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Abstract  38 
In mammals, the selective transformation of transient experience into stored memory occurs in 39 
the hippocampus, which develops representations of specific events in the context in which 40 
they occur. In this review, we focus on the development of hippocampal circuits and the self-41 
organized dynamics embedded within them since the latter critically support the role of the 42 
hippocampus in learning and memory. We first discuss evidence that adult hippocampal cells 43 
and circuits are sculpted by development as early as during embryonic neurogenesis. We argue 44 
that these primary developmental programs provide a scaffold onto which later experience of 45 
the external world can be grafted. Next, we review the different sequences in the development 46 
of hippocampal cells and circuits at anatomical and functional levels. We cover a period 47 
extending from neurogenesis and migration to the appearance of phenotypic diversity within 48 
hippocampal cells, and their wiring into functional networks.  We describe the progressive 49 
emergence of network dynamics in the hippocampus, from sensorimotor-driven early sharp 50 
waves to sequences of place cells tracking relational information. We outline the critical turn 51 
points and discontinuities in that developmental journey, and close by formulating open 52 
questions. We propose that rewinding the process of hippocampal development helps 53 
understand the main organization principles of memory circuits.   54 
 55 
Graphical abstract  56 
 57 
CLINICAL HIGHLIGHTS 58 
 59 
• Hippocampal circuits produce cognitive maps in the form of sequences of neuronal 60 
activation representing space and time.  61 
 62 
• Internal dynamics are important for hippocampal function and partly preconfigured, 63 
possibly during development. 64 
 65 
• The functional organization of the adult hippocampus is not only formed through 66 
experience-dependent plasticity, but partly hardwired at the earliest stages of development, 67 
including embryonic neurogenesis. 68 
 69 
• The emergence of recurrent connectivity is a critical step in the development of the 70 
hippocampal structure 71 
 72 
• Activity-dependent wiring of hippocampal circuits is supported by a sequence of early 73 
spontaneous activities progressively emerging during the first postnatal month in rodents, 74 
which corresponds to the last trimester of gestation.  75 
 76 
• Self-generated movements trigger hippocampal activity in a bottom-up fashion at early 77 
perinatal stages 78 
 79 
• The hippocampus may perform generalization based on statistical learning from the 80 
sensory world before being able to support egocentric episodic memory. 81 
 82 
• The study of hippocampal development in the context of circuit physiology will open the 83 
way for cracking memory circuits in the brain in health and disease 84 

85 
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 86 
Introduction 87 
The fundamental and clinical research in the hippocampal field over the past seventy 88 

years has significantly contributed to our understanding of the circuit basis of memory. 89 

Indeed, it is now well accepted that the hippocampus is not only a region for place 90 

representation and navigation, but also a key brain structure involved in episodic memory and 91 

planning (42, 206, 224). All these processes rely on the ability of hippocampal networks to 92 

form cognitive maps stored as sequences of related experienced events and visited places that 93 

can be mentally traveled through in space and time. This review aims at describing how and 94 

when these circuits emerge during development and signifying how early development 95 

scaffolds our memory networks.  96 

Hippocampal cognitive maps are produced by sequences of transient neuronal 97 

activation that keep track of and order spatial and non-spatial information (continuously 98 

varying) in an allocentric or egocentric reference frame (15, 92, 147, 208). They may unfold 99 

at various temporal scales, from several seconds, the timescale of behavior, to a few 100 

milliseconds, nested and compressed within the period of the theta rhythm (~8Hz) or within 101 

sharp-wave ripples (~200Hz)  (43, 80). Interestingly, hippocampal sequences do not simply 102 

represent serially ordered external information, rather, they arise from the interaction 103 

between environmental inputs and internal dynamics supported by the intrinsic functional 104 

properties of the hippocampal network (43, 135). The internal functional organization of 105 

hippocampal circuits is indeed a major contributor to sequence generation. The sequential 106 

activation of hippocampal neurons can be disengaged from external signals at all timescales.  107 

Hence, hippocampal sequences unfolding at the behavioral timescale have been recorded in 108 

the absence of changing sensory or feedback cues, mainly during running behavior (79, 127, 109 

148, 208, 260). Similarly, still during exploration, but nested within the period of a theta 110 

cycle, sequences representing the ongoing trajectory in space at an accelerated rate that are 111 

involved in decision and planning also emerge from the integration of sensori-motor 112 

information into internal dynamics (80). Most notably, hippocampal sequences critically 113 

involved in memory encoding and consolidation are also observed offline during quiet rest or 114 

sleep, when body or environmental control over dynamics are minimal (156, 230, 266). In 115 

addition, hippocampal sequences are rooted within functional circuits that are remarkably 116 

rigid against transient perturbation (260, 278) and stable across days  (109). It is possible 117 
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that hippocampal sequences originate from a reservoir of predefined sequences wired prior to 118 

experience, as evidenced by the “preplay” phenomenon (50, 77, 107, 159). Finally, the 119 

development of hippocampus-dependent memory is protracted and reflected by the late 120 

emergence of internally-generated sequences (91, 197, 216). 121 

In sum, sequences of neuronal activation, a basic circuit motif of hippocampal function 122 

in memory, are produced by specific functional connectivity schemes which are partly 123 

prewired. This basic prewiring may originate throughout the construction of hippocampal 124 

circuits during development. This review will illustrate how early development, from 125 

embryonic neurogenesis to perinatal neuronal maturation and postnatal formation of local 126 

and long-range connections, provides an interesting framework to gain understanding of 127 

hippocampal function at circuit level. We will mainly focus on CA1, however, when possible, 128 

we will use examples from other hippocampal sub-regions to illustrate how general principles 129 

can be extended. First, we will summarize the growing body of literature indicating that many 130 

developmental traces remain in adult hippocampal circuits at various levels of analysis and 131 

different spatial scales. In other words, early developmental programs, prior to experience, 132 

seem to provide a strong scaffold on the organization of adult hippocampal networks.  One 133 

way to understand the circuit basis of sequence prewiring is to deconstruct circuits as they 134 

mature, given that development offers natural sequential time windows on distinct circuits as 135 

they develop and progressively give rise to different dynamics and function. We will thus 136 

review the emergence of hippocampal structure. Next, we will present the progressive 137 

emergence of hippocampal dynamics.  We will show how different dynamics emerge 138 

sequentially, further demonstrating how development offers natural dissection of 139 

hippocampal circuits. Last, we will show how the progressive emergence of hippocampus-140 

dependent cognitive functions reflects the developmental timelines reviewed in the other 141 

sections. This review will outline the early postnatal period as a major time window of 142 

hippocampal development, including critical activity-dependent turn points.  We will close this 143 

review by formulating open questions.  144 

 145 
Lasting traces of early development in adult hippocampal circuits 146 
 147 
The hippocampus is an elongated brain structure spanning three main anatomical axes 148 

(Figure 1A): (i) a longitudinal axis from the septal (dorsal) to the temporal (ventral) pole; (ii) a  149 
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transverse axis following the path of the trisynaptic circuit, from Dentate Gyrus to CA3c, b, a 150 

to CA1c, b, a; and (iii) a radial axis, from deep (closer to the alveus) to superficial (closer to the 151 

fissure). Numerous studies indicate that the intrinsic morpho-physiological properties of 152 

principal neurons (47, 75, 76, 122, 158, 176, 181, 257), their gene expression (47, 74), 153 

local and long-range connectivity, and ultimately their function often segregate along these 154 

axes in the adult. We argue that embryonic temporal origin or neuronal “birthdate” (final cell 155 

division), likely acts as a major segregating factor contributing to most of the diversity.  156 

Indeed, several functional traits of regional specializations can be predicted from temporal 157 

origin (Table 1). Before reviewing how the hippocampal structure develops in detail in the 158 

next section, we will briefly summarize the temporal order of neurogenesis along the three 159 

hippocampal axes mentioned above. Most of what we know about the main gradients of 160 

formation of different hippocampal circuits comes from early studies using 3H-thymidine 161 

autoradiography. In mice, hippocampal neurons are born between E10 and birth (with the 162 

exception of the Dentate Gyrus). We will mainly focus on CA1 but use examples from other 163 

hippocampal sub-regions to illustrate how this general principle can be extended to all 164 

hippocampal regions. The two hippocampal axes displaying the most significant differences in 165 

their time of origin are the transverse and radial axes (46). CA2 neurons (and subiculum) are 166 

born first, followed by distal CA1 (CA1a and b, i.e. closer to subiculum, see Figure 1A) and 167 

distal CA3 (CA3 a-b, i.e. closer to CA2) (22, 46). In the transverse axis, CA1c (closer to CA2) 168 

and CA3c (closer to the Dentate Gyrus) are the last regions of Ammon’s horn to be born, just 169 

before the Dentate Gyrus, which continues adding new neurons into adulthood(46). The 170 

peak of neurogenesis in mice in CA3 (E14) occurs one day before CA1 (E15) (12). In the radial 171 

axis, as in the neocortex, successive generations of glutamatergic neurons occupying the 172 

principal pyramidal and granule cell layers of the hippocampus migrate past the existing 173 

earlier born neurons thus creating layers in an ‘‘inside-out’’ fashion. Therefore, superficial 174 

neurons (closer to the stratum radiatum) are in general born later than deep neurons (closer 175 

to the stratum oriens). It is of note that this deep to superficial gradient is less pronounced in 176 

CA3 than CA1 (22). In contrast, there is no obvious developmental gradient of neurogenesis 177 

along the dorsoventral axis in the CA1 region, unlike CA3 or entorhinal cortex, where ventral 178 

neurons are born significantly later that dorsal ones (22, 73).  In sum, in CA1, earlier born 179 

(eb) neurons are preferentially found throughout the dorsoventral axis, in CA1a,b (distal), and 180 

in deep radial positions, whereas later born (lb) neurons are located in CA1c and closer to the 181 
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stratum radiatum (Figure 1A). This gradient matches the quantitative differences in the 182 

passive and active electrophysiological properties of pyramidal neurons (PN) in the adult CA1. 183 

Indeed, adult CA1 PNs occupying regions where PNs are presumably born earlier display a 184 

smaller HCN-mediated h-current (Ih) (176, 181), a lower membrane resistance (Rm) (103, 185 

181)) as well as higher excitability (47, 189) and bursting propensity (see Table 1 and Figure 186 

1B). Interestingly, cells located in the subiculum or CA2, two subregions with an earlier 187 

temporal origin than CA1, also display a smaller Ih (163) (but see (234)), a lower Rm (129, 188 

163, 234), higher excitability (207), and burst propensity (69).  It should be noted that CA2 189 

itself was recently shown to display significant heterogeneity along the proximo-distal axes 190 

(93), despite its overall earlier temporal origin compared to CA1 and CA3, possibly indicating 191 

the need for in depth examination of its embryonic developmental schedule.  The diversity of 192 

intrinsic electrophysiological properties among CA3 PNs also distributes along the proximo-193 

distal axis, revealing a similar trend for Rm with the earlier born distal CA3 (CA3a) displaying a 194 

lower Rm than proximal CA3 cells (234). Different trends for Ih and excitability have been 195 

reported with earlier born regions (CA2, CA3a) displaying a larger Ih and lower excitability, but 196 

higher burst propensity (20, 69, 234). We will see in the next section how these cellular 197 

properties follow a stereotyped schedule during development, serving as ideal proxies of 198 

neuronal maturation stage, as if the delays in maturation originating from different neuronal 199 

birthdates partly remained in the adult. As expected from the lack of clear developmental 200 

gradient in CA1 along the longitudinal axis, the dorso-ventral segregation of these properties 201 

is not as clear, while a continuous genetic gradient has been observed (47). That said, PNs 202 

located in the dorsal part of CA1 (possibly slightly older than the ventral region), display less 203 

