders.  171 

 172 

2.2. Database structure 173 

 174 

For each parameter considered, the data were organized into classes. Consequently, the 175 

database does not contain the absolute value of each soil parameter considered for each 176 
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soil, but the number of soil samples belonging to each class of the parameter considered. 177 

The classes were defined according to international references as specified for each 178 

parameter in the figure captions (www.fao.org; FAO, 1993; Jim, 1998a, b; Baize, 2000; 179 

Schoeneberger et al., 2002; Vrščaj et al., 2008, among others…). 180 

Two depths were considered: topsoils and subsoils. Topsoil thickness was usually 0.3 m, 181 

but ranged in some cases from 0.05, 0.10, 0.15, 0.20 to 0.30 m or was sometimes not 182 

even specified (Lottermoser et al., 1999; Flynn et al., 2003; Chung et al., 2005; Wahsha et 183 

al., 2016). This may have induced a bias, notably for SOC. When several layers were 184 

analyzed within the 0.3 m, a mean value was calculated. The so-called subsoil layer 185 

consisted in the soil horizon ideally below 0.4 m, but the limit could be between 0.4 and 186 

0.6 m. When soil sampling was more superficial than 0.4 m, no subsoil was recorded. 187 

 188 

2.3. Data representation and statistical treatments 189 

Tables 1 and 2 present the number of topsoil and subsoil samples respectively for each 190 

soil category within each SAZ type and for each parameter. In addition, Table SI-2 gives, 191 

for each of the papers included in the database, the type of land use, the existence of a 192 

reference soil (where relevant), the type of sample (surface or profile), and the 193 

pedological characteristics measured. Data were further represented in Figures SI-1 194 

and 2 as radar plots for references and SAZs topsoils and subsoils with more than eight 195 

occurrences. Correspondence analysis (CA) was performed for each parameter and for 196 

the soil types, SAZs and references with more than eight occurrences. In order to 197 

identify the similarity among the different soil types/SAZs and references, an 198 

agglomerative hierarchical cluster analysis (AHC) was performed on the two first factors 199 

of the CA.  200 

 201 
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3. Results and discussion 202 

 3.1 Location and publication date of the articles contained in the database 203 

 204 

The earliest papers contained in our database were published in the early 90s and 205 

reported studies related to mining soils, following the decommissioning of many mines 206 

(Figure 1). Among the articles collected, studies dealing with soils associated to traffic, 207 

urban and recreational areas only appeared from the mid-90s. Lastly, soils associated to 208 

industry appeared after 2000. The total number of studies related to mining, 209 

recreational and urban soils in the database is about the same, around 35 to 40, while 210 

those focusing on traffic and industrial soils are less numerous with only 15 and 10 211 

studies respectively (Figure 1). 212 

Studies were mainly performed for European sites (accounting for 45 to 65 % 213 

depending on the land use considered, Figure 2). Studies in North America (mainly the 214 

USA) and East-Asia are also well represented in the database (5 to 40 %), while we 215 

found only few studies for the rest of the world, except for mine soils. Lastly, only a third 216 

of the studies provided a reference soil. For the latter, the land use was described only in 217 

60 % of the cases, most of it being covered by natural vegetation (Figure 3). 218 

 219 

3.2. Morphological characteristics of soils of artificialized zones  220 

 221 
SAZ profiles are generally poorly described. When described, the profiles are not 222 

classified according to any pedological classification. Only a few studies identify them as 223 

Anthrosols or Technosols according to the WRB (IUSS Working Group WRB, 2015). For 224 

one third of the urban soils, and 70 % of the industrial soils, no description at all was 225 

provided, with the notable exception of soils in mining areas. Indeed, for mining soil, the 226 
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use of the soil as “dump” or “tailing” allowed an easy categorization as soil profile 227 

developed on allochthonous materials, resulting in a particularly low proportion of 228 

unspecified profiles (10 %, Figure 4).  229 

Soils developed on allochthonous materials of natural or technogenic origin are 230 

the most common SAZ profiles specified. They represent more than 50 % of cases in 231 

urban and mining contexts and 10 % to 40 % of cases for the other SAZs (Figures 4 and 232 

5). However, for these soils, the substrate was rarely explicitly described, despite its 233 

potential diversity and its importance in soil profile development. Natural soil profiles 234 

represented a maximum of 20 % of all the studied profiles and were mainly encountered 235 

in recreational, industrial and urban contexts. When encountered in a mining context 236 

