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In this paper, we provide a spatial frequency fsf based solution to study the angular behavior of a flicker-free short-
range indoor multiple-input multiple-output (MIMO) optical camera communication (OCC) link. We focus on the 
experimental investigation of OCC’s performance for the transmitters (Txs) (i.e., light emitting diode (LED)- based 
arrays) located at the same and different distances from the receiver (Rx) with the off-axis rotation angle θ. We 
have used, two 8 × 8 distributed LED array and a commercial low-cost complementary metal-oxide-semiconductor 
(CMOS) Raspberry Pi camera with the rolling-shutter capturing mode as the Tx and Rx, respectively. The image and 
the respective communications link quality metrics are measured in terms of the peak signal-to-noise ratio (PSNR) 
and the rate of successfully received bits with respect to fsf for different camera shutter speeds (SS). A CMOS image 
sensor noise characterization is carried in terms of the signal-to-noise ratio (SNR) and PSNR. The proposed study 
provides 100 % success rate in data reception at the optimum θ of 50˚ at lower captured values of fsf, which is 
projected onto the image sensor in the form of pixels.  Moreover, the effect of channel saturation over fsf   is studied 
with respect to θ and SS and we show that, for θ exceeding the optimum value along transmission range the fsf area 
of the Txs reduces to less than ~50 % of the captured Tx units at θ of 0˚, where no data can be fully recovered.  

http://dx.doi.org/10.1364/AO.99.099999 

1. INTRODUCTIONThe rapid advances made in development of a range of complementary metal-oxide-semiconductor (CMOS)-based camera (image sensors (IS)), which are used in mobile phones (front/rear camera), digital single-lens reflex cameras with higher capture speeds (ranging from 30 to 1000 fps) and surveillance cameras, have recently motivated research and development in camera-based visible light communications (VLC) also known as optical camera communications (OCC) in IEEE 802.15.7r1 Task Group [1, 2]. The CMOS cameras can capture images or record videos in global shutter (GS)- and rolling shutter (RS)-based capturing modes at different shutter speeds (SS) and resolutions. In VLC links with light emitting diode (LED)-based transmitters (Txs), a wide range of dimming levels with no flickering can be adopted to ensure both illumination and data communications [3]. The IEEE 802.15.7 VLC standard outlines the maximum allowed flickering time period (MFTP) of 5 ms (i.e., 200 Hz) [4]. However, consumer-grade cameras have a limited capture rate of approximately 60 frames per second (fps). As a result, signals in OCC links can be captured at a very low sampling rate compared with the data transmission rate, thus resulting in the loss of unsampled data and lower probability of signal detection. Moreover, in OCC synchronization should be considered carefully by means of signaling, which reduces the data throughput [5]. Furthermore, a combination of LED-array Txs and OCC with photodetector (PD)-array can be used as massive multiple-input multiple-output (MIMO) to deliver parallel transmission and therefore higher data rates Rb in a range of applications including massive 

internet of things (IoT) [6, 7]. Unlike the