Ih, a lower Rm and a lower action potential threshold (9, 12, 22, 73). The link between 204 

birthdate and integration into adult hippocampal circuits is particularly striking when 205 

considering connectivity. This was already evident in seminal early studies that noted how the 206 

order of neurogenesis in the entorhinal cortex, proceeding from lateral to medial, also strictly 207 

correlated with the order of its termination on CA1 PNs, with afferent fibers from older cells 208 

of origin (lateral entorhinal cortex) projecting to older CA1 pyramidal cells (CA1a), while 209 

afferent fibers from younger cells (medial entorhinal cortex) projected to younger CA1 210 

pyramidal cells (CA1b,c, (22)). This isochronic patterning of entorhinal projections has been 211 

recently further dissected at functional level across the transverse and radial CA1 axes (180) 212 

and also applies to the inputs from the early generated CA2 region, projecting onto deep 213 
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CA1PNs (145, 202, 257).  Similarly, in the dorsal CA3, entorhinal inputs (early born) are more 214 

abundant in the earlier born distal CA3 region (CA3a&b) whereas the opposite trend is 215 

observed for the later generated mossy fiber inputs that are more abundant in the later born 216 

proximal CA3, again following a temporal matching rule  (234). Interestingly, the distal 217 

dendritic length of pyramidal neurons in CA2 and CA3 correlates with their burst propensity 218 

and their response to stratum lacunosum stimulation (69, 116) . As observed for entorhinal 219 

afferents, output fibers from presumably early-born or late-born hippocampal regions also 220 

target older versus younger laminae of the lateral septum and mamillary body pars posterior, 221 

respectively (10).  In addition, superficial CA1 pyramidal cells are more likely to project to the 222 

entorhinal cortex than deep cells which preferentially target earlier-born reward-related 223 

structures such as the striatum (231). This rule by which the temporal order of neurogenesis 224 

imposes the patterning of connectivity to form isochronic circuits has been more recently 225 

directly evidenced at the single-cell level throughout the hippocampal glutamatergic 226 

trisynaptic circuit (63). This again may be a direct consequence of the mechanisms by which 227 

these circuits form during development (see below).  228 

Maybe even more than for local excitatory glutamatergic circuits, the overall mesoscopic 229 

organization of adult GABAergic inhibitory circuits is particularly interesting to revisit from the 230 

perspective of developmental timing (Figure 1C). Indeed, both along the radial and transverse 231 

axes of development, it appears that late born PNs (superficial) and subregions (CA3c) are 232 

more likely to drive CA1 interneurons, while early born regions (CA2, CA3a) and cells (deep) 233 

receive stronger inhibitory inputs (72, 158, 207, 234, 257). In addition, the fine temporal 234 

pairing rule of connectivity also seems to apply to GABAergic circuits, since early born PV cells 235 

target deep CA1 cells while late born PV cells target superficial CA1 cells (72). The equation 236 

between birthdate and laminar position also holds for hippocampal GABAergic neurons, 237 

where neurons born in the Medial Ganglionic Eminence (MGE), generated earlier, distribute 238 

in deep layers (stratum oriens and pyramidale), while cells born in the Caudal Ganglionic 239 

Eminence (CGE) mainly locate in superficial layers (stratum lacunosum moleculare) (245). 240 

This fine organization of inhibitory and excitatory circuits according to birth order may be 241 

predetermined at the earliest stages of development given that glutamatergic ensembles 242 

sharing a common clonal origin also share common presynaptic perisomatic GABAergic inputs 243 

(271).  244 
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The pre-existing differences in excitability or connectivity rooted in the different temporal 245 

origins of hippocampal neurons should result in functional differences (89). Interestingly, 246 

linked to the advent of large-scale approaches to record neuronal activity there has been a 247 

recent rise of interest in the analysis of the heterogeneity in place field properties among 248 

hippocampal neurons. These recent studies mostly use extracellular recordings and/or head-249 

fixed preparations, which should be taken into account when interpreting the findings given 250 

the unprecise spatial resolution of the former and the difference in place cell properties 251 

reported in the latter (2, 49, 217).    Regardless, when combining the information of many 252 

recent reports a clear picture emerges by which early born subregions and PNs (i.e. CA2, 253 

CA3a, CA1a,b, and deep CA1) are comprised of a higher fraction of place-modulated neurons 254 

(59, 189), however, their spatial coding specificity is poorer (59, 97, 113, 119, 207) as they 255 

are more likely to display multiple and/or wider and less stable place fields than their younger 256 

counterparts (CA1c, CA3c, superficial CA1, Figure 1D). The latter not only display highly 257 

selective and stable place fields, but are also better at discriminating transient tactile, 258 

olfactory or object information (97, 163). One interesting possibility could be that PNs 259 

located in the deep CA1 sublayer, although place-modulated, comprise cells representing 260 

contextual identity rather than a spatial map. Indeed it was recently established  that 261 

“engram cells” (cells expressing cfos after presentation of a novel context), like many deep 262 

CA1 PNs (189) and unlike other place cells, exhibit higher firing rates, larger place fields with 263 

poorer information content, and higher modulation by entorhinal inputs (241). In other 264 

words, hippocampal function may be roughly divided into two functional categories according 265 

to birthdate, where regions and cells generated early would serve a generalizing function and 266 

later ones would assist content discrimination. This is a general rule that may even extend to 267 

the function of the late-generated dentate gyrus and CA3c (157, 178, 234). More 268 

particularly, in CA1, older PNs are presumably better tuned to receive external sensory inputs 269 

as their firing is more anchored to external landmarks while later born PNs, would be more 270 

likely to convey an internal “memory stream”, more likely to participate in SWRs, and more 271 

likely to convey self-referenced information, with slower if any remapping and more stable 272 

place maps (59, 97, 107, 145, 189).  This hypothesis agrees with the earlier maturation of 273 

unstable landmark-based place cells (223, 265), the “overgeneralizing” infantile memory, 274 

and protracted emergence of episodic memory and idiothetic navigation (216).  275 
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While neuronal physiology and function seem to match well the temporal schedules of 276 

development across the main hippocampal axes at the population level (Figure 1), there are 277 

exceptions to this statement. For example, resting membrane potential, action potential 278 

threshold or dendritic morphology do not seem to segregate that well along the radial and 279 

transverse axes as a function of temporal origin (47, 75, 158, 163, 181). The distribution of 280 

soma position itself can diverge from developmental axes at the population level when 281 

examining specific neuronal subtypes (as reported for stellate cells in EC LII vs. pyramidal cells 282 

in EC LIII, (73)). Hence, hippocampal cells originating from the earliest stages of neurogenesis 283 

(around E10) are often uniformly distributed rather than anatomically clustered at specific 284 

locations (46, 221). Altogether, this indicates that the link between developmental origin and 285 

adult position and function may also need to be examined at single neuron level. Various fate-286 

mapping approaches have been developed to permanently label individual neurons at the 287 

moment they exit cell division. With these methods, it has been shown that the adult 288 

phenotype of the diverse population of hippocampal GABAergic neurons is rooted in their 289 

spatio-temporal embryonic origins (16, 51, 126, 211, 244, 245, 259). A particularly 290 

appealing population of cells are those pioneering hippocampal neurogenesis, the earliest 291 

cohorts of GABAergic and glutamatergic neurons (Figure 2). Using inducible genetic fate-292 

mapping that allows for the labelling of neuronal precursors according to the developmental 293 

schedule at which they express specific sets of transcription factors,  pioneer GABAergic cells 294 

develop into a network of long-range projecting GABAergic neurons linking the adult 295 

hippocampus to the septum and entorhinal cortex (259). These cells are morphologically and 296 

neurochemically diverse but share this major distinctive anatomical feature. In addition, 297 

pioneer GABA cells display specific intrinsic excitability and connectivity schemes (30), 298 

including a bias for long-range targets and local excitatory inputs. In vivo, they signal a variety 299 

of network states (30), thus sharing this generalization function with their glutamatergic early 300 

born counterparts. A similar approach has been applied for glutamatergic neurons in CA3 and 301 

DG (175, 221). Like pioneer GABA cells, the earliest born glutamatergic neurons display 302 

distinctive neuronal physiology but diverse morphologies, with a lower excitability in early 303 

born DG neurons (221) and a higher propensity to trigger network bursts in the absence of 304 

fast inhibition (175) or to control local network transfer function (151, 221). Interestingly, 305 

both early born GABA and glutamatergic neurons share a stronger network influence than 306 

other cells, in CA1, CA3, Dentate Gyrus and entorhinal cortex (8, 30, 100, 175, 211, 221). 307 
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It is thus becoming increasingly clear that development provides a significant scaffold 308 

to hippocampal circuits that can be revealed at both the single-cell and population levels. 309 

Therefore, studying the developmental establishment of functional circuits should provide a 310 

unique tool to dissect the rules governing adult hippocampal organization. The next sessions 311 

will review the emergence of a mature hippocampus at the structural and functional level.  312 

 313 
Emergence of the hippocampal structure 314 

 315 

One mechanism by which temporal origin may structure neuronal phenotypes in the 316 

hippocampus is by providing the opening step in a chain of stereotyped processes involving 317 

preset sequences of transcription factor signaling (242) and activity-dependent regulations 318 

occurring during migration, early postnatal cellular maturation and later integration into 319 

functional networks. There is indeed a tight correlation between several markers of 320 

development and the age of individual cells (8, 73, 175). We will now describe the timing of 321 

all of these early steps, focusing on rodent literature and on events that are more prominent 322 

or different in the hippocampus.  323 

 324 

Hippocampal neurogenesis 325 

 Molecular signals from the cortical hem, a source of Wingless-related (WNT) and 326 

bone morphogenetic protein (BMP) signaling located in the embryonic dorsomedial 327 

telencephalon, instruct the formation of the hippocampus as opposed to the neocortex (98, 328 

173). Similar to their counterparts in the neocortex, excitatory glutamatergic  neurons in the 329 

hippocampus are produced locally by progenitors in the ventricular zone of the primordial 330 

hippocampal area, adjacent to the cortical hem (12, 22, 205, 277), while prospective 331 

inhibitory GABAergic neurons originate from the medial and caudal ganglionic eminences in 332 

the ventral telencephalon (212, 245). The time span of hippocampal neurogenesis in rodents 333 

is compressed within less than ten embryonic days, from day 10 to 18. In humans, 334 

hippocampal neurogenesis occurs within 2 weeks, from Gestational Week (GW) 16 to 18 335 

(277). In the mouse, pyramidal cells are generated between E10 and E18, with a peak at E14 336 

in CA3 and E15 in CA1 (Figure 3). Subiculum and CA2 terminate neurogenesis earlier (E15) 337 

than CA1 and CA3 (E16). As in the neocortex, the peak of neurogenesis for GABAergic 338 

neurons occurs earlier (around E12) than for glutamatergic cells. GABAergic neurons are born 339 
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between E9 and birth and the timing of their birth has a significant impact on their adult fate. 340 

In the hippocampus, MGE-derived GABAergic neurons are globally born earlier than CGE-341 

derived neurons. Interestingly, hippocampal MGE-derived interneurons are generated earlier 342 

and within a narrower temporal window than their neocortical homologs (210). MGE-derived 343 

interneurons include PV-expressing GABA neurons (basket cells, axo-axonic, bistratified cells), 344 

Ivy cells,  SST-expressing GABA cells (like OLM cells or long-range GABA cells), and a subset of 345 

Neurogliaform cells (210). The earliest born GABA cells (E9), presumably of MGE origin, 346 

operate as hub neurons during early postnatal development and later become a diverse 347 

population of GABA neurons, including a subset of somatostatin-expressing cells, with an 348 

extrahippocampal target (30, 259). The peak of neurogenesis of SST and PV interneurons in 349 

CA1 occurs at the same time, two days after the earliest cells are born, at E11.5, which 350 

contrasts with the neocortex, where PV neurogenesis is delayed from SST by about 2 days. 351 

Two days later (E13.5), the peak of neurogenesis for nNOS-expressing interneurons occurs, 352 

and later still (E15.5), that of PV-expressing chandelier cells. In other words, there seems to 353 

be a paced wave of neurogenesis among MGE-derived interneurons, initiated by long-range 354 

hub neurons, followed by basket and O-LM cells, nNOS interneurons and closed by chandelier 355 

cells (Figure 3). Hippocampal CGE-derived interneurons include CCK-, VIP-, CR-, reelin-M2R- 356 

and some SST-expressing interneurons as well as a subset of Neurogliaform cells.   These are 357 

generated later than MGE-derived cells, with CCK-, VIP-, and M2R- interneurons generated at 358 

around E13 followed at E16 by CR- cells. In contrast, reelin- and CoupTFII- expressing cells are 359 

produced consistently throughout this developmental period. We will see below how the 360 

emergence of a recurrent network provided by local interneurons is a critical step in the 361 

patterning of internal hippocampal dynamics. We will also see how hippocampal 362 

developmental studies may receive inspiration from studies performed in the neocortex, 363 

where the circuit maturation and fate-mapping of interneurons is more advanced than in the 364 

hippocampus, where most of the information described above comes from a single study by 365 

McBain and colleagues (245).  366 

 367 

Migration of hippocampal cells 368 

The hippocampus is quite different from the neocortex regarding neuronal migration. 369 

Interestingly, multiple migration modes, speeds and routes have been reported depending on 370 

birthdate.  In mice Cornus Ammonis (CA), migration occurs from embryonic neurogenesis to 371 
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the end of the first postnatal week, when the last interneurons find their final position. 372 

Hippocampal migration is a slower process than in the neocortex (about one week for CA 373 

glutamatergic neurons and two days for GABA neurons, Figure 3).  As in the neocortex, 374 

hippocampal glutamatergic cells and GABAergic neurons follow different routes. In contrast 375 

to their neocortical counterparts, hippocampal pyramidal neurons do not migrate straight 376 

along a single radial glial fiber, but instead can spend some days in a multipolar state above 377 

the ventricular zone and later migrate in a “climbing mode” along different radial processes 378 