(less than 10 % of the cases), they consisted of soils "not physically disturbed" but 237 

considered as receivers of airborne particles from mining or associated smelters or 238 

impacted by acid mine drainage. Truncated natural soil profiles were only encountered 239 

in mining contexts and sealed soils in traffic areas, as expected. Both were nevertheless 240 

poorly represented in the database (13 and 5 cases respectively): truncated natural soil 241 

profiles were thus merged with natural soil profiles in the rest of this analysis and sealed 242 

soils were not further considered.  243 

The vertical differentiation of the SAZs is strongly dependent on the nature of the 244 

soil profile. While the soils with a natural or pseudo-natural pedon (possibly truncated 245 

at the surface) comprise horizon types and sequences that depended on the nature of 246 

the native soils present in the area, the soils developed on allochthonous materials are 247 

characterized by clear limits between layers generally strongly marked by their 248 

formation history (e.g. Jim, 1998a; Abel et al., 2015a, Figures 5a, b, e, f, g). The nature of 249 

the parent materials is generally markedly different from native materials with a strong 250 

vertical contrast with depth (Figures 5c, e). Pedogenetic development is often quite 251 
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limited with an A over C profile-type (Murolo et al., 2005, Figures 5d, f) as these soils are 252 

rather young as compared to natural soils.  253 

Lastly, SAZs are often characterized by a complex pattern of spatial variability 254 

resulting from the superimposition of the complexity of their recent history on the 255 

natural heterogeneity. In some cases, the spatial variability becomes metric to 256 

centimetric with discontinuities in the soil cover as in the extreme case of soil 257 

development in pavement joints (Burghardt and von Bertrab, 2016, Figure 5h). 258 

  259 
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3.3. Inherent pedological characteristics of soils of artificialized zones  260 

 261 

Inherent soil characteristics are considered as stable over a time scale of a few years 262 

(Dominati et al., 2010) in contrast to manageable soil characteristics, which are 263 

considered as more dynamic. The inherent soil characteristics encompass mainly 264 

texture, depth, structure at depth, horizonation and the nature of the mineral phases 265 

(Dominati et al., 2010).  266 

 267 

3.3.1. SAZ stoniness and fine (< 2 µm) fraction content is a function of land use and soil type 268 

Stoniness is usually considered when assessing agronomic performances because the 269 

presence of coarse materials modulates the surface available for water infiltration, 270 

water storage and root development (Yilmaz et al., 2018). The non-consideration of 271 

these coarse elements may result in an overestimation of the C and N stocks (Rytter, 272 

2012). Stoniness may also create fissures at the interface with fine backfill materials 273 

(Cousin et al., 2003; Wang et al., 2018), thus allowing for preferential flows. However, 274 

the abundance of coarse elements was recorded in only nine percent of the articles, 275 

mainly from soils developed in allochthonous materials (Tables 1 and 2), resulting in 58 276 

and 42 surface and deep horizons respectively (including reference soils, Tables 1 and 277 

2). This low amount of data on soil stoniness is not surprising since Bünemann et al. 278 

(2018) concluded in their literature review that stoniness was not considered as an 279 

important soil characteristic to define soil quality. The two first factors of the CA 280 

performed for the topsoils and subsoils explain 95 and 96 % of the total variance 281 

respectively (Figures 6a and 7a). In both case, three poles are identified by the AHC 282 

made on the two CA factors, one very rich in coarse elements, one with less than 1 % 283 
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coarse element and one with 1 to 25 % of coarse elements (Figures 6a and 7a). 284 

Nevertheless, these results showed that the reference soils in the database contained 285 

less than 25 % of coarse elements (whatever the land use considered, agriculture or 286 

natural vegetation, Figure 6a), which is consistent with results of the LUCAS European 287 

soil database showing that only Mediterranean and mountain soils had higher coarse 288 

element contents (European Commission – JRC - ESDAC, 2020). When considering SAZs, 289 

the amount of coarse elements is higher than in natural soils, especially at depth 290 

(Figures 7a). This global trend masks a more complex reality. Artificialized natural soil 291 

profiles were poorly represented and did not differ from the reference soils in terms of 292 

stoniness. Most of the soils developed on allochthonous materials in urban and 293 

recreational zones contained 5 to 25 % of coarse elements as seen for the reference 294 

soils, with a small proportion (10 %) containing more than 25%, while mining soils on 295 

allochthonous materials contained generally between 50 and 80 %, of coarse elements 296 

in the topsoils (Figure 6a). Industrial soils exhibit a more complex distribution pattern 297 

and traffic soils on allochthonous materials have a low amounts of coarse elements in 298 

the topsoils (Figure 6a). At depth, all SAZs contained more coarse elements than the 299 

reference soils, mining soils remaining the ones with the largest amounts of stones and 300 

gravels (Figures 7a). Indeed, a layer of “arable” soil is often applied to the surface 301 

notably in recreational soil profiles developed on allochthonous material (e. g. Jim, 302 

