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Solange Whegang Youdom1*  and Leonardo K. Basco2,3 

Abstract 

Several anti-malarial drugs have been evaluated in randomized clinical trials to treat acute uncomplicated Plasmo-
dium falciparum malaria. The outcome of anti-malarial drug efficacy studies is classified into one of four possible out-
comes defined by the World Health Organization: adequate clinical and parasitological response, late parasitological 
failure, late clinical failure, early treatment failure. These four ordered categories are ordinal data, which are reduced to 
either a binary outcome (i.e., treatment success and treatment failure) to calculate the proportions of treatment failure 
or to time-to-event outcome for Kaplan–Meier survival analysis. The arbitrary transition from 4-level ordered catego-
ries to 2-level type categories results in a loss of statistical power. In the opinion of the authors, this outcome can be 
considered as ordinal at a fixed endpoint or at longitudinal endpoints. Alternative statistical methods can be applied 
to 4-level ordinal categories of therapeutic response to optimize data exploitation. Furthermore, network meta-anal-
ysis is useful not only for direct comparison of drugs which were evaluated together in a randomized design, but also 
for indirect comparison of different artemisinin-based combinations across different clinical studies using a common 
drug comparator, with the aim to determine the ranking order of drug efficacy. Previous works conducted in Cam-
eroonian children served as data source to illustrate the feasibility of these novel statistical approaches. Data analysis 
based on ordinal end-point may be helpful to gain further insight into anti-malarial drug efficacy.
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Background
Clinical efficacy of artemisinin-based combination ther-
apy (ACT) has been monitored in many countries using 
the standard World Health Organization (WHO) pro-
tocol [1–4]. The following categorical outcome is used 
in WHO-recommended protocol: adequate clinical and 
parasitological response (ACPR), late parasitological fail-
ure, late clinical failure, and early treatment failure [1, 5]. 
The definitions of these four possible outcomes in Plas-
modium falciparum-infected patients suggest that there 
is an explicit order in terms of disease severity and that 
these outcomes can be considered as ordinal variables. 

However, in most studies, this four-level primary out-
come is reduced to a binary outcome (i.e., ACPR versus 
failure) to calculate the proportion of cured patients in 
per-protocol population [1, 6–8]. Kaplan–Meier curve 
analyses time-to-event outcomes to compensate partially 
for the loss of information, but data may be censored for 
various reasons (exclusion, withdrawal, loss-to-follow-up, 
clinical aggravation, or reinfection). These two methods 
of data interpretation may restrict the full exploitation of 
clinical results.

Several alternative approaches have been used to 
identify the most efficacious artemisinin-based com-
bination that is useful to control and eliminate malaria 
[6]. This paper presents three approaches and areas of 
reflexion on how statistical analysis of existing database 
on anti-malarial drug efficacy can provide still unmined 
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information. These approaches were presented in detail 
in previous works using data from therapeutic efficacy 
studies conducted in Cameroon [9–11]. They include 
(i) analysis of the ordinal outcome at a single time-point 
(day 14); (ii) analysis of the ordinal outcome over several 
time-points (day 14, day 21, and day 28); and (iii) network 
meta-analysis (NMA).

Ordinal outcome with a single fixed time‑point
Proportional odds models are regression models that 
may be more suitable to accommodate the 4-level ordi-
nal outcome since these approaches take into considera-
tion the order of the categories and adjust the models 
subsequently on either an agglomerated data or individ-
ual data. They can be used in different analytic settings 
and were found in some fields to provide greater power 
than time-to-event and binary endpoints [12]. The mod-
els are based on a logistic link function and account for 
both fixed and random effects, as well as baseline covar-
iates [13]. However, difficulties may arise in the estima-
tion process when some categories are not observed 
in a study. To circumvent this problem, the model has 
several extensions to account for categories with very 
few or no observations, especially when the efficacy of 
a test drug is very high (i.e. > 90%). The complementary 
log–log link function provides suitable interpretation 
of results, which is similar to that of Cox-proportional 
hazard model.