(144), which eventually even bend perpendicularly to the radial axis (271). Early-born 379 

pyramidal neurons migrate faster than later-born ones, which take 7–9 days to reach their 380 

final destinations, as they remain frozen for about 3 days in CA1 and 4 days in CA3 in the 381 

multipolar state (114, 144) .  One major difference with the neocortex, related to these 382 

peculiar migration modes, is the fact that clonally related glutamatergic neurons in the CA1 383 

region are arranged horizontally rather than vertically, due to their migration along 384 

horizontally bending radial glia (271).  385 

 Migration is also longer for hippocampal GABA neurons (48–72 h) than neocortical 386 

ones (24–48 h), maybe due to the longer distance to be traveled (245). They invade the 387 

hippocampus when pyramidal neurons are already settled and acquire their final position 388 

within the first postnatal week. Again, migration depends on birth order, with early born 389 

GABA cells migrating at a slower pace (more than 2 days to reach the hippocampus) than 390 

later born ones (Figure 3) (245). Interestingly, the first GABA cells colonize CA1 (from the 391 

subiculum) one day before CA3 (at around E14) through the superficial tangential migratory 392 

stream (closer to the alveus), whereas the deep stream stops at the CA1/CA3 border (172). 393 

Only after E16 do interneurons reach CA3 from the superficial migratory stream only, and by 394 

E17 the Dentate Gyrus (172). Overall, interneurons are present in CA1 as early as E17, before 395 

pyramidal cells (83).  Interestingly, in contrast to the neocortex, hippocampal interneurons 396 

migrate primarily through the superficial path (from the pia in the neocortex), then radially to 397 

their final position. This process depends on AMPA-R activation (172), whereas migration of 398 

glutamatergic neurons depends on GABAA-R activation (171). This indicates a possible 399 

crosstalk during migration between these two main cell-types which may result in the precise 400 

orchestration of their final positioning and wiring. It should be noted that migration still 401 

operates at a time when the first coordinated neuronal activity patterns emerge in the 402 

hippocampus (see below).  403 
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 404 

Maturation of the cellular properties of hippocampal cells 405 

Maturation, the progression of cellular properties to their adult values, is a long 406 

process as revealed by the late transcriptional diversification of the dorsal and ventral parts of 407 

the hippocampus between P28 and P45 (155), or by the continuous growth of hippocampal 408 

volume until at least 5 years of age in non-human primates (152).  It was recently proposed 409 

that the maturation of the entorhinal-hippocampal network, as indirectly revealed by the 410 

expression of specific anatomical markers (73), occurs sequentially along the main direction 411 

of information flow through the circuit with stellate cells in layer 2 of the medial entorhinal 412 

cortex being the first to display adult-like markers (P14), followed by CA3 (P20) then CA1 413 

(P23) and 3 days later by dentate gyrus, subiculum, layer 5 of the medial and lateral 414 

entorhinal cortices, and, last layer 2 of the lateral entorhinal cortex (> P30). This order of 415 

maturation tracking the main information route in the hippocampus does not exactly match 416 

the chronological order of neurogenesis described above, as the subiculum or LEC are 417 

generated earlier than CA1 and CA3, which are both generated roughly at the same time. In 418 

fact, in humans, CA1 neurons were recently shown to be “more mature” than CA3 neurons at 419 

GW22 based on single-neuron transcriptomic data (277). Similarly in the rhesus macaque 420 

monkey, quantification of structural and molecular markers reveals that CA1 reaches adult-421 

like volumes and levels of gene expression 6-months earlier than CA3, which only displays 422 

mature properties after one year of age (152). In fact, these conclusions depend on the 423 

biomarkers used to track cellular maturation. The previous study (73) used 424 

immunohistochemical analysis of doublecortin, parvalbumin and bassoon expression. All 425 

three markers are developmentally regulated but may not necessarily reflect the maturation 426 

of functional neuronal properties. Rather, there seems to be a good match between birthdate 427 

and cellular maturation.  Indeed, the development of morpho-physiological intrinsic 428 

properties, connectivity or membrane expression of KCC2 in fate-mapped glutamatergic and 429 

GABAergic hippocampal neurons depends on their time of birth (8, 63, 175, 259). 430 

Furthermore, this relation between maturation and birth date translates functionally in the 431 

spontaneous activity observed at single-cell level (Figure 4C). Hence, developing hippocampal 432 

neurons are sequentially involved in spontaneous activities coordinated first by electrical 433 

synapses in the form of Synchronous Plateau Assemblies (SPA, Figures 4C&7), and later by 434 
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GABAergic synapses (7, 55) within Giant Depolarizing Potentials (GDPs, (24), Figures 435 

4C,7&8).  436 

Interestingly, these activities, described in slices, therefore isolated from extra-437 

hippocampal and sensory influences, most likely reflect self-organized hippocampal dynamics 438 

emerging from the global maturation stage of the neuronal population. Within a given slice, 439 

individual cells will be either involved in SPA or GDP networks depending on their birthdate 440 

(8). In sum, the spontaneous activity of a given cell will reflect its birthdate, which in turn 441 

should contribute to its integration into functional networks with age-matched cells 442 

displaying similar activities, ultimately forming temporally-matched circuits as observed in 443 

adults (63). We have seen above that the two physiological cellular metrics that best 444 

segregated adult GABA and glutamatergic hippocampal neurons according to their presumed 445 

birthdate were Ih and Rm.  Interestingly, the expression of both is tightly regulated during 446 

development. Membrane resistance and Ih typically linearly decrease as a function of age (at 447 

least until P35, Figure 4B (25, 76, 237)).  Accordingly, all neurons involved in SPAs display a 448 

larger sag current than more mature cells involved in GDPs (55). Altogether, more mature 449 

neurons in the developing hippocampus have a lower sag and lower Rm, which is exactly the 450 

same difference as observed in the adult, once development is complete, between neurons 451 

with a putative older temporal origin and their peers. This is almost as if younger neurons 452 

never caught up with their older peers. In other words, the differences between hippocampal 453 

neurons seen in the adult may result from the naturally arrested maturing process of all cells 454 

following the same developmental journey from different starting points. This concept may 455 

even extend to connectivity patterns. 456 

 457 

Developmental cell death 458 

Most of the maturing hippocampal neurons end up wiring into functional networks, 459 

however a significant fraction of them are eliminated by cell death. This physiological process 460 

by which excess cells are removed through programmed apoptotic death is essential for the 461 

development of balanced networks (130, 199, 232, 268). Developmental apoptosis has 462 

been the recent focus of several excellent studies (29, 81, 213, 232, 268) in the developing 463 

neocortex (see (45, 269) for review). This phenomenon has not been reexamined as 464 

thoroughly in the hippocampus as in the neocortex.  However, the hippocampus is known to 465 

display similar features. As in the neocortex, developmental apoptosis is mainly observed 466 

Downloaded from journals.physiology.org/journal/physrev at INSERM (193.054.110.061) on August 16, 2021.



 15

during the first postnatal week in rodents and affects both glutamatergic and GABAergic cells. 467 

In the neocortex, cell death occurs in excitatory cells between birth and P5 and between P5 468 

and P10 in interneurons (268) and results in the disappearance of more than one third of 469 

both cell types (45, 232, 269). As in the neocortex, developmental apoptosis involving 470 

hippocampal principal cells and interneurons is strongly stimulated by ethanol (124, 167). 471 

The temporal schedule and the intensity of developmental cell death also depends on the cell 472 

type in the hippocampus and it displays regional differences. For example, the hippocampal 473 

subregions that appear to display most signs of apoptosis are the CA1 stratum oriens and the 474 

distal CA1 (94).  The density of apoptotic cell debris peaks at around P4 in the mouse CA1 , 475 

together with microglial cell density (90) while fragmented DNA was preferentially observed 476 

at P1 in rat pups (264).  Some subpopulations like CGE-derived hippocampal interneurons 477 

decrease by up to 80% between birth and P10  (246). In contrast to the neocortex, the 478 

population of pioneer Cajal-Retzius cells residing in the hippocampus displays a delayed cell 479 

death, independent from caspase 3 activity and with almost twice as many surviving cells 480 

compared to the neocortex (14, 45).  Cell death does not simply coincide with periods of 481 

high levels of spontaneous neuronal activity, it is an activity-dependent process (whereby 482 

increased activity generally promotes survival) (45, 167, 199, 269).  The molecular 483 

mechanisms linking electrical activity to developmental apoptosis are starting to be 484 

elucidated (198, 213, 269). Interestingly, apoptosis seems to depend on the precise 485 

dynamics and mechanisms supporting  spontaneous activity (29, 81, 198). It will be of great 486 

interest to determine the type of spontaneous activity preferentially regulating cell-death in 487 

the hippocampus. The time course and distribution of apoptosis in the hippocampus as well 488 

as the coupling between maturation and cell death through calcineurin (213) suggest 489 

involvement of SPAs (55). Future work is needed to gain a better understanding of the 490 

mechanisms and developmental profile of programmed cell death in the hippocampus.   491 

 492 

Wiring of hippocampal circuits 493 

Local recurrent connectivity and long-range extrahippocampal inputs differ in their 494 

developmental profile, the former globally emerging later (postnatally, (99, 179)) than the 495 

latter (before birth, see below and Figure 5). Most sensory information is conveyed to the 496 

hippocampus through the entorhinal cortex. The LEC matures before MEC and projects onto 497 

older CA1 pyramidal cells (CA1a) while MEC targets CA1b and c (22). In rats, axons emerging 498 
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from pyramidal-like cell bodies located in the entorhinal cortex are first found in the alveus of 499 

CA1 as early as E16 (alvear and commissural pathway) and one day later in the lacunosum 500 

moleculare  (temporoammonic pathway), almost a week before the EC innervates the outer 501 

molecular layer of the DG (from P2, Figure 5 (68, 236) ).  This early innervation of CA1 502 

contrasts with the fact that layer 2 stellate cells contacting the DG were shown to mature 503 

earlier than pyramidal cells (73). Therefore, axons originating from the EC innervate CA1 504 

before birth in the oriens and lacunosum moleculare, and GABAergic neurons, in particular 505 

neurons with an extra-hippocampal target (259) together with Cajal-Retzius cells (13, 14, 506 

48, 235) are the first candidate postsynaptic targets to be present (83). In turn, CA1 and DG 507 

Cajal-Retzius cells send axonal projections to the EC as early as E17. Next, a notable increase 508 

in the density of entorhinal axons terminating in the hippocampus is observed at birth and 509 

maturation of these afferents extends until P5 (Figure 5) (236). Interestingly, this early 510 

innervation of CA1 by the EC is functionally reflected by the fact that EC activation precedes 511 

early sharp waves in the hippocampus at perinatal stages (see below, (254)). The septum, 512 

which in the adult is critically involved in generating theta sequences and organizing internal 513 

hippocampal dynamics (262) but also in conveying unexpected sensory inputs (276), sends 514 

inputs to the hippocampus before birth in rodents, with putative CA1 interneurons being 515 

targeted as early as E16 (236), followed by pyramidal cells (E17, Figure 5). Interestingly, 516 

hippocampal GABAergic projections may pioneer the hippocampo-septal circuit by sending 517 

axons to the medial septal region, thereby guiding outgrowing septohippocampal fibers (236, 518 

259). Like for EC inputs, septal projection continues to mature after birth, in particular the 519 

projections to the strata radiatum and lacunosum, but reaches adult patterns as early as P10. 520 

Thus, a general sketch emerges by which inputs from the EC and septum reach CA1 a few 521 

days before birth and target GABAergic interneurons, including those with a long-range extra-522 

hippocampal projection. Reciprocal long-range GABAergic connections may thus critically 523 

pioneer interactions between the hippocampus and other brain areas, in particular those 524 

conveying sensory information. In this framework, the perinatal development of one 525 

particularly interesting GABAergic input originating from the nucleus incertus in the 526 

brainstem, with a function in memory encoding (239), remains to be further examined.  527 

Commissural projections, connecting hippocampi from both hemispheres seem to develop 528 

slightly later, with dorsal ones developing earlier than ventral ones, and the DG being 529 

innervated only after P5 (236). Just after birth, projections onto the intermediate/ventral CA1 530 
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from the nucleus reuniens in the Ventro Medial Thalamus, a major hub in reciprocal 531 

hippocampo-prefrontal interactions, have been described as early as P1, whereas the 532 

hippocampus sends projections back to nucleus reuniens only at P5 (Figure 5) (112). Besides 533 

extrahippocampal GABAergic and glutamatergic inputs, acetylcholine, dopamine and 534 

serotonin releasing afferents develop at early postnatal stages, where they also influence 535 

local circuits (35, 37, 153, 194).  536 

While long-range inputs seem to settle before birth, the first postnatal week is the 537 

time when local recurrent connectivity emerges (Figure 5). Dendritic GABAergic innervation 538 

develops before the perisomatic GABAergic coverage (58, 179, 251), and most likely after 539 

long-range GABAergic connectivity (259) (Figure 5). In general, the intrinsic morpho-540 

physiological properties of GABA neurons develop according to their birthdate, following a 541 

stereotyped sequence (8), with early born interneurons contributing to a significant fraction 542 

of local axonal coverage (211). Interestingly, the end of the first postnatal week marks an 543 

abrupt surge of recurrent connectivity with the emergence of perisomatic GABAergic 544 

innervation in the CA1 pyramidal layer and the exuberant branching of CA3 axon collaterals 545 