1998a; Abel et al., 2015a).  303 

 304 

Conversely, the content of the < 2 µm fraction was considered since it controls most of 305 

the soil parameters such as cation exchange capacity (CEC), structural stability, and 306 

water holding capacity. The results were measured in fine earth (< 2 mm). The 307 

distribution of the reference soils in the different classes of < 2 µm percentage is similar 308 
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to that provided at the global scale by Shangguan et al. (2014) and Dai et al. (2019). The 309 

two first factors of the CA performed for the topsoils and subsoils explain 98 and 93 % of 310 

the total variance respectively (Figures 6b and 7b). In both cases, three poles are 311 

identified by the AHC made on the two first CA factors, one with concentrations in the < 312 

2 µm fraction lower than 15 %, one with a contribution of soils having concentrations in 313 

the < 2 µm fraction higher than 35 % and, one with a large contribution of soils having a 314 

< 2 µm fraction ranging from 15 to 35 % (Figures 6b and 7b). In general, SAZ topsoils 315 

have a < 2 µm fraction lower than 15 % (Figure 6b), unlike reference topsoils, which 316 

have a < 2 µm fraction content between 35 and 60 %. However, topsoils of urban natural 317 

soil profiles, mining soils on allochthonous materials and unspecified recreational soils 318 

may exhibit concentrations in the < 2 µm fraction ranging from 15 to 35 % as some 319 

topsoils of the reference soils (Figure 6b). At depth, the situation is more contrasted 320 

with natural profiles that are clearly differentiated from SAZs. Recreational soils on 321 

allochthonous materials have the lowest concentration in the < 2 µm fraction (Figure 322 

7b). Since the same SAZs are also richer in coarse elements than the reference soils, the 323 

< 2µm fraction in the whole soil matrix is even lower compared to the reference soils.  324 

 325 

This analysis clearly shows that, while as expected SAZ with a natural profile do not 326 

differ much in terms of stoniness and < 2 µm content from reference soils, SAZ on 327 

allochthonous materials are generally stonier with a lower < 2 µm fraction.   328 

 329 

3.3.2. SAZs are characterized by the presence of artefacts 330 

Beside the occurrence of the minerals classically encountered in soils, a characteristic of 331 

SAZs is their content in artefacts of different sizes, from coarse elements, which 332 

constitute a large fraction of the allochthonous soil profiles, to micro artefacts such as 333 
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ash deposition also encountered in SAZs with natural profiles (Fu et al., 2011; Howard 334 

and Olriki, 2016). 335 

The nature of these materials depends on the type of artificialized zone. Due to their 336 

generally long and complex history, urban soils on allochthonous material contain a 337 

wide variety of technogenic materials such as building/demolition materials (brick 338 

(Nehls et al., 2013), mortar, nails, glass, wood, plaster (Schleuß et al., 1998; Howard et 339 

al., 2013; Greinert, 2015)), ashes, coals, slags, asphalt and ferrous residues (Howard et 340 

al., 2013), industrial deposits (Greinert, 2015), municipal waste (Schleuß et al., 1998; 341 

Greinert, 2015), and stormwater sediments (El-Mufleh et al., 2014a,b). On the contrary, 342 

other SAZ contain more specific materials related to their land use: (i) disturbed 343 

recreational soils may contain demolition materials (Abel et al., 2015a) or filling with 344 

materials of natural origin (Jim, 1998a); (ii) soils from traffic areas contain building 345 

materials, ashes, coals, slag, ballast (Hiller, 2000), natural embankment (Kida and 346 

Kawahigashi, 2015) or dredged sediments for soils near waterways (Capilla et al., 2006); 347 

(iii) soils from quarries contain rock debris with a large particle size distribution (Fu et 348 

al., 2011), while metalliferous mining soils contain sludge, mine wastes (Pellegrini et al., 349 

2016) or even foundry wastes when associated with smelters, and soils from coal and 350 

lignite mining contain various types of spoils (Shankar et al., 1993; Kundu and Ghose , 351 

1994; Pedrol et al., 2010; Adeli et al., 2013; Clouard et al., 2014; Ahirwal and Maiti, 2016; 352 

Kolodziej et al., 2016), with the presence of fossil carbon. To a much less extent, airborne 353 

technogenic materials of the same nature are also encountered in SAZ with natural 354 

profiles (Fu et al., 2011; Howard and Olriki, 2016). 355 

 356 

For all the inherent characteristics, the main differences are observed between the 357 

reference soils and soils on allochthonous materials. The latter are modified to such an 358 
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extent that the distinction between inherent and manageable properties might not be 359 

meaningful anymore. In addition, it remains to be clarified whether allochthonous 360 

materials will follow the same line of evolution as natural parental material. 361 