Despite these limitations, proportional odds models 
have been recommended by some authors to combine 
the results of different types of clinical trials, including 
longitudinal and one-off studies, in which the outcome 
is categorically ordered [14, 15]. Ordinal logistic regres-
sion assumes that the coefficients that describe the rela-
tionship between each pair of outcomes are the same. 
This relationship is tested by a graphical method and 
likelihood comparison of the model with and without 
covariates [15, 16].

This approach was applied to clinical studies con-
ducted in Cameroon at the time when the WHO was 
recommending a 14-day follow-up for areas of intense 
transmission [5, 9, 10]. Individual patient data were 
available. The interpretation of the proportional odds 
model accounts for the order across categories in the 
analytic setting. Categories can be ordered from the 
worst to the best or vice-versa. The odds ratio of com-
parison of drug A versus drug B is interpreted as either 
a progression towards success or progression towards 
failure [9]. Although the results of this retrospective 
study can no longer be of help for drug policy change 
since monotherapies are not used for the treatment of 
acute uncomplicated malaria, the application of the 
method illustrates the potential of alternative statistical 

methods. This method is illustrated in Additional File 1 
using a simulated data set.

Ordinal outcome with several time‑points
The first approach was extended to data from P. falci-
parum-infected patients evaluated on days 14, 21, and 
28 to account for time-effect in the ordinal regression 
model and correlation among individual responses to 
treatment [17]. In such cases, data analysis becomes 
more complex when multiple treatments are involved, 
leading to incomplete block design for treatment arms 
between different trials and the presence of variabil-
ity. In addition, trials that are not directly connected 
to others are a potential source of wide variance 
and are removed from analysis [18, 19]. A statistical 
approach to handle an incomplete design is to use a 
proportional odds model where individual log-resid-
ual variance is modelled as a linear mixed model that 
accounts for time-covariate related to the outcome 
[20]. The effects of individual covariates at inclu-
sion, such as parasitaemia, fever, sex, and weight, are 
important factors that may decrease heterogeneity 
across studies and should be accounted for.

The use of direct and indirect comparison has 
increased over recent years [21, 22]. Indirect com-
parison is performed using a common comparator 
drug between treatment regimens that are not linked 
because they were not compared in a randomized clin-
ical study [10]. By contrast, direct comparison implies 
a direct link between two treatments with the num-
ber of studies comparing both treatments. Bonferroni 
correction is recommended and is used to estimate 
the common type 1 error for all comparisons, which 
results in large confidence intervals. Linear mixed 
models can be trickier in handling because of com-
plex maximum likelihood that they generate and the 
difficulty in integrating the likelihood. Despite these 
difficulties in the formulation of prior distributions, 
Bayesian methods have been the most commonly used 
tests to compensate the look-elsewhere effect in such 
cases because of their flexibility.

To illustrate this approach, clinical studies con-
ducted in Cameroon revealed that, compared to 
artesunate-amodiaquine (ASAQ), dihydroartemisinin-
piperaquine (DHPP) was significantly more effica-
cious, i.e. there was a positive progression towards 
ACPR from day 14 to day 28 with DHPP, suggesting 
that more treatment failures occurred during day 14 
and day 21 for ASAQ compared to DHPP [10]. Pro-
gression to success was similar between ASAQ and 
artemether-lumefantrine (AMLM), in agreement 
with other studies conducted in Africa [23–27]. The 
apparent superiority of DHPP was assessed in a larger 
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patient population and is in agreement with pharma-
cokinetic profiles of amodiaquine and lumefantrine, 
which have shorter elimination half-lives than pipe-
raquine [28].