(99, 111, 179, 238). This is also the time when connectivity between CA3 and CA1 develops, 546 

starting from P2 (Figure 5) (84). A similar phenomenon has been reported in the neocortex, 547 

including recently through imaging of perisomatic GABAergic domains in the barrel cortex 548 

(195). Interestingly, in that region, transient targeting of deep layer somatostatin 549 

interneurons by early thalamic inputs contributes to the emergence of perisomatic inhibition 550 

(177, 249). Following that idea, one could speculate that hippocampal somatostatin 551 

interneurons, activated by extrahippocampal inputs, whether or not of thalamic origin, would 552 

directly support the development of perisomatic GABAergic synapses, as in the neocortex. 553 

We would thus like to propose a general scheme by which early bottom-up inputs, conveyed 554 

through canonical or non-canonical paths would foster the emergence of recurrent 555 

connectivity in an activity-dependent manner. Such recurrent connectivity, emerging at the 556 

end of the first postnatal week, before active exploration, gives birth to “smart networks” 557 

capable of learning and sustaining self-organized internal dynamics (204).  558 

 559 
Early hippocampal dynamics  560 
 561 
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We will focus here on the first postnatal month in rodents since that is the time it 562 

takes for the emergence of the mnemonic and navigational functions of the hippocampus 563 

(Figure 6,9,11&12). Reconciling prior studies on the emergence of hippocampal dynamics into 564 

a unified picture is a difficult task for three main reasons. First because the menagerie of 565 

hippocampal dynamics described during the first postnatal month were obtained using either 566 

electrophysiological recordings or calcium imaging, with only a few studies performing both 567 

simultaneously (not in vivo); it is therefore difficult to bridge that experimental gap. Second, 568 

because early hippocampal network activities were most often dissected mechanistically in 569 

slices (or even cultures) and their in vivo counterpart is not always known. Third, early 570 

hippocampal dynamics have been studied along two different perspectives, either looking at 571 

patterns that are thought to be important for the maturation of functional circuits (usually 572 

referred to as spontaneous activity) or tracking the emergence of “typical” hippocampal 573 

patterns observed in the adult such as theta sequences and ripples, in the context of gaining 574 

understanding about hippocampal function. 575 

 576 

Spontaneous activity 577 

The now classical paradigm by which the brain is thought to operate as it develops, 578 

was first evidenced in a pioneering work on prenatal development of the visual system in 579 

primates by Rakic (214, 215)) and formulated in a seminal review by Katz and Shatz (134) as 580 

follows: 581 

“Early in development, internally generated spontaneous activity sculpts circuits on the basis 582 

of the brain's "best guess" at the initial configuration of connections necessary for function 583 

and survival. With maturation of the sense organs, the developing brain relies less on 584 

spontaneous activity and increasingly on sensory experience. The sequential combination of 585 

spontaneously generated and experience-dependent neural activity endows the brain with an 586 

ongoing ability to accommodate to dynamically changing inputs during development and 587 

throughout life.”  588 

This developmental paradigm has been verified through a prism of various systems and 589 

species, and was largely elaborated in: 590 

- the visual system of rodents, which are born blind and in which spontaneous waves of 591 

activity in the light-insensitive retina drive most of the activity in the visual thalamus, cortex 592 
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and superior colliculus during the neonatal period, which is also a critical period for activity-593 

dependent formation of retinotopic maps (1, 17, 28, 54, 106, 110).  594 

- the auditory system of rodents, where spontaneous activity in the sound-insensitive cochlea 595 

similarly drives activity in auditory relay centers and auditory cortex during the period of 596 

“deafness of immaturity” (19, 186, 247, 261) 597 

- in somatosensory circuits, in which sensory feedback from spontaneous myoclonic 598 

movements triggers activity, in a somatotopic fashion, in somatosensory regions of the spinal 599 

cord, thalamus and cortex, and most likely participates in the activity-dependent formation of 600 

cortical sensory maps during the critical period of thalamocortical plasticity (125, 143, 184, 601 

273).   602 

Together, these studies across three different sensory cortical areas show that early perinatal 603 

cortical dynamics are not strictly generated locally but rather driven by spontaneous activity 604 

originating from the sensory periphery which itself is still insensitive to environmental sensory 605 

stimuli (visual, auditory) or from spontaneous movement feedback in the somatosensory 606 

system. The latter system formally violates the theory of “internally-generated spontaneous 607 

activity in sensory organs” as it responds to external stimuli before birth and can be driven by 608 

tactile stimulation from the mother or the siblings (6, 188), probably reflecting the vital 609 

implication of somatosensation in survival including feeding behavior. In the same way, early 610 

activity in the olfactory-processing lateral entorhinal and piriform cortices and olfactory bulb 611 

is patterned by olfactory stimuli - dependent theta oscillations in olfactory bulb (105), and is 612 

thus not internally-generated, in strict terms, again probably due to the vital role of olfaction 613 

in survival as required for mother recognition without visual and auditory abilities.  614 

In the hippocampus, a variety of spontaneous activity patterns have been documented 615 

at various developmental stages in vivo and in vitro using electrophysiological and imaging 616 

approaches (Figure 6 and Table 2). We will review these early hippocampal activity patterns in 617 

chronological order with an attempt to propose a unified classification, mechanism and 618 

function. We will also discuss whether these early patterns are transient in development, or 619 

whether they are early precursors of adult patterns (Figure 9).   620 

 621 

Spontaneous uncorrelated activity 622 

Spontaneous uncorrelated activity is the earliest form of activity, characterized by sporadic 623 

calcium spikes poorly correlated between neurons and reported in hippocampal slices in vitro 624 
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(Figures 6B&A&B7) during embryonic stages (55). This form of activity has been also reported 625 

in the neocortex (7, 34) and cerebellum (146) and it reflects the absence of functional 626 

electrical or chemical synapses between neurons. These earliest developmental stages are 627 

also characterized by very slow non-synaptic activity transients which are driven by the 628 

paracrine actions of glutamate and GABA (67). None of these patterns have been reported in 629 

vivo so far and their physiological functions are thought to involve neuronal differentiation 630 

and migration.  631 

 632 

Synchronous plateau assemblies (SPA): spontaneous gap-junction mediated activity 633 

These emerge at birth and represent the earliest form of spontaneous coordinated activity in 634 

the hippocampus (Figure 7). SPAs are local synchronizations recorded in slices, and likely a 635 

general step in the evolution of spontaneous neuronal activity, since similar patterns have 636 

been reported in the developing neocortex (7, 82) and striatum (64). SPAs are characterized 637 

by recurring membrane potential oscillations (1Hz) producing action potential firing and a 638 

sustained calcium plateau for periods of about ten seconds (55). They are highly voltage-639 

dependent as they involve Ih and L-type calcium channel activation, and are synchronized 640 

across small groups of neurons via electrical synapses (Figure 7C&D) (55). Both GABAergic 641 

and glutamatergic neurons are involved in SPAs. One appealing possibility is that SPAs 642 

transiently synchronize clonally-related neurons, as shown in the neocortex (275); this 643 

remains an open question since hippocampal sister PNs have not yet been recorded at early 644 

postnatal stages (271). SPAs are modulated by oxytocin and peak at birth (55). They are 645 

progressively and actively shut-down by the emergence of GABAergic inputs, in particular 646 

GDPs (Figure 7C).  The transition between SPAs and GDPs appears as a critical developmental 647 

checkpoint for each CA1 neuron (55). For a few days around birth, SPA and GDP circuits co-648 

exist, and it is likely that for each individual neuron the time course of its recruitment into 649 

SPAs and then GDPs is intrinsically determined by its birthdate (Figure 4A) (8). SPAs have not 650 

yet been reported in vivo. Given that SPA assemblies are sparse and scattered, and that the 651 

electrophysiological signal associated with them is comprised of slow depolarizations, one 652 

would not expect them to produce any prominent extracellular electrophysiological event. 653 

Therefore, SPAs can be easily overlooked during in vivo extracellular recordings and calcium 654 

imaging would be needed. The traces left by SPAs at later stages remain to be determined. 655 

One interesting hypothesis is that the large calcium transients associated with SPAs guide the 656 

Downloaded from journals.physiology.org/journal/physrev at INSERM (193.054.110.061) on August 16, 2021.



 21

formation of common excitatory and inhibitory inputs (84, 271) onto subsets of neurons that 657 

later form stable assemblies in the adult hippocampus. The filopodia and giant miniature 658 

events displayed by SPA cells indirectly support this role of SPAs in local circuit wiring(11).  659 

 660 

Giant Depolarizing Potentials (GDPs): spontaneous synapse-driven activity 661 

Giant Depolarizing Potentials (GDPs) are historically the first population activity 662 

pattern described in hippocampal slices of neonatal rodents (24, 96, 111, 142) (Figure 663 

8A&B). GDPs can be observed in hippocampal slices and the intact hippocampal formation in 664 

vitro starting from the perinatal period and vanish at the end of the second postnatal week 665 

(Figures 6&8). GDPs are associated with population bursts and elevations of intracellular 666 

calcium lasting several hundreds of milliseconds and occurring at a frequency of ~10/min. 667 

Participation of neurons in GDPs decreases along with a reduced number of neurons excited 668 

by GABA during the second postnatal week (96, 142, 250). GDPs typically originate from the 669 

CA3 region of the hippocampus which operates as a GDP-generator because of: (i) a relatively 670 

high amount of recurrent excitatory glutamatergic connections between PNs, (ii) spontaneous 671 

bursting of many CA3 PNs supported by non-inactivating sodium conductance and low 672 

expression of potassium channels involved in Im  (185, 228, 229, 253) and (iii) the presence 673 

of highly connected GABAergic hub neurons (33). From CA3, GDPs typically propagate to CA1 674 

and to DG, but they may also originate in CA1 and backpropagate to CA3 (32, 185, 228, 253, 675 

263).   Backpropagation of GDPs may be supported by CA1 GABAergic hub cells with 676 

extended axonal morphology (30). In the preparation of interconnected hippocampi in vitro 677 

(136), GDPs propagate to the contralateral hippocampus via the ventral hippocampal 678 

commissure and medial septum and EC  (138, 160). Interestingly, in EC-hippocampal slices, 679 

spontaneous bursts of activity in EC fail to propagate to the hippocampus (62, 201). In the 680 

longitudinal axis, GDPs typically originate in the septal (dorsal) part of the hippocampus and 681 

propagate relatively slowly (7-10 mm/min) towards the ventral hippocampus (160).  This may 682 

reflect the earlier birthdate of dorsal CA3 neurons than ventral ones.  683 

GDPs are generated by the collective discharge of PNs and INs whose excitation is 684 

supported by complex interactions between depolarizing/shunting GABA and glutamate– 685 

activated synaptic conductances (140, 162, 185). GDPs are only observed during the period 686 

when GABA exerts depolarizing and excitatory actions, and they are completely suppressed 687 

by the NKCC1 antagonist bumetanide, which also suppresses the depolarizing and excitatory 688 
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effects of GABA (85, 253). Yet, the action of GABA at the network level also involves 689 

inhibitory shunting effects and dynamic changes in the driving force acting on currents 690 

through GABA channels during GDPs. For example, GABA may exert depolarizing action at the 691 

GDP onset but switch polarity to hyperpolarizing at the GDP peak (140) (Figure 8C). In 692 

addition, intracellular chloride concentration and thus GABA actions not only significantly vary 693 

between neurons, but also change during GDPs (165, 166).  This dualism in GABA action 694 

explains the diverse effects of drugs modulating GABA(A) receptor functions and 695 

manipulations with INs excitability. In line with excitatory GABA actions, GDPs are promoted 696 

by positive allosteric GABA(A) modulators and agonists (137) and by optogenetic stimulation 697 

of SOM-INs (95), and suppressed by optogenetic inhibition of MGE-derived INs (including 698 

SOM-INs; interestingly, inhibition of CGE-derived INs affects GDPs less) (Figure 8G) (263). On 699 

the other hand, GDPs are transformed to epileptiform discharges after blockade of GABA(A) 700 

receptors (137, 253).  The dualism in GABA actions also involves inhibitory effects of GABA 701 

mediated by presynaptic (183) and postsynaptic (139) GABA(B) receptors, which contribute 702 

to the termination of GDPs similarly to the GABA(B) receptor mediated termination of SPWs 703 

in adult animals (88).   704 

GABAergic hub cells are likely important players in the coordination of hippocampal 705 

dynamics at the end of the first postnatal week in rodents. They are characterized by :(1) high 706 

output functional connectivity (i.e. they are active before most cells in the network); (2) high 707 

effective connectivity since their stimulation significantly affects network dynamics; (3) high 708 

anatomical connectivity with widespread axonal arborization crossing subfield boundaries; 709 

and (4) they receive more excitatory postsynaptic potentials and have a lower threshold for 710 

action potential generation than other INs (33). Hub neurons are most likely involved in the 711 

coordination of GDPs, however, their exact role is more complex than acting as pacemakers.  712 