 362 

3.4. Soil manageable pedological characteristics in soils from artificialized zones   363 

 364 

Soil characteristics are considered as dynamic or manageable (Dominati et al., 2010) 365 

when they can be impacted by land use or management decisions (Karlen et al., 2003). 366 

In the following, we address the physical manageable properties (bulk density, 367 

hydrodynamic properties, aggregation), organic matter concentration and physico-368 

chemical manageable characteristics (pH, CEC, electrical conductivity).  369 

 370 

3.4.1. SAZs have a large range of bulk densities depending on their land use and 371 

soil profile type  372 
 373 

The two first factors of the CA performed for the topsoils and subsoils explain 79 and 75 374 

% of the total variance respectively (Figures 6c and 7c). 375 

The topsoil bulk densities of reference soils are lower than 1.4 g cm-3 under natural 376 

vegetation with a mode at 1-1.2 g cm-3 (Figure 6c). Cultivated soils have a bulk density 377 

mode at 1.4-1.55 g cm-3 with nearly 10 % of the soil having a bulk density greater than 378 

1.55 g cm-3 (Figure 6c), which agrees with results reported by Kern (1995). SAZs have an 379 

even bulk density distribution from low densities (< 1 g cm-3) to densities of 1.7 g cm-3, 380 

with a small percentage of very high bulk densities (> 1.8 g cm-3, Figure 6c). This 381 

distribution indicates a higher variability linked both to the land use and the soil profile 382 

type. Recreational soils with natural profiles exhibit bulk densities comparable to those 383 

measured for reference soils, while natural soils at mining sites have a higher proportion 384 
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of bulk densities larger than 1.55 g cm-3 (35 %) since their topsoil has often been 385 

stripped (truncated) and compacted (Figure 6c). SAZs on allochthonous materials 386 

exhibit bulk densities comparable to those encountered in cultivated soils (Figure 6c). 387 

Edmondson et al. (2011) and Pouyat et al. (2007) showed that the urban soils for the 388 

City of Leicester (UK) (136 sites with a median bulk density class of 0.81-1 g cm-3) and 389 

Baltimore (USA) (0.71 to 1.74 g cm-3, with a median value of 1.18 g cm-3) were less 390 

compact than those of the surrounding agricultural area, while Jim's study of the city of 391 

Hong Kong (1998b) showed that in two-thirds of the cases, urban soils of alignment 392 

trees were often very compacted (1.4 to 2.2 g cm-3), with bulk densities greater than 1.6 393 

g cm-3, which is the threshold for root development (Hanks and Lewandowski, 2003). 394 

Scharenbroch et al. (2005) also showed that the bulk density was a function of the age of 395 

the residential area with bulk densities around 1.73 g cm-3 in new residential areas 396 

against 1.41 g cm-3 in old residential areas. In recreational areas, studies showed an 397 

extreme spatial variability of the topsoil bulk density with locally very high bulk density 398 

values linked to the spatial variability of trampling (Jim, 1998a; Cakir et al., 2010). 399 

Traffic topsoils on allochthonous materials have very low bulk density (Figure 6c). At 400 

depth, SAZs generally exhibit higher bulk density than reference soils, especially mine 401 

soils developed on allochthonous materials (Figure 7c). This is however not the case for 402 

urban soils on allochthonous materials or recreational soils (Figure 7c).  403 

The strong compaction of certain types of SAZ results in (i) a reduced total porosity, (ii) 404 

a few coarse pores and a large percentage of fine pores (Baumgartl, 1998; Yang and 405 

Zhang, 2011), which induces (iii) low aeration, (iv) a poorly effective drainage (Jim, 406 

1998b) and increases (v) the risks of runoff and erosion (Gregory et al., 2006).  407 

 408 
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3.4.2. SAZs have a highly variable organic carbon content 409 

 410 

Soil organic carbon (SOC) content is one of the most frequently reported soil parameters 411 

in the database with 63 references resulting in 410 topsoil and 100 subsoil SAZ SOC data 412 

respectively (Tables 1 and 2). In France, a country considered as having a very high 413 

pedovariability (Minasny et al., 2010), Joimel et al. (2016) observed that the median soil 414 

organic carbon (SOC) concentration of the topsoil (0-0.3 m) was 9 g kg-1 for vineyards 415 

and orchards, 14.9 g kg-1 for cultivated soils, 24.8 g kg-1 for grassland, 26.2 g kg-1 for 416 

gardens, 26.8 g kg-1 for forests and 37.3 g kg1 for SAZs grouped in one category (all 417 

