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Perspective

The Combination of Random Mutagenesis and
Sequencing Highlight the Role of Unexpected Genes in
an Intractable Organism
Damien Faivre*, Jens Baumgartner

Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany

A large variety of organisms are capable

of synthesizing hard matter in a process

called biomineralization [1]. The transfor-

mation of a genetic blueprint into minerals

such as, for example, calcium phosphate in

bones and calcium carbonate in eggs or

seashells provides a mechanical support

for organismic growth and protection

against predators, respectively. Iron oxides

formed by fishes and birds provide them

with magnetic properties used for magne-

toreception and orientation [2,3]. The

biomineralization processes are remark-

able for numerous reasons: organisms,

contrary to engineers, have to form these

biological materials with a limited subset

of biologically available chemical ele-

ments and at physiological conditions.

Still, these reduced means are not at the

detriment of their function, which often

surpasses man-made materials based on

equivalent elements [4]. Therefore, un-

derstanding how biomineralizing organ-

isms process chemical elements based on

their genetic program is of primary

interest. However, the biological mecha-

nisms behind biomineralization have re-

mained unclear, partly because of limited

genetic knowledge: model organisms are

limited to a few unicellular organisms

[5,6]. Therefore, the question has arisen

of what genetic approach to use to get

genetic information about the large ma-

jority of organisms that have remained

intractable.

Magnetotactic Bacteria: Simply
Microorganisms, but Not So Simple

The recent advances in sequencing

techniques now offer the opportunity to

bypass some of the restrictions associated

with the unavailability of genetic systems

to get novel insights into important

microbial processes such as those associ-

ated with biomineralization. In their study,

Rahn-Lee et al. [7] combine established

genetic techniques (random mutagenesis)

with modern sequencing platforms to

understand magnetite biomineralization in

the magnetotactic bacteria Desulfovibrio

magneticus RS-1. Magnetotactic bacteria

are microorganisms able to form intra-

cellular magnetic nanoparticles made of

the iron oxide magnetite (Fe3O4) or the

iron sulfide greigite (Fe3S4) [8]. The

nanoparticles together with their mem-

brane envelope are called magnetosomes.

They have strain-specific sizes and mor-

phologies and are typically arranged in

chains in order to form a magnetic

dipole strong enough to passively orient

the bacteria along the magnetic field

lines of the Earth, a process called

magnetotaxis [9].

The genomes of numerous strains have

been sequenced [10]. However, genetic

tools permitting the manipulation of the

microorganisms are only available for two

magnetospirilla strains: Magnetospirillum
gryphiswaldense [11] and M. magneticum
[12]. In these strains, the magnetosomes

are formed and arranged thanks to a

subset of genes called the magnetosome

island [13], which, in particular, encom-

passes the mamAB, mamGFDC, mms6,

and mamXY operons (Fig. 1A) [14,15].

However, RS-1, the strain studied by

Rahn-Lee et al. [7], forms elongated

magnetosomes in contrast to magnetospir-

illa, which form cubooctaedral magneto-

somes. Therefore, RS-1 would be a model

organism to use to study the functional

diversity of compartmentalization and

biomineral formation in magnetotactic

bacteria, providing tools were available

to do so.

Getting Genetic Information in an
Intractable Organism

The authors used random mutagenesis to

generate nonmagnetic mutants and com-

bined it with whole-genome re-sequencing

to identify the mutated genes. In particular,

Rahn-Lee et al. [7] first cultivated RS-1 in

conditions where the microorganism no

longer formed magnetosomes and then

performed UV and chemical mutagenesis.

Since screening a large number of colonies

was impractical, they employed a two-step

strategy that consisted of first selecting in

liquid to increase the proportion of non-

magnetic cells in the population and then

only screening for single colonies of non-

magnetic phenotypes [7]. These colonies of

no- or low-magnetism were then analyzed

by whole-genome sequencing to determine

the causative genetic change. After the

mutation for each strain was identified,

the authors used PCR and Sanger sequenc-

ing to check for this change in the other

strains isolated from the same outgrowth

and analyzed those strains that were not

clones by whole-genome sequencing to

determine their mutation.

This approach led to the isolation of

about 30 mutants, with mutations in genes

shared amongst all magnetotactic bacteria,

but also, more interestingly, with mad
genes that are unique to the magnetotactic

d-proteo bacteria and even genes poten-

tially unique to RS-1. The group of A.

Komeili found that a potassium transport-

er (kup) is important for biomineralization
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of magnetite (Fig. 1B) [7], a surprising

discovery since there is a priori no reason

to expect the involvement of potassium in

an iron oxide mineral. The authors, in

addition, presented the first experimental

proof of the involvement of mad genes in

the control of the magnetosome morphol-

ogy. This is an important confirmation

since a bioinformatic study proposed

earlier that these so-called mad genes

could be responsible for the morphology

control observed in some strains, since

these genes are specifically found in

magnetotactic d-proteobacteria-forming

elongated magnetosomes such as RS-1,

and not in magnetospirilla [10].

In conclusion, the general methodology

presented here will be of immediate rele-

vance to other scientists working with

fastidious and genetically intractable organ-

isms, not limited to biomineralizing ones. In

addition, the study delivers significant

advancements for the understanding of

biomineralization and its variety in pro-

karyotes by presenting the first genetic

analysis of magnetotactic bacteria outside

of the commonly studied a-proteobacteria.

However, as random mutagenesis is sto-

chastic and not directed, important genes

might remain unprobed and, therefore,

their role might possibly be overlooked by

this method. Therefore, efforts in the

development of genetic tools should not be

abandoned. In addition, complementation

of this approach by physical and chemical

analytical techniques in the near future will

enable the complete multidisciplinary un-

derstanding of biomineralization in differ-

ent strains of magnetotactic bacteria.
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isotropic magnetosomes are produced. Genetic studies have highlighted the roles of mam and mms genes in the process (A). In turn, intractable
organisms such as RS-1, where elongated magnetosomes are produced, could so far not be genetically studied. By random mutagenesis and whole-
genome sequencing, Rahn-Lee et al. (2015) showed the additional role of kup and mad genes in the process, possibly in their morphology control of
the nanoparticles (B).
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