Indeed, even though hub cells are spontaneously active at the onset of GDPs and have many 713 

postsynaptic targets (33), their stimulation may trigger GDPs (Figure 8E) but most often 714 

results in desynchronization (i.e. a decrease in the frequency of GDPs or a progressive phase 715 

delay in the period of GDPs (33), Figure 8F). Such desynchronization may have several causes, 716 

including a shunting or inhibitory action of GABA in some cells or an out of phase stimulation 717 

of intrinsic pacemakers. In addition, genetic fate mapping experiments showed that early-718 

generated GABA cells form a sub-population of hub neurons (211). Accordingly, the 719 

maturation of the intrinsic morpho-physiological properties of early born hub cells as well as 720 
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their functional network integration, nicely parallel the developmental emergence of GDPs 721 

(259).  722 

The age of non-hub cells also influences their participation in GDPs. As discussed above, the 723 

date of transition from an SPA to GDP network depends on the age of the cell (8, 175). This is 724 

also supported by clear correlation between the emergence of synaptic currents (that marks 725 

a transition from SPAs to GDPs) and the level of morphological differentiation of PNs and INs 726 

(118, 251), also seen in fetal macaque hippocampal slices (141). It is equally possible that 727 

the developmental excitatory to inhibitory switch in the action of GABA is set by birthdate as 728 

shown for early-born GABA cells (259). Thus, the dates of both entry to and exit from GDP-729 

circuits could be individually determined for each neuron according to its age.  730 

GDPs have been suggested as instrumental for synaptic plasticity and to guide the formation 731 

of intrahippocampal circuitry including a transition from silent NMDA receptor -mediated 732 

synapses to functional AMPA/NMDA receptor-mediated synapses, and the for maturation of 733 

GABAergic synapses (133, 190). Interestingly, the peak of GDP expression in CA1 matches 734 

the emergence of local recurrent connections (both CA3 and local GABAergic networks 735 

around P7), suggesting they could serve as a biomarker of this stage of circuit development.  736 

As such, it seems important to know whether a homologous pattern involving similar circuits 737 

and dynamics, can be observed in vivo. A major feature of GDPs is their internal generation in 738 

the hippocampal circuit in the absence of any input and their main generative mechanism 739 

involving recurrent excitation within the CA3 network similar to adult SPWs. Below, we 740 

provide evidence that early Sharp Waves (eSPWs) are the activity pattern during which the 741 

internal circuit of the hippocampus is first rehearsed, as observed with GDPs, but within a 742 

large-scale network involving the EC, the hippocampus and sensory-motor circuits.  743 

    744 

Early Sharp Waves and tails in vivo 745 

Early sharp waves (eSPWs) frequently followed by afterdischarges (so-called “tails”) are the 746 

earliest coordinated activity pattern reported in vivo, starting from P1 in the rodent CA1 747 

(Figures 6&9). Based on their developmental timeline and their significant association with 748 

polysynaptic GABAergic events, eSPWs were initially described as the in vivo counterpart of 749 

GDPs (161). However, this equation may need to be slightly revised according to recent 750 

findings.  751 
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Overall, eSPWs are very similar to the electrophysiological phenotype of adult SPWs (besides 752 

the absence of ripple oscillations, Figure 9B, C & Figure 11B). Like adult SPWs, they are highly 753 

synchronized bilaterally between the left and right hippocampi (255), and along the 754 

longitudinal axis (256), with a higher initiation probability in the septal pole and a speed of 755 

propagation (250 mm/s) slightly lower than in adult animals (350 mm/s, (209)), but much 756 

higher than the speed of GDP propagation in the intact hippocampus in vitro (7–10 mm/s, 757 

(160)).  However, while adult SPW-Rs are spontaneous top-down events, which are self-758 

generated in the hippocampal circuit, eSPWs are mainly bottom-up events involving the 759 

inputs from EC, which are activated during myoclonic movements (startles and twitches, 760 

Figure 9B&D). Therefore, eSPWs are distinct from adult SPWs despite the similarity in 761 

electrophysiological traits. This is typical for many developmental activity patterns such as 762 

neocortical delta waves, spindle-bursts and early gamma oscillations, which look similar to 763 

but are mechanistically different from adult delta-waves, sleep spindles and gamma 764 

oscillations (143, 187, 272).     765 

The current source density profile of eSPWs in CA1 is characterized by two prominent sinks 766 

located in strata radiatum and lacunosum-moleculare reflecting a co-activation of 767 

intrahippocampal inputs from CA3 together with EC inputs (Figure 9B) (174, 255, 256).  Both 768 

superficial MEC and hippocampal units fire during eSPWs, with MEC L2/3, DG and CA1 units 769 

showing the highest participation rates, and with MEC neurons firing before hippocampal 770 

neurons (255). In addition, MEC burst-driven eSPWs are reliably preceded by myoclonic 771 

movements (Figure 9D) (255), characteristic of active sleep during the neonatal period in 772 

rodents (and fetal stages in humans). Based on these observations, the following network 773 

model of eSPWs has been proposed (Figure 9B) (255). First, myoclonic movements generate 774 

sensory feedback, which triggers activity bursts (early gamma and spindle-burst oscillations) 775 

in the primary somatosensory cortex (S1) (6, 125, 143, 192, 273). S1 activity is further 776 

conveyed to the MEC where it ignites an activity burst consisting of a sharp potential and a 777 

beta-gamma oscillation. MEC L2/3 bursts are further conveyed from the MEC to the 778 

hippocampus through two streams: (i) the temporoammonic pathway from MEC L3 to the 779 

distal apical dendrites of CA1 pyramidal cells and (ii) the perforant path from MEC L2 to the 780 

DG and CA3. Neuronal excitation in CA3 is amplified by a recurrent excitatory CA3 network 781 

similarly to what occurs during adult SPWs (44, 57, 274) and GDPs in vitro (162) and 782 

activates Schaffer collateral input to CA1. Thus, both inputs from EC and CA3 are co-activated 783 
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during MEC bursts/ eSPWs and their co-activation drives excitation of CA1 neurons. Notably, 784 

the first functional glutamatergic synapses at P0 were only observed in CA1 PNs with apical 785 

dendrites reaching the stratum lacunosum-moleculare (251). This raises the hypothesis that 786 

the first glutamatergic synapses on CA1 PNs are of MEC L3 origin. The development of CA3-787 

CA1 synapses is delayed: they are absent at P0-1, and start to form only from P2 initially 788 

mainly as NMDA receptor based “silent” synapses (84). This suggests that temporoammonic 789 

EC inputs to CA1 mature earlier than Schaffer collateral inputs from CA3, and that the direct 790 

EC – drive is pivotal for the generation of eSPWs in CA1. In agreement with this hypothesis, 791 

severing the connections between the EC and the hippocampus suppresses CA1 unit 792 

activation following movements (192). How S1 conveys sensory feedback from movements 793 

to EC is less clear, however. As there is no direct input from S1 to EC, this should involve some 794 

intermediate areas/structures such as the perirhinal cortex (39, 60, 267). In addition to the 795 

cortico-cortical interactions, the link between movements and eSPWs may also involve 796 

subcortical pathways such as projections from the nucleus reuniens from the higher order 797 

ventromedial thalamus directly to CA1 (258) or projections from the medial septum to the EC 798 

(276). Importantly, eSPWs become less frequent and dissociate from myoclonic movements 799 

but persist in the “cerveau isole” preparation after severing external inputs through a 800 

supracollicular transection (132), indicating that they are also internally-generated events 801 

and that sensory input plays only a triggering role by analogy to S1 and V1 spindle-bursts (6, 802 

110, 143). It would be of interest to test whether sensory inputs or spontaneous activity 803 

from other modalities (retinal wave driven spindle-bursts and Slow Activity Transients (SATs) 804 

in the visual system, cochlear-driven bursts in the auditory system, and olfactory bulb- driven 805 

activity in the olfactory system) are also capable of triggering eSPWs. In addition, the 806 

hippocampus is likely not the end-point but rather an intermediate station in the large-scale 807 

bottom-up network activated by sensory feedback from myocloni  Excitation during eSPWs is 808 

further broadcasted from CA1 to the prefrontal cortex (3) and probably to other output 809 

targets including the subiculum, the deep layers of EC, and the supramamillary nucleus of the 810 

hypothalamus.   811 

 812 

Intermittent beta-gamma and theta oscillations  813 

While eSPWs are the amplest electrographic events in the neonatal hippocampus, 814 

neuronal firing can also be observed during intermittent 1-5 s long population bursts. In about 815 
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half of the cases, these bursts are observed following an eSPW and are called “Sharp-and-tail” 816 

events (161). In CA1, population bursts are often associated with transient oscillations at a 817 

frequency of 20-30Hz (so-called hippocampal beta (174), or gamma (132, 191) oscillations). 818 

Similar bouts of short-lived oscillations were also found in CA3 starting from P5 (149, 248). 819 

These beta/gamma Hippocampal Network Oscillations (HNOs) increase in amplitude and 820 

frequency (towards the gamma frequency range) with age, and become modulated by theta 821 

rhythms starting from P8 (191). The activity bursts in which beta/gamma oscillations are 822 

intermingled with theta oscillations are often referred to as theta-bursts (3, 36, 65, 112).  823 

HNOs are characterized by current-source density profiles similar to eSPWs with sinks in CA1 824 

strata lacunosum-moleculare and radiatum (174). Like eSPWs, HNOs co-occur with 825 

movements (174, 191) suggesting that they may also be driven by EC. Moreover, activity 826 

coherence between S1 and CA1 is higher in the beta (20-30 Hz) frequency range and is 827 

significantly reduced after lesion of the follicular (branch of CN-V) nerve (66). Since neonatal 828 

EC activity is organized in sharp potentials and beta-gamma bursts (201, 227, 252, 255), 829 

both types of EC activity likely contribute to the transfer of movement-triggered sensory 830 

feedback to the hippocampus. However, the EC is not the only driver of CA1 activity. Indeed, 831 

the intrahippocampal CA3 recurrent network may also be involved in the generation of HNOs, 832 

at least from the end of the first postnatal week,  as indicated: (1) by the presence of a sink in 833 

stratum radiatum for Hippocampal Beta Oscillations (HBOs) (174); and (2) the parallel 834 

development of oscillatory activity at the beta frequency in CA3 and an increase in HNO 835 

frequency, amplitude and theta-modulation (149, 248). We propose that HNOs may not be a 836 

developmentally transient network activity pattern but rather precursors of mature slow/fast 837 

gamma oscillations, whose generation involves CA3 and EC as in adults, but display a lower 838 

fundamental frequency due to slower conduction delays in developing circuits and immature 839 

inhibition.      840 

One last major subtype of hippocampal network activity patterns are theta oscillations, which 841 

in the adult rodent are observed during episodes of locomotion, active engagement, or REM 842 

sleep and provide an internal clock distributing CA1 dynamics into spike sequences (80, 262). 843 

It should be noted that theta oscillations do not necessarily generalize across species.  Indeed, 844 

LFP fluctuations in humans, non-human primates, and bats tend to be either non-rhythmic, or 845 

concentrated in short oscillatory bouts as well as being task and cognitive state-dependent 846 

(40, 41, 86, 101, 128). However, the absence of a continuous theta rhythm, as reported in 847 
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bats, does not necessarily imply that the temporal phase coding thought to be intrinsically 848 

linked to theta in rodents is absent (86).  Furthermore, the dissociation between the LFP 849 

signal periodicity, cell assembly synchronicity and phase coding may need to be considered 850 

when studying the development of theta oscillations, even in rodents.  851 

In the adult rodent, CA1 theta oscillations are supported by the interplay between 852 

inputs from the septum, MEC, and CA3 with local and long-range GABAergic neurons and 853 

resonant intrinsic firing properties. The development of theta oscillations in the hippocampus 854 

was first described by LeBlanc and Bland in the form of intermittent bursts of activity within 855 

the theta frequency range occurring in CA1 and DG from P8-9 during movement and starting 856 

from P10 during RUN/REM-states or following cholinergic-agonist application (154). Starting 857 

from P8-10, theta-coherent activities synchronize the hippocampus, red nucleus, LEC, 858 

prefrontal cortex and ventromedial thalamus (3, 36, 65, 112). Notably, pharmacological 859 

inactivation of the medial septum blocks hippocampal theta oscillations at P12 (3, 36, 65, 860 

112). From P10 to P23-28, theta oscillations increase in amplitude and frequency from 4 to 7 861 

Hz. This developmental profile for theta oscillations has been confirmed by several studies  862 

(65, 161, 191), with a few reports suggesting an earlier emergence at P1-2 in the form of 863 

short bouts at 7-8 Hz frequency (36, 131). These events in younger animals may well result 864 

from the passive propagation of cortical spindle-bursts  to the hippocampus (132). The exact 865 

network mechanisms underlying emergence and developmental changes in hippocampal 866 

theta oscillations, which likely involve maturation of theta-generative properties in CA3 and 867 

EC networks, local, notably inhibitory CA1 circuits, as well as cholinergic and 868 

noradrenalinergic control remain an open question for future investigations.  869 