SUITMAs). The latter seem thus to contain higher SOC concentrations than vineyards 418 

and orchards, agricultural and grassland soils, while the difference is less marked with 419 

forest soils. On the other hand, the authors showed that the variability of the SOC 420 

concentrations in SAZs was higher than that observed for other land uses (as also seen 421 

on Figure 6d). This result probably derives from the high variability of the soil types 422 

grouped under the term “SAZ” as observed in our database.  423 

The two first factors of the CA performed for the topsoils and subsoils explain 74 and 424 

64 % of the total variance respectively. The AHC made on the two first CA factors 425 

identified three types of profiles for the topsoils and four at depth (Figures 6d and 7d). 426 

While urban and industrial topsoils have a comparable level of SOC to natural soils 427 

whatever the soil profile considered, 40% of traffic and 50% of mining topsoils on 428 

allochthonous materials are very poor in SOC (Figure 6d). Recreational natural profiles 429 

also exhibit a large amount of very poor SOC topsoils, notably in natural profiles (Figure 430 

6d). Soil organic carbon concentrations in the top 0.30 m of urban zones are often higher 431 

than in agricultural soils (Pouyat et al., 2006; Lorenz and Lal 2009; Edmondson et al., 432 

2014; Vasenev et al., 2014; Cambou et al., 2018; Figures 6d) and sometimes higher than 433 
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those of some forest soils, in the case of soils in residential neighbourhoods (Pouyat et 434 

al., 2002; Cambou et al., 2018). It may be one of the factors responsible for the lower 435 

bulk density measured in urban topsoils (Edmondson et al., 2011; 2014). In addition, 436 

SOC concentrations in urban soils vary widely. For example, in the city of Stuttgart, 437 

Germany, SOC concentrations in soils ranged from 5 to 207 g C kg-1 (Lorenz et al., 2006). 438 

The soil cover for a given land use may be responsible for this variability. As an example, 439 

tree-planted gardens had higher SOC concentrations than non-planted community 440 

gardens or non-domestic spaces planted with trees or lawns (Edmondson et al., 2014).  441 

However, the difficulty of this analysis lies in the very variable depth of sampling of the 442 

topsoil horizons, which ranges from 0.05 to 0.30 m depending on the authors. This 443 

variability probably induces a bias as SOC decreases exponentially with depth over the 444 

first 0.50 m of soil.  445 

At depth, the differences are more marked among SAZs, especially soils on 446 

allochthonous materials, with some mining soils having lower concentrations than both 447 

the reference soils and urban soils (Figure 7d). Conversely, some urban and industrial 448 

soils have a higher SOC concentration at depth than the reference soils (Figures 7d) as 449 

also shown by Cambou et al. (2018) for Paris and New York. In some remediated soils in 450 

New York City, for instance, the concentrations reached 160 g C kg-1 at 0.40 m depth and 451 

were still 80 g C kg-1 at 1 m depth (Huot et al., 2017). Soil organic carbon concentration 452 

along the whole soil profile is also investigated to assess the soil potential for climate 453 

change mitigation through the calculation of carbon stocks. The depth of SOC 454 

accumulation seems to be related to the history of use, which determines the dynamic of 455 

the SOC stock changes (Bae and Ryu, 2015; Cambou et al., 2018) but is still too seldom 456 

measured to give reliable trends (Cambou et al., 2018). 457 

However, some authors have shown that urbanization, through land-use change and the 458 
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removal of vegetation cover, creates in some areas a critical SOC stock reduction, e. g. a 459 

30 % reduction in 25 years for an exponentially growing city such as Changzhou 460 

(increase in surface area by a factor of 10 in 20 years from 1980 to 2000; Tao et al., 461 

2015). Obviously, organic carbon stock decreases or increases in SAZs need to be 462 

investigated in greater detail. 463 

 464 

3.4.3. The pH of SAZs is mainly basic 465 

The water pH is the other most frequently reported soil parameter in the database with 466 

64 references resulting in 416 topsoil and 115 subsoil SAZ pH data (Tables 1 and 2).  467 