Network meta‑analysis
NMA can be used to extend the second approach to 
multiple randomized clinical trials with the aim of 
choosing the best treatment regimen [29, 30]. The mod-
elling process is based on random effect models that 
account for different sources of variability, including 
drug formulation, mode of administration, supervised 
vs unsupervised drug administration, conflicting results 
reported by each trial, and study design (multicentric 
vs single centre). When multiplicity is present, some 
authors opt for a frequentist approach, while others 
argue for the use of a Bayesian approach [31]. Both of 
these approaches can be implemented using available 
statistical packages [32], which are also suitable for sin-
gle trial proportional model.

Data from randomized studies conducted in Cam-
eroon, and elsewhere in Africa, have been combined 
to illustrate the utility of NMA using a binary outcome 
[11, 33]. These analyses showed that DHPP was more 
effective than AMLM (odds-ratio [OR] = 1.92; 95% con-
fidence interval [CI] 1.30–2.82; 19,163 patients) and 
that DHPP has the highest probability of being the best 
choice for treating uncomplicated P. falciparum malaria. 
A similar study was conducted in Asia, and the network 
built with 14 treatment regimens revealed that the OR 
network estimates from both African and Asian studies 
were comparable. In Asia, DHPP was 2.5 times (95% CI, 
1.08–5.8) more efficacious on day 28 than AMLM [34].

One of the disadvantages of NMA is its high sensitiv-
ity to highly effective novel ACT in a small sample size 
because ranking may depend on whether the drug has 
been widely assessed or not [11]. This problem can be 
circumvented by ranking treatment regimens from the 
most tested ACT to the less tested ACT [11]. The meth-
odological approach of ranking treatment also depends 
on whether a frequentist approach based on P-score and 
an analog to the surface under the cumulative ranking 
(SUCRA) or a Bayesian approach with posterior prob-
ability is used [35–37].

Discussion
The ordinal criterion was applied to data from thera-
peutic efficacy studies for alternative statistical analy-
sis and data interpretation [9–11]. Some authors have 
argued that ordinal regression models may be superior 
to analysis of binary outcome for designing clinical trial 
and evaluating treatment efficacy [12, 38]. In the present 

opinion paper, it is argued that ordinal data analysis may 
be helpful to evaluate fixed-time efficacy, or changes 
in therapeutic responses over time at the individual 
level where follow-up assessment allows detection of 
recrudescence/reinfection and evaluate the correlation 
between therapeutic response and molecular markers of 
resistance [39]. Modelling the WHO criteria as ordinal 
criteria results in a gain of information and precision on 
the estimate of the treatment effect. However, one of its 
limitations is the difficulty in determining the sample 
size of a trial given a known treatment effect [40].

Kaplan–Meier analysis is modelled based on the time 
to failure, reports the risk of recrudescence, and con-
siders several events, such as reinfections, withdrawals, 
and loss-to-follow-up, as censored [8]. However, it does 
not consider categorical outcome. Since more robust 
statistical methods are available for handling categori-
cal outcome [16], it is the opinion of the present authors 
that clinical studies on anti-malarial drug should 
account for such outcome since this innovative meth-
odological approach provides information that has been 
missed heretofore and higher precision on the estimate 
of the treatment effect [12]. In the context of the emer-
gence and spread of artemisinin resistance [41, 42], it 
may be expected that an increasing number of patients 
will respond with one of the failure categories, enabling 
the optimal use of this approach to compare the efficacy 
of ACT and identify the most effective drug.

For systematic reviews, NMA constitutes a pow-
erful analytical approach to bring together multiple 
treatments which have not been compared directly 
in randomized controlled trials. Treatment ranking is 
solely possible using NMA, rendering this tool useful 
to identify the best treatment based on available evi-
dence. NMA also provides a greater statistical precision 
through its incorporation of indirect evidence, which is 
not considered in pairwise meta-analysis.

Conclusions
The four-level ordinal outcome derived from the WHO 
protocol can be better exploited using several statistical 
tools to analyse agglomerated or individual patient data 
from single trials or multi-centric trials in which two or 
more treatments are evaluated. These analytical tools 
include options for multiple comparison with fixed and 
mixed effects and determination of the best treatment 
regimen.
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