 870 

Role of GABAergic circuits in coordinating early hippocampal dynamics 871 

While previous research has clearly identified instrumental roles of GABAergic neurons in the 872 

generation of GDPs in vitro, data on how interneurons shape network activity in the neonatal 873 

hippocampus in vivo remain sparse. On the one hand, barrages of synaptic GABAergic 874 

currents have been recorded during eSPWs and tails in CA1 PNs at P3-6 (161). Yet, 875 

manipulating interneuron activity did not provide consistent results (153). Lowering the 876 

excitability of hippocampal INs decreased the amplitude and frequency of eSPWs, while 877 

enhancing IN excitability did not affect eSPWs at P3 (Figure 10). At P7, manipulating 878 

GABAergic neuron excitability in either direction did not substantially affect eSPWs (200). In 879 
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contrast to these findings, immunotoxic lesion of CA1 INs decreased the occurrence of eSPWs 880 

in P7-8 pups (26). Also, manipulation of depolarizing GABA actions through NKCC1 deletion 881 

from telencephalic glutamatergic neurons decreased in-vitro excitatory GABA actions and 882 

impaired GDPs in neonatal hippocampal brain slices but had a minor impact on correlated 883 

spontaneous activity (eSPWs and HBOs) in the hippocampus of P3-4 mouse pups (102). 884 

Optogenetic activation of Dlx5/6 interneurons inhibited theta-bursts, whereas their activation 885 

boosted hippocampal activity in P8-10 mice (3). Thus, the roles of INs in shaping eSPWs and 886 

early oscillatory activity in the neonatal hippocampus are far from being understood. Further 887 

studies with the recording and targeted manipulation of specific subclasses of interneurons, 888 

including hub cells, are needed. In particular, the functional and structural wiring of CA1 889 

GABAergic neurons remains to be described, including the nature of their extra-hippocampal 890 

inputs, the possible identification of transient scaffolds (177, 249), and their 891 

interconnectivity schemes. This needs to be examined in detail with a high sampling rate 892 

given the rapid changes occurring in the circuitry during the postnatal period. There are 893 

however some facts that can help in this endeavor. First, as discussed above, the 894 

development of perisomatic GABAergic innervation occurs quite late during cortical 895 

development (61, 70, 179, 187, 193). Second, eSPWs lack ripple-oscillations, whose 896 

generation involves perisomatic inhibition and which emerge during the second postnatal 897 

week and attain adult-like features by P20 (Figure 11B) (38, 130, 161). Third, inhibition 898 

based kainate-induced gamma CA3 oscillations also emerge during the second postnatal 899 

week (in a form of beta oscillations) and acquire an adult-like phenotype by the third 900 

postnatal week (248). Finally, while in adults EC inputs exert a global tonic inhibitory 901 

influence on hippocampal activity, in neonates, activation of the EC excites all neurons within 902 

the trisynaptic (EC layer 2 – DG – CA3 – CA1) and monosynaptic (EC layer 3 – CA1) EC-903 

hippocampal circuits during eSPWs (254). These findings support the hypothesis that 904 

neonatal EC-hippocampal circuits operate without efficient feedforward inhibition during 905 

eSPW to assist the integration and plasticity of excitatory inputs from major pathways. CA1 is 906 

thus primarily driven by feedforward bottom-up excitation (Figure 9B). This is consistent with 907 

an activity-dependent instructive signal provided by MEC to drive maturation sequentially and 908 

unidirectionally through the intrinsic circuits of the entorhinal–hippocampal network during 909 

the postnatal period (73). We further hypothesize that the transformation from eSPWs to 910 

adult SPWs involves the maturation of the feedforward inhibitory circuits, with the 911 
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internalization of the primary SPW generator from EC to CA3 (also involving the development 912 

of the excitatory recurrent CA3 circuitry), the dissociation of eSPWs from movements 913 

together with a loss of EC drive to SPWs, and the emergence of ripple oscillations (Figures 6 914 

and 9). Whether eSPWs themselves play a direct instructive role in the emergence of 915 

perisomatic axonal coverage is an open question.  916 

 917 
Emergence of hippocampal sequences  918 
 919 

The second postnatal week is the time when bottom-up driven eSPW and HNOs are 920 

progressively replaced by endogenous events in the form of SW-associated ripples and theta 921 

nesting gamma oscillations.  As reviewed above, the emergence of these patterns is most 922 

likely supported anatomically by the appearance of recurrent networks comprising 923 

perisomatic inhibition and Schaffer Collateral CA3 inputs. At this stage, CA1 circuits switch 924 

from being mainly bottom-up driven by spontaneous activity originating from the sensory 925 

organs to displaying spontaneously recurring internal dynamics supported by 926 

intrahippocampal circuits, as revealed by the observation of recurring network bursts in the 927 

form of GDPs in preparations disconnected from external inputs such as slices. During this 928 

period, active exploration of the environment is limited, these spontaneous activities are 929 

therefore probably limited in their informational content and rather serve local network 930 

calibration purposes. The second postnatal week to a large extent remains a black box of 931 

hippocampal development that ends with the emergence of landmark-modulated place cells 932 

and stationary sequences (Figures11&12). The early appearance of place cells bound to 933 

external cues together with reactivation of stationary places (91, 197) suggests an earlier 934 

development of allothetic (i.e. cue-based) representation in CA1 (Figure 12). Accordingly, 935 

CA1PNs coding for cue-enriched environments in the adult were preferentially found in the 936 

deep part of the CA1 stratum pyramidale, where older cells should eventually locate (92, 937 

225).  938 

Since mice do not yet actively navigate during the second postnatal week it is difficult 939 

to know whether sequences of events are replayed. The fast oscillations characteristic of the 940 

sharp wave-associated ripples , observed both during the sleep and awake states, with their 941 

sink in the stratum radiatum indicative of CA3 input, are not seen before the end of the 942 

second postnatal week (P14 in rats (38)). Whereas the power of the SWRs gradually 943 
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increased with age during the third postnatal week (Figure 11B), the intraripple frequency 944 

was reported as constant (38, 44).   As detailed in many excellent reviews including (44), 945 

SWRs are often associated with the compressed reactivation of place cell spike sequences 946 

occurring during navigation, with a major role in memory processes. Although place cells and 947 

SWRs were reported to emerge roughly at the same time (150, 265), recent evidence 948 

indicates that reactivation of traveled paths is not observed until one week later (around P23, 949 

Figure 11D (91, 197)), the time when grid cells appear in the MEC (150). The same is true for 950 

theta sequences observed during navigation (91, 197) (Figure 11D). This would indicate that 951 

the circuits necessary for binding together discontinuous events (relational information) are 952 

still immature at the end of the second postnatal week (Figure 11&12).  However, at the 953 

beginning of the third week, cell pairs that fire together a significant amount of time during 954 

running are also more likely to be coactive during sleep, indicating that some form of post-955 

experience Hebbian plasticity, with a higher co-activity threshold,  is likely to occur as soon as 956 

place cells emerge(197). In addition, phase precession, the phenomenon by which the timing 957 

of spikes within a theta cycle is progressively delayed as the animal traverses a given place 958 

field, is also already present at this time(197). Both phenomena suggest that internal CA1 959 

dynamics begin to keep track of experience within proto-sequences.   960 

Two lines of findings diverge regarding the emergence of experience-dependent 961 

sequences during the third postnatal week. Some report that sleep replay and theta 962 

sequences emerge in a coordinated manner and progress from reactivating single locations, 963 

then short paths to longer trajectories between P17 and P32 (197). Others (91), observe a 964 

prior emergence of sequences unrelated to experience in the form of “preplay”. The latter 965 

would indicate that a reservoir of preconfigured sequences is formed through an innate 966 

developmental program, serving as a backbone onto which future experience is mapped and 967 

encoded (Figure 11). These two views are comprehensively  developed in recent reviews (78, 968 

240). A three stage development of sequential activity patterns has thus recently been 969 

proposed (78): (1) end of second postnatal week: representation mode with  “rate coding” of 970 

discrete locations (150, 265); (2) during the second postnatal week: emergence of 971 

preconfigured sequences, observed during rest or sleep  in an age-dependent but experience-972 

independent manner (but see (197)); (3) third postnatal week: age- and experience-973 

dependent sequences of trajectories or episodes (theta sequences) are observed in higher 974 

proportions than preplay (91, 197). The earlier emergence of rate coding prior to phase 975 
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coding is somehow at odds with the recent finding that cells displaying a rate code are found 976 

in superficial layers and therefore born and mature after deep cells (225). Still, the fact that 977 

deep CA1 PNs comprise a higher proportion of place cells may partly explain this possible 978 

contradiction (189). It is also somehow inconsistent with the fact that spontaneous self-979 

triggered body movements would tend to favor the initial development of idiothetic (i.e. 980 

based on self-referenced information) rather than allothetic (i.e. based on external 981 

landmarks) representations. Future work is needed to nail down these apparent 982 

discrepancies.   983 

In conclusion, experience-dependent sequences would be the latest hippocampal 984 

pattern to mature during development (Figures11&12). Whether internal preconfigured 985 

sequences emerge before remains a debated issue. That sequences reactivating non-spatial 986 

contents of experience appear earlier is also an open possibility.  Indeed, the observation of 987 

place cells requires the animal to move in an environment, which is delayed compared with 988 

the development of other senses such as olfaction.  It is now well established that the 989 

hippocampus also encodes non-spatial features (eg. time, odors, sound frequencies, 990 

conspecifics) (15, 148, 168) and ripples may therefore reactivate content other than spatial 991 

information (18).  992 

 993 

Development of hippocampus-dependent cognitive functions 994 
 995 

This section does not aim to provide a comprehensive review of the ontogeny of 996 

spatial cognition and episodic memory, the two cardinal hippocampal functions, since many 997 

excellent recent reviews are dedicated to this very matter (see for example (71, 123, 136, 998 

152, 216, 226, 240)). Instead, our objective is to interpret the emergence of these functions 999 

in the light of the developmental origin of hippocampal diversity.  One particularly appealing 1000 

concept towards this goal is the idea that navigation across autobiographical events (episodic 1001 

memory) and in the real world (spatial navigation) relies on two mechanisms of hippocampal 1002 

representation, one that is map or schema-based and depends on external multisensory 1003 

landmarks (allocentric) and the other that is self-referenced and often requires body 1004 

movement (egocentric) (42). In the adult, both representations work together but one may 1005 

dominate according to the availability of external cues (for example in the dark, egocentric 1006 

navigation dominates). Besides, these representations differentially contribute to a given 1007 
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cognitive function. Hence, it has been proposed (42) that map-based navigation would 1008 

support allothetic navigation and semantic memory (i.e. generalization of knowledge 1009 

independent from context) while self-referenced information would be central to path-1010 

integration and episodic memory (i.e. ‘mental travel’ in time and space in reference to self).  1011 

Given that earlier born CA1 pyramids are better tuned to cue-based representation and 1012 

generalization while those born later encode self-referenced information (see section 1013 

“Lasting traces of early development in adult hippocampal circuits”), episodic memory would 1014 

be expected to develop later than allothetic navigation and semantic memory.  1015 

The development of episodic memory has been the focus of many cognitive studies in 1016 

humans. Infants both lack knowledge of the self as an independent entity (121) and are 1017 

unable to form or store memories for recall later in life, a phenomenon termed infantile 1018 

amnesia until roughly two years of age (71, 216). Neither is spatial memory mature in infants 1019 

before 20 months of age (203). In rodents, the onset of hippocampus-dependent spatial 1020 

memory is delayed with respect to the emergence of place cells as assessed using different 1021 

behavioral tasks that include the Morris Water Maze (5, 219), spatial alternation (104), 1022 

Barnes maze, (182) or object location (56). It likely relies on environmental cues (5, 219), 1023 

the same way place cells from young animals are stabilized by boundary information (196). In 1024 

addition, grid cells, critical elements for path integration mature later than hippocampal place 1025 

cells (150), which display distance coding based on self-motion (27). In addition, episodic 1026 

aversive events elicited in rodents at the beginning of the third postnatal week create a latent 1027 

trace in the hippocampus (108, 243).    1028 

While the emergence of complex forms of episodic memory and self-based navigation 1029 

may be protracted, some aspects of hippocampus-dependent learning and memory are 1030 

present early in life in infants. Besides its classic role in episodic memory, the hippocampus 1031 

was recently proposed, based on human data, to be involved in statistical learning, i.e. the 1032 

ability to extract regularities from the sensory environment and therefore segment a 1033 

continuous sensory flow into sequences of cognitive units (117, 226). Statistical learning 1034 

develops much earlier than episodic memory, as early as at 8 months in infants (220). 1035 

Therefore, one appealing possibility would be that the first hippocampus-dependent cognitive 1036 

function is statistical learning.  This would culminate, once rodents or infants are able to 1037 

travel in space, in the formation of place fields (150, 265), i.e. the chunking of a space 1038 

continuum into segmented units. Statistical learning should inform predictive models and 1039 
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allow more abstract, generalized and semantic knowledge. In this respect, infantile 1040 

generalization (136, 216, 218) may be envisaged as a consequence of the early dedication 1041 

to statistical learning of the hippocampus.  1042 

Recent modelling work suggested that the hippocampus supports the computations of 1043 

both episodic memory and statistical learning via two pathways, the trisynaptic pathway 1044 