The two first factors of the CA performed for the surface and deep horizons explain 70 468 

and 66 % of the total variance respectively. The AHC made on the two first CA factors 469 

identified three types of profile for the topsoils and four at depth (Figures 6e and 7e). 470 

pH of all SAZs is higher than that of the reference soils (Figures 6e and 7e).This is in 471 

agreement with Joimel et al. (2016) who found that the pH of SAZs was mainly basic 472 

while the pH of agricultural and natural soils varied over a very wide range with rather 473 

acidic soils in forest and grassland, neutral in agriculture and rather basic for orchards 474 

and vines.  475 

pH values above 7 observed for urban, recreational, industrial and traffic infrastructure 476 

at both depths (Figures 6e and 7e) are due to the frequent presence of 1) technogenic 477 

carbonated materials, notably due to rubble for profiles on allochthonous materials (Jim, 478 

1998b; Abel et al., 2015b); 2) carbonate, siliceous and fossil carbon microparticles for all 479 

profile types (Howard and Orlicki, 2015), whose pH ranges mostly from 8 to 12; 3) 480 

and/or the use of road deicing products in winter, which may result in the formation of 481 

salty alkaline soils as observed in a cold urban context (Nikiforova et al., 2014).  482 

Mining soils and sometimes industrial soils can exhibit very acid pH values (Figures 6e 483 
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and 7e), with low pH (< 5) accounting for 40 to 50% of the cases depending on the soil 484 

type considered. In the case of soils from mining areas, the acidic pH are usually 485 

restricted to the metalliferous areas, since soils from coal and lignite mine areas are 486 

predominantly neutral to alkaline (Ogala et al., 2012). Some very low pH (less than 4.5) 487 

are observed in nearly 30 % of the allochthonous soils from metalliferous areas (Figure 488 

7e) that can notably be due to the presence of pyrite in the mine spoils (Schaaf and Hüttl, 489 

2005; Rivas-Pérez et al., 2016). 490 

 491 

3.4.4. Electrical conductivity is very high in some SAZ types 492 

The electrical conductivity (EC) data are scarce (Tables 1 and 2) as this parameter was 493 

mainly measured in soils where high EC values were expected (Table SI-3f). In most of 494 

the SAZ types, the EC range was not different from that of the reference soils and was 495 

always lower than 2 mS cm-1 which is the limit for non-saline soils (Baize, 2000; 496 

Schoeneberger et al., 2002). With EC above this threshold, saline soils represent 3.4 % of 497 

soils worldwide according to the FAO (www.fao.org). However, in 20 % of urban and 498 

mining soils, EC higher than 2 mS cm-1 were recorded and EC values exceeding 4 mS cm-1 499 

were encountered in about 15 % of the cases. Some soils reached extremely high EC 500 

(≥ 16 mS cm-1), in relation with the salinization observed in Northern cities like Chicago 501 

(Scharenbroch and Catania, 2012) or Moscow (Nikiforova et al., 2014) due to the use of 502 

salt for deicing roads and the concentrated drainage observed at some metal mine sites 503 

(Pellegrini et al., 2016). At depth, high EC was observed only for mining soils (Table SI- 504 

3f).  505 

 506 

3.4.5. CEC is rarely measured in SAZs 507 

CEC was measured in only 12% of the studies (Tables 1 and 2), resulting in the absence 508 
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of data for some SAZs or some soil types, notably for deep horizons (Table 2). If one 509 

considers the soil with CEC larger than 6 cmol+ kg-1 (which is a low value if fertility is 510 

considered), there is no difference between the SAZs and the reference soils with the 511 

exception of the 10 % of traffic soils on allochthonous materials and 10 to 20 % of the 512 

mining soils on allochthonous materials or undefined. However, these CECs were 513 

measured for the fraction less than 2 mm, which in the case of soils on allochthonous 514 

materials may represent a rather small fraction of the whole soil because of their high 515 

stoniness as mentioned above.  516 

 517 

4. Synthesis and recommendations  518 

Among the different SAZs, more data on pedological characteristics are available in the 519 

literature on urban, mining or recreational soils than on industrial and traffic soils. The reason 520 

behind this lower representation of industrial and traffic soils is probably their partial 521 

inclusion in urban soils as very often only the mention “soil sampled in an urban area” is 522 

reported in the articles. Care should be taken to better describe the land use in SAZ studies. In 523 

addition, despite their surficial abundance (70 % of the artificial surfaces) only a few studies 524 

have focused on sealed soils, which were therefore not considered in this synthesis. However, 525 

the few existing studies showed that sealed soils can store a substantial amount of SOC 526 

(Raciti et al., 2012), despite the decrease in the SOC stock in the first years after sealing (Jim 527 

et al., 1998b; Wei et al., 2014). The amount of organic carbon stored in sealed soils, and the 528 

potential importance of its role, have not been sufficiently investigated to draw general 529 

conclusions and more studies dedicated to this soil type should be performed. 530 

For unsealed soils, we showed that different soil types are encountered, ranging from only 531 

slightly disturbed soils to Technosols on allochthonous material, the latter being the most 532 
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abundant in the literature. Studies often focus on disturbed areas, but it remains necessary to 533 

assess urban land surfaces with natural or little disturbed profiles for functions such as 534 

supporting urban food production. 535 

We also showed that both the soil profile type and the land use determine the 536 

pedological characteristics of SAZs. While inherent characteristics are strongly linked to 537 

the type of soil profile, with allochthonous soils being richer in coarse elements and 538 

poorer in < 2 µm fractions, manageable characteristics are linked either to land use (the 539 

case of pH), or to both land use and soil type (the case of organic carbon or bulk density). 540 

Here again, the frequent absence of descriptions of soil profiles prevents a detailed 541 

understanding of the determinants of the acquisition of their pedological characteristics. 542 

In addition, the characterization SAZs is mainly limited to their surface horizons 543 

(topsoils) and not enough studies have been conducted on subsoils. Drawing 544 

conclusions from our set of data for deep horizons is thus more difficult. This highlights 545 

the need for a more systematic study of soil profiles. The articles reporting information 546 

at depth point to the importance of subsoils in fulfilling some ecosystem services such as 547 

carbon storage as already observed in natural soils (Balesdent et al., 2018) or, on the 548 

contrary, preventing water infiltration. 549 

Lastly, not all soil characteristics are investigated systematically. As observed from the 550 

102 papers in the database, some parameters were either too seldom reported (e.g. total 551 

soil depth) or with too various methods (e.g. nutrients, pH other than water pH) to be 552 

included for discussion in this analysis. Some parameters were discussed but in a limited 553 

number of studies (e.g. % coarse elements, EC and CEC).  554 

To take advantage of future data to be produced on SAZs and thus improve their 555 

characterization, we suggest that the following points should be systematically 556 
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addressed: 557 

- the history of the soil formation by systematically associating data on land use, 558 

historical background, demographic growth, economic growth, and typology of uses, to 559 

the studied profiles;  560 

- the whole soil profile must be considered when characterizing the soil physicochemical 561 

properties on well-defined horizons; 562 

- the use of a common set of sampling and analytical methods and a common typology of 563 

the technogenic materials present in soils;  564 

- assessment of the representativeness and the spatial extension of the reported points 565 

or profiles, in the same way as it is usually performed for agricultural or forest soils. 566 

 567 
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Figure 1: Evolution over time of the number of studies included in the database for the different SUITMAs. Papers 
including several SUITMAs are counted once per SUITMA, which explains the discrepancy between the number of 
papers included in the database (n=102) and the number of studies recorded for the different SUITMAs (n=138).  
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Figure 2: Origin of the studies of the database per SUITMA. Papers including several SUITMAs are counted once per 
SUITMA, which explains the discrepancy between the number of papers included in the database (n=102) and the 
number of studies recorded for the different SUITMAs (n=138). 
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Figure 3: Land-cover of the reference soils in the database (n=83) 
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Figure 4: Distribution of the soil classification of the soils of artificialized zones contained in the database (n=561) 
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Figure 5: Examples of artificialized soil profiles: a) Soil from a mine tailing: earthy material on spoil (TC, M); b) 
succession of gravel and earthy layers on concrete (TC, T); earth material on top of a natural profile (AT, U/R); c) 

Superposition of earthy material on a technogenic material (TC, U/R); d) multiple layers of alternate earthy and 
technogenic material (TC, U); e) succession of backfilling material, earthy material and granular material embedding a 
pipe (TC, U/T); f) Soil from a mine tailing: earthy material on spoil (TC, M); g) earthy material on red mud (TC, I); h) 

Joint soil and partially sealed soil (TC, U). 

 



6 

 

Figure 6: Two first factors of the CA performed on the different soil types of the different SAZs and reference soils for 

the different parameters: a- coarse elements (CE); b- < 2 µm fraction; c- bulk density; d- soil organic carbon; and e- 
water pH for the topsoil (0-0.1, 0-0.2 or 0-0.3 m depending on the study). Ellipses represent the AHC performed on 

the two first factors of the CA. 
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Figure 7: Two first factors of the CA performed on the different soil types of the different SAZs and reference soils for 

the different parameters: a- coarse elements (CE); b- < 2 µm fraction; c- bulk density; d- soil organic carbon; and e- 
water pH for a deep horizon selected around or under 0.4 m depth. Ellipses represent the AHC performed on the two 

first factors of the CA. 