(EC>DG>CA3>CA1) supporting episodic memory with the temporoammonic pathway enabling 1045 

statistical learning (222). Experimental work in rodents indicates that early network dynamics 1046 

in CA1 are mainly driven by direct EC inputs(255), while anatomical evidence in macaques 1047 

(152) and rodents suggests protracted development of CA3, DG and consequently of the 1048 

trisynaptic pathway (see section above). Both findings therefore give functional and 1049 

anatomical support to the early development of the temporoammonic pathway (before the 1050 

trisynaptic circuit) and the possible early commitment of the hippocampus to statistical 1051 

learning. Given the correspondence of the developmental timelines between rodents and 1052 

humans, this would start during the third trimester of gestation and certainly extend 1053 

postnatally. A consequence of statistical learning is predictive abilities. It was also proposed 1054 

that, in the adult, the predictive ability of the hippocampus and its role in retrieving memories 1055 

are embedded in separate output pathways (21). Interestingly, in that framework, long-range 1056 

hippocampal GABAergic neurons could function as an anatomical support to broadcast a 1057 

predictive error signal (21). These cells are among the earliest to be generated (see previous 1058 

section), again supporting the idea of an early wiring of intra and extra-hippocampal circuits 1059 

for learning regularities and predictive coding.  1060 

 1061 

In summary, we would like to propose that the hippocampus performs generalization 1062 

based on statistical learning from the sensory world before being able to support egocentric 1063 

episodic memory. This sequence in cognitive abilities nicely mirrors developmental schedules 1064 

both at cellular and circuit level, with earlier born cells displaying a generalizing function, and 1065 

the monosynaptic pathway maturing before the trisynaptic circuit.  Future work in rodents is 1066 

needed to confirm the possible implication of the hippocampus in statistical learning and its 1067 

circuit basis, and in particular, to compare the developmental timelines for cue-based vs. 1068 

internal hippocampal sequences.  1069 

 1070 
Summary and conclusion 1071 
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 1072 
Hippocampal circuits emerge through a long developmental journey with several 1073 

episodes and milestones. The first phase is neurogenesis and migration. Indeed, despite its 1074 

fundamental role in learning and memory, the functional organization of the adult 1075 

hippocampus is not only formed through experience-dependent plasticity, but is partly 1076 

hardwired at the earliest stages of development, including embryonic neurogenesis. This is 1077 

reflected in the dynamics of the adult CA1, which operates through a combination of plastic 1078 

and rigid cells, bound together within segregated functional assemblies that support stable 1079 

internal dynamics (107, 170). The propensity of individual cells to keep track of experience 1080 

through intrinsic or synaptic plasticity may be rooted in their temporal origin, as indicated in 1081 

several recent studies, with early born neurons serving a generalizing function and later born 1082 

neurons assisting content discrimination.  Future studies combining fate-mapping and in vivo 1083 

physiology are needed to bridge the gap between neurogenesis and adult hippocampal 1084 

function. Whether the final contour of hippocampal assemblies is set early in ontogenesis and 1085 

stabilized through activity-dependent processes (eg. SPA), as described for cortical columns, 1086 

remains an open question. Addressing this major issue should contribute to unraveling the 1087 

topological logic of hippocampal functional maps.  1088 

Following neurogenesis and migration, the second phase starts at birth, when 1089 

hippocampal circuits integrate into a large-scale bottom-up network that processes 1090 

somatosensory feedback triggered by neonatal movements (Figure 12). This period is 1091 

dominated by recurring network bursts, in the form of early sharp-waves and/or beta-gamma 1092 

oscillations. While the exact circuit mechanisms and spatial organization of these bursts 1093 

remain partly unknown, they certainly mirror the fact that extra-hippocampal inputs develop 1094 

before intrahippocampal connectivity schemes, including feedforward inhibition. Future work 1095 

is needed to reconcile the descriptions of early hippocampal dynamics in vitro and in vivo and 1096 

in particular to probe the early synaptic function of GABAergic transmission. At present some 1097 

in vitro patterns like SPAs lack  an in vivo counterpart. Work is also necessary to describe the 1098 

calcium dynamics associated with early electrophysiological activity patterns. Regardless, we 1099 

propose that this period, which corresponds roughly to the third trimester of gestation in 1100 

humans (53, 270), ends with the first postnatal week in rodents followed by a transition 1101 

period with an emergence of adult activity patterns (theta and gamma oscillations, adult 1102 

SPWs and ripples) during the second postnatal week. This is a critical period of structural 1103 
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plasticity that terminates with the emergence of hippocampal recurrent connectivity, 1104 

including feedback inhibition supporting the segregation of hippocampal assemblies, possibly 1105 

along the radial axis (Figure 12). This is likely an activity-dependent but experience-1106 

independent process through which hippocampal “receptive fields” and local circuits calibrate 1107 

local inhibition to the statistics of the external world. In other words, this second episode is 1108 

likely the period when hippocampal circuits start building an internal model based on 1109 

spontaneous and content-free activity from sensory organs and sensory feedback from 1110 

myoclonic movements (Figure 12). This would fit the hypothesis that the hippocampus would 1111 

initially support statistical learning. Future experiments are needed to test this hypothesis, 1112 

either in rodents performing novel tasks aiming at probing statistical learning or in human 1113 

babies for example using MEG (117). Addressing this critical question would enable the gap 1114 

between species to be bridged. However, it requires a closer collaboration between cognitive 1115 

and systems developmental neuroscience.  1116 

Towards the end of that period, both an “internalization” and a “sparsification” of 1117 

activity are observed, most likely reflecting the emergence of a powerful inhibitory landscape 1118 

and the consolidation of CA3 inputs. This period of structural plasticity is then followed by a 1119 

period of internal spontaneous activity within the hippocampal formation supporting the 1120 

emergence of circuits capable of comparing CA3 and EC inputs prior to active exploration.   1121 

This period of functional plasticity ends with the emergence of place fields, first unstable 1122 

(223) and landmark-based (265), followed by sequences integrating internal dynamics and 1123 

external environmental cues. There are still many open questions, including those regarding 1124 

the role of early network oscillations in the maturation of specific circuits and their link with 1125 

adult network patterns or the role and function of specific GABAergic circuits. Nevertheless, 1126 

we believe that the study of hippocampal development in the context of circuit physiology 1127 

will pave the way for understanding memory circuits in the brain by watching the assembly of 1128 

its building blocks.    1129 

1130 
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Figure Legends 1131 

 1132 

Figure 1: Possible link between the timing of neurogenesis and the diversity within CA1 1133 

pyramidal cells in the adult hippocampus as reflected by their anatomical distribution.  1134 

A: schematic cartoon illustrates the distribution of CA1 pyramidal neurons (PN) along the 1135 

transverse and radial (inset) axes according to their presumed birthdate (from E12.5 to 1136 

E18.5). Early born PNs (ebPNs) are represented in pink and later-born PNs (lbPNs) in green. B-1137 

D: Physiology (B), Connectivity (C), and Function (D) segregate along these two axes matching 1138 

the timing of neurogenesis as illustrated below. B: Input resistance (Rin) is smaller in deep or 1139 

distal CA1PNs (pink) than in superficial or proximal ones (green). C: Integration within 1140 

perisomatic GABAergic inputs (red circles) also differentiates between eb and lbPNs, with 1141 

lbPNs (located superficially or proximally) preferentially connecting onto interneurons and 1142 

ebPNs preferentially contacted by perisomatic GABAergic inputs. D: Distal and deep PNs are 1143 

more likely to display multiple place fields than proximal or superficial ones. B from Ref. (129), 1144 

with permission from Journal of Comparative Neurology; C from Ref. (207), with permission 1145 

from Hippocampus; Ref. (158), with permission from Journal of Neuroscience; D from Ref 1146 

(119), with permission from Neuron and Ref. (97), with permission from Nature 1147 

Communications. 1148 

 1149 

Figure 2. Early born GABAergic neurons  (ebGABA) display characteristic physiology, 1150 

connectivity, and function in the adult CA1.  A: Fate-mapping experiments demonstrated that 1151 

ebGABAs (born at E9.5) adapt their firing in response to long current injections (B), receive 1152 

less local GABAergic inputs (lower putative PV contacts) (C), and display high functional 1153 

connectivity (D). B-D from Ref. (30), with permission from Nature Communications. 1154 

 1155 

Figure 3. Developmental timeline of the neurogenesis and migration of CA1 neurons.  1156 

CA1 pyramidal neurons (PNs) and GABAergic Interneurons (INs) are born and migrate into 1157 

their final positions from E10 until postnatal day 5 (P5) with different schedules for early-born 1158 

(eb, red) versus late-born (lb, green) cells. The timing of neurogenesis is indicated for a few 1159 

subtypes of INs. SOM: somatostatin, PV: parvalbumin; nNOS: Nitric Oxide, Chand.: chandelier, 1160 

CR: Calretinin.  1161 

 1162 
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Figure 4: Developmental sequences for the maturation of morpho-physiological properties of 1163 

CA1 neurons. A: Schematic description of postnatal changes in the morpho-functional 1164 

properties of CA1 neurons. B: Input resistance and Ih decrease as postnatal age increases. C: 1165 

Spontaneous activity shifts from gap-junction mediated Synchronous Plateau Assemblies 1166 

(SPA, red) to synapse-driven Giant Depolarizing Potentials (GDP, blue) while the 1167 

morphophysiological properties of GABAergic cells change from displaying filopodia, adaptive 1168 

firing, and large miniature events to smooth cell bodies, firing diversity and small amplitude 1169 

minis. D. The expression of KCC2 at the membrane is also developmentally regulated 1170 

according to age with ebINs displaying membrane KCC2 as early as P3. B from Ref. (76), with 1171 

permission from Hippocampus; C from Ref. (8), with permission from Journal of Neuroscience; 1172 

D from Ref. (259), with permission from Journal of Comparative Neurology 1173 

 1174 

Figure 5: Developmental timeline describing the wiring of CA1 hippocampal circuits. Long-range 1175 

glutamatergic (top) inputs from the entorhinal cortex and septum as well as long-range 1176 

GABAergic inputs reach CA1 first as early as the late embryonic stages. In turn, CA1 1177 

interneurons with a long-range projection to the septum mature before dendritic inhibition 1178 

while somatic GABAergic inputs develop towards the end of the first postnatal week.  1179 

 1180 

Figure 6: Global timeline for the development of hippocampal network activity patterns.  1181 

A, in vivo and B, in hippocampal slices and intact hippocampus preparation in vitro. Green 1182 

indicates transient immature patterns, orange indicates emerging adult patterns. eSPW, early 1183 

Sharp Waves; SPW, adult sharp waves; SPA, Synchronous Plateau Assemblies; GDP, Giant 1184 

Depolarizing Potentials. 1185 

 1186 

Figure 7: Emergence of correlated neuronal activity in the developing hippocampus in vitro. A: 1187 

Developmental timeline of expression of hippocampal network activity patterns in vitro.  B: 1188 

Uncorrelated calcium spikes (black) are observed until birth when they are replaced by gap-1189 

junction mediated Synchronous Plateau Assemblies (SPA, red). In turn, SPAs are progressively 1190 

replaced by Giant Depolarizing Potentials (GDP, blue) as illustrated by the histogram plotting 1191 

the fraction of cells involved in either pattern as a function of time. These three patterns are 1192 

associated with characteristic calcium fluorescence transients. C: GDPs actively shut down 1193 

SPAs as shown by the example of a GDP terminating a calcium plateau and the associated 1194 
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membrane potential oscillations measured in current-clamp mode. D: Neurons involved in 1195 

SPAs are connected by electrical synapses as revealed by the spikelets recorded in current 1196 

clamp (bottom right trace) and by multiple neuron labelling with neurobiotin. B and D from 1197 

Ref. (55), with permission from Neuron; C from Ref. (8), with permission from Journal of 1198 

Neuroscience.  1199 

 1200 

Figure 8: Giant depolarizing potentials in hippocampal slices in vitro. A: Timeline of GDPs. B: 1201 

Example traces of gramicidin perforated patch recordings from a CA3 pyramidal cell, multiple 1202 

unit activity (MUA) and local field potential (LFP) recordings from the CA3 pyramidal cell layer 1203 

in a P6 rat hippocampal slice.  C: Dynamic changes in GABAergic and glutamatergic currents in 1204 

P5-6 CA3 pyramidal cells during GDPs. Note that GABAergic currents transiently switch their 1205 

direction from depolarizing to hyperpolarizing at the peak of GDPs. D: GDP network model. 1206 

GDPs are initiated in CA3 recurrent network (1) with support of GABAergic INs (2), and further 1207 

conveyed to CA1 via Schaffer collaterals and GABAergic projections (3), and to dentate gyrus 1208 

via GABAergic projections. E: Top, neurolucida reconstruction of the hub-IN (axon, red and 1209 

dendrites, black) on a schematic drawing of the hippocampus. Left, Current-clamp recordings 1210 

from the stimulated (grey box) hub-IN for six consecutive stimulations (gray). Four out of six 1211 

trials triggered GDPs. Right, fraction of cells active as a function of time after repetitive hub-1212 