 

 



Table 1 : Number of topsoils (0-30 cm) in the data base for each considered soil property, each soil 

type and each land use (Tot, stands for total; Urb, for urban; Recre, for recreational; Indust, for 

industrial; Mine, for mining; Nat., for natural vegetation and Unsp., for unspecified vegetation). 

 

SAZ References 

  Tot Urb Recre Indust Traffic Mine Tot Nat.  Crop Unsp. 

pH                     

sealed 5 

         Natural profile 69 14 16 10 0 29 64 20 11 33 
Profile on 

allochthonous materials 184 52 18 6 13 95 

    Unspecified profile 158 47 35 36 15 25 

    Total 416 113 69 52 28 149 

    SOC                     

sealed 1 

         Natural profile 55 12 21 2 0 20 63 27 13 23 

Profile on 

allochthonous materials 183 46 26 22 22 67 

    Unspecified profile 171 56 53 30 18 14 

    Total 410 114 100 54 40 101 

    Bulk density                     
sealed 2 

         Natural profile 28 5 8 0 0 15 31 7 10 14 

Profile on 

allochthonous materials 113 20 6 2 15 70 

    Unspecified profile 72 41 24 2 5 0 

    Total 215 66 38 4 20 85 

    < 2 µm                     

sealed 2 

         Natural profile 29 13 6 0 0 10 39 10 11 18 

Profile on 

allochthonous materials 123 31 26 0 3 63 
    Unspecified profile 66 25 18 4 14 5 

    Total 220 69 50 4 17 78 

    Coarse elements                     

sealed 1 

         Natural profile 2 2 0 0 0 0 5 2 3 0 

Profile on 

allochthonous materials 49 8 9 0 15 17 

    Unspecified profile 2 1 1 0 0 0 

    Total 54 11 10 0 15 17 

    Cation Exchange Capacity 
sealed 0 

         Natural profile 9 0 4 0 0 5 8 2 3 3 
Profile on 

allochthonous materials 66 10 9 0 10 37 

    Unspecified profile 40 28 2 0 0 10 

    Total 115 38 15 0 10 52 

    Electrical conductivity 
sealed 1 

         Natural profile 16 6 9 0 0 1 13 2 1 10 

Profile on 

allochthonous materials 53 14 1 0 0 38 

    Unspecified profile 43 10 3 19 1 10 

    Total 113 30 13 19 1 49 

     

  



Table 2 : Number of subsoils (> 0.4 m) in the data base for each considered soil property, each soil 

type and each land use (Tot, stands for total; Urb, for urban; Recre, for recreational; Indust, for 

industrial; Mine, for mining; Nat., for natural vegetation and Unsp., for unspecified vegetation). 

 

 

SAZ References 

  Tot Urb Recre Indust Traffic Mine Tot Nat.  Crop Unsp. 

pH                     

sealed 

          Natural profile 18 2 4 8 0 4 37 10 9 18 

Profile on 
allochthonous materials 75 11 9 1 2 52 

    Unspecified profile 22 7 3 1 4 7 

    Total 115 20 16 10 6 63 

    SOC                     

sealed 

          Natural profile 14 1 4 0 0 9 41 15 10 16 

Profile on 

allochthonous materials 72 15 10 11 2 34 

    Unspecified profile 14 5 6 0 3 0 

    Total 100 21 20 11 5 43 

    Bulk density                     
sealed 0 

         Natural profile 3 2 0 0 0 1 19 3 3 13 

Profile on 

allochthonous materials 44 11 6 3 5 19 

    Unspecified profile 12 2 8 0 2 0 

    Total 59 15 14 3 7 20 

    < 2 µm                     

sealed 0 

         Natural profile 6 1 0 0 0 5 24 4 8 12 

Profile on 

allochthonous materials 67 18 9 0 0 40 

    Unspecified profile 12 1 3 1 2 5 
    Total 85 20 12 1 2 50 

    Coarse elements 

 

                  

sealed 0 

         Natural profile 0 0 0 0 0 0 5 2 3 0 

Profile on 

allochthonous materials 37 8 9 0 5 15 

    Unspecified profile 0 0 0 0 0 0 

    Total 37 8 9 0 5 15 

    Cation Exchange Capacity  

sealed 0 

         Natural profile 7 0 4 0 0 3 7 2 3 2 
Profile on 

allochthonous materials 41 10 9 0 0 22 

    Unspecified profile 5 0 1 0 0 4 

    Total 53 10 14 0 0 29 

    Electrical conductivity  

sealed 0 

         Natural profile 1 0 0 0 0 1 4 1 1 2 

Profile on 

allochthonous materials 36 3 1 0 0 32 

    Unspecified profile 14 1 0 9 0 4 

    Total 51 4 1 9 0 37 

     