INs stimulation and corresponding peristimulus time histogram.  F: Top, histogram displaying 1213 

the percentage of active cells (black) during stimulation of an early born IN (ebGABA) that was 1214 

patched and stimulated by injecting suprathreshold depolarizing current steps (green trace).  1215 

Bottom, box plots of “Inter GDP intervals” of a representative ebGABA cell (left) G: Arch-1216 

mediated optogenetic inhibition of MGE-derived INs with a 10 s light stimulus (green) 1217 

suppresses spontaneous GDPs and generates rebound GDPs in CA1. Left, Recording 1218 

configuration with focus of yellowgreen light stimulus in CA1 to inhibit MGE-derived 1219 

interneurons. Right, Example of simultaneous recordings in an MGE-derived IN (gray) and a 1220 

neighboring PN (black). Activation of the Arch-current greatly reduced the frequency of 1221 

spontaneous GDPs in both cells, which returned once the light was turned off. B and C from 1222 

Ref. (140), with permission from Journal of Neuroscience; E from Ref. (33), with permission 1223 

from Science; F from Ref. (30), with permission from Nature Communications; G from Ref. 1224 

(263), with permission from Journal of Neuroscience. 1225 

 1226 
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Figure 9. Comparison of early sharp waves (eSPWs) with adult sharp waves (SPWs). A: Timeline 1227 

of eSPWs and SPW/ripples. B: Left, Example traces of the forelimb twitch (green circle), 1228 

population burst in MEC-L3 (blue circle) and eSPWs (red triangle) recorded from the CA1 1229 

pyramidal cell layer (pcl), stratum radiatum (sr) and stratum lacunosum-moleculare (slm) in a 1230 

P5 rat pup. Vertical color bars above traces indicate single unit activity.   Middle, 1231 

corresponding current-source density of eSPWs with the most prominent sinks in sr and 1232 

around the hippocampal fissure. Right, eSPW network model. Note that sequential activation 1233 

of various structures in this scheme follows the bottom-up information transfer from the 1234 

spinal cord to hippocampus. C: Left, Example traces of adult SPW/ripple in CA1 pcl and sr. 1235 

Middle, current-source density of SPWs with the most prominent sink in CA1 sr. Right, SPW 1236 

network model. Note that SPWs are internally generated in the hippocampus and support 1237 

top-down information transfer from the hippocampus to the extrahippocampal targets. D: 1238 

Left, eSPWs are preceded by activation of MEC-L3 units in neonatal rat pups, whereas adult 1239 

SPWs are associated with activation of neurons only in the hippocampal output deep EC 1240 

layers. B from Ref. (254), with permission from Cerebral Cortex; C from Ref. (44), with 1241 

permission from Hippocampus and Ref. (233), with permission from Journal of Neuroscience; 1242 

D from Ref. (254), with permission from Cerebral Cortex and Ref. (52), with permission from 1243 

Journal of Neuroscience. 1244 

 1245 

Figure 10: Pharmacogenetic silencing of interneurons inhibits hippocampal activity in P3 mice. 1246 

A: Representative recording for P3 reduction of GABAergic neuron excitability. MUA of 1247 

spontaneous activity in CA1 hippocampus, along with associated sr LFP and thoracic 1248 

movement detection and electromyography. Activity is dominated by eSPW whose spike 1249 

density is reduced following subcutaneous SalB (KORD agonist) injection. B: Quantification of 1250 

KORD-induced suppression of GABAergic neuron excitability and control conditions. A and B 1251 

from Ref. (200), with permission from Science Advances. 1252 

 1253 

Figure 11. Developmental timeline for the emergence of cognitive sequences in the CA1 region 1254 

of the hippocampus (A). B: Sharp-Wave-associated Ripples (SPW-Ripples) start being observed 1255 

at P12 and their power progressively increases until the end of the third postnatal week.  C: 1256 

At P15, the first internal representations are observed in CA1 in the form of unstable place 1257 

cells as illustrated by the heatmaps of the firing of three place cells across three recording 1258 
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sessions (S1, S2, S3). After P17, preplay and SWRs replaying single locations start being 1259 

observed as illustrated by the heatmaps showing time-by-position probability using Bayesian 1260 

decoding of position, based on event spiking. A few days later, the trajectories depicted 1261 

within replay and preplay progressively represent longer trajectories and occur with similar 1262 

incidence. D: After P24, experience-dependent sequences can be observed in the form of 1263 

theta sequences and replay.  Right plot shows a probability posterior derived from a single 1264 

RUN session, where the x axis shows the proportion of time elapsed during the theta cycle 1265 

and the y axis shows position on the track relative to the current location of the rat. The 1266 

horizontal white line shows current rat location, and the vertical white lines demarcate one 1267 

theta cycle. Hot colors show high decode probabilities. Numbers above the plots show theta 1268 

sequence score, defined as the circular-linear weighted correlation of the probability 1269 

posterior. B from Ref. (38), with permission from Neuroscience; C from Ref. (223), with 1270 

permission from Hippocampus, Ref. (197), with permission from Current Biology and Ref. 1271 

(91), with permission from Science. D from Ref. (197), with permission from Current Biology. 1272 

 1273 

Figure 12. The main steps in the development of CA1 internal dynamics  1274 

Schematic representation of the three main phases leading to the development of CA1 1275 

internal dynamics. Phases 1 and 2 are periods when activity is generated spontaneously, first 1276 

in a bottom-up fashion by spontaneous sensorimotor activity conveyed to CA1 by inputs from 1277 

the entorhinal cortex (EC). At this time, local circuits are likely connected by gap-junctions and 1278 

produce SPAs. EC inputs are more likely to innervate early born pyramidal neurons (ebPNs, 1279 

pink) as well as eb Interneurons (Ins). This period terminates around the end of the first 1280 

postnatal week (week#1) with the emergence of perisomatic inhibition (putatively originating 1281 

from ebINs and contacting ebPNs which are decoupled from their electrical synapses) and 1282 

CA3 collateral inputs. After this time, CA1 is also driven by spontaneous activity generated 1283 

within the hippocampus (internally-driven and local), most likely through CA3 inputs. These 1284 

are more likely to target late-born (lb) PNs (green) and lbINs (green), which may still be 1285 

connected through electrical synapses.  This period ends around the end of the second 1286 

postnatal week (week#2) with the emergence of landmark-based internal representations in 1287 

the form of place cells. This opens a period of about two weeks (weeks 3&4) during which the 1288 

internal CA1 model is calibrated to sensory inputs through experience-dependent plasticity. 1289 
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This period ends with the emergence of internal sequences (stage 4) integrating experience 1290 

into internal dynamics. 1291 

1292 
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  early late References 
Physiology Rm   Masurkar et al. (181), Graves 

(103), Jarsky et al.  (129), Sun et 
al. (234) 

Ih   Masurkar et al. (181), Maroso et 
al. (176), Li et al. (164)

I/O   Cembrowski et al. (47),  Mizuseki 
et al. (189), Oliva et al. (207)

burstiness   Misuzeki et al. (189) 
Connectivity Early born afferents (eg. LEC, 

CA2) 
  Bayer (22), Masurkar et al. (180), 

Kohara et al. (145), Valero et al. 
(257), Nasrallah et al. (202), Sun 
et al. (234).  

Early born targets    Altman and Bayer (10), Deguchi et 
al. (63)

Perisomatic inhibitory input   Lee et al. (158), Donato et al. (73), 
English et al. (87), Valero et al. 
(257), Oliva et al. (207), Sun et al. 
(234).

Output on inhibitory cells   Lee et al. (158), Donato et al., 
English et al., Valero et al. (257), 
Oliva et al. (207) 

Function Fraction of place cells   Misuzeki et al. (189), Danielson et 
al. (59), Sharif et al. (225), Fattahi 
et al. (92) 

Idiothetic coding   Fattahi et al. (92), Sharif et al. 
(225)

Spatial coding specificity   Henriksen et al. (119), Hartzell et 
al. (113), Danielson et al. (59), 
Oliva et al. (207) 

Place field stability   Grosmark et al. (107), Kohara et 
al. (145), Danielson et al. (59), 
Misuzeki et al. (189), Geiller et al. 
(97)

SWR recruitment   Valero et al. (257), English et al. 
(87), Böhm et al. (31) 

Content discrimination   Geiller et al. (97), Li et al. (164), 
Marrone et al. (178), Lee et al. 
(157)

 
Table 1. Diversity in physiology, connectivity and function among principal cells in the adult 
hippocampus reflects developmental origin.  Different parameters characterizing the diversity of 
hippocampal principal cells in physiology, connectivity, and function were analyzed and compared.  The 
table summarizes data from several studies (listed in the references column). Measurements were 
classified as depicting putatively early- versus late- born neurons depending on the soma position within 
the main anatomical axes of the hippocampus. Boxes were filled in light or dark gray if the parameter 
mentioned on the left column was found significantly lower or higher, respectively. Rm: membrane 
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resistance, Ih: h-current, I/O: Input/output relationship between injected current (input) and evoked 
action-potential firing (output); burstiness: probability to produce bursts of spikes. LEC: Lateral 
Entorhinal Cortex, SWR: Sharp Wave- associated Ripple. 
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Pattern Age  Presumable 
Mechanism 

In vivo In vitro 

Calcium spikes E16-P6 Uncorrelated 
neuronal activation 
in absence of 
electrical and 
chemical  
connections 

 

 

 

Not reported 

Crepel et al. (55) 

Neocortex:  

Komuro & Rakic (146), 
Allene et al.  (7),  Bortone & 
Polleux  (34) 

 

SPA 

(Spontaneous 
Plateau 
Assemblies)  

 

E18-P6 Spontaneous plateau 
depolarizations  in 
sparse groups of 
neurons 
synchronized via 
gap-junctions 

 

 

Not reported 

Crepel et al. (55), Allene et 
al. 2012 (8) 

Neocortex:  

Allene et al.  (7), Dupont et 
al. (82)) 

Striatum:  

Dehorter et al. (64) 

GDPs  

(Giant 
Depolarizing 
Potentials) 

 

P0-P13 Population CA3 
bursts synchronized 
by synergistic 
excitation of 
principal neurons 
and interneurons via 
glutamatergic and 
depolarizing 
GABAergic  synapses, 
conveyed to CA1 via 
Schaffer collaterals 

Not reported in isolated form. 

CA3 activation is reflected in 
Schaffer collateral – mediated 
Sink 1 of eSPWs in stratum 
radiatum 

Marguet  et al. (174), Valeeva  
et al. (254, 255, 256) 

 

Ben-Ari  et al. (24), 
Leinekugel et al. (160), 
Khazipov et al. (142),   

Crepel et al. (55), Khalilov et 
al. (140) 

Synonyms:  

Unison-firing pattern  

Harris & Teyler (111) 

Synchronous calcium 
oscillations 

Leinekugel et al. (162) 

Early network oscillations   
Garaschuk et al. (96) 

eSPWs 

(Early Sharp 
Waves) 

P1-
P10? 

Externally driven 
L2/3 EC population 
bursts conducted to 
hippocampus via 
temporoammonic 
and perforant 
pathways, and 

Leinekugel et al. (161), 
Karlsson  et al. (132), 
Marguet  et al. (174), Ahlbeck  
et al. (3), Valeeva et al. (254, 
255, 256), Murata & 
Colonnese (200), Graf  et al. 

Not reported in neonatal 
hippocampal slices; L2/3 EC 
population bursts are 
present in vitro but they do 
not propagate to 
hippocampus  
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supported by CA3 
network  

(102) Sheroziya et al. (227),

Unichenko et al.  (252), 

Namiki et al.  (201), 

Dawitz et al.  (62) 

 

Adult SPW-
Ripples 

Onset 
at P12 

Internally generated 
CA2/3 population 
bursts, conveyed to 
CA1 via Schaffer 
collaterals and 
associated with high-
frequency ripple 
oscillations 

Leinekugel et al. (161)

Buhl & Buzsaki (38) 

Maier et al. (169), Behrens 
et al. (23), Hajos et al. (115), 
Holderith et al. (120), Aivar 
et al. (4) 

See Table 2 in Buzsaki (44) 
for the full bibliographic 
coverage  

Hippocampal 
network 
oscillations 

(theta-bursts, 
beta/gamma 
oscillations) 

P7-P14 CA3 - L2/3 EC driven 
and shaped by 
inhibition 
oscillations, likely 
precursors of adult 
theta/gamma 
oscillations 

LeBlanc & Bland (154)
Lahtinen et al. (149)  Mohns 
& Blumberg (191)(192) 

Brockmann et al. (36) 

Marguet  et al. (174)  Ahlbeck   
et al. (3) 

Del Rio-Bermudez et al. (65); 
(66) 

Hajos et al. (115)

Holderith et al. (120) 

Tsintsadze et al. (248) 

 

 

Table 2. Early activity patterns in the developing rodent hippocampus in vivo and in vitro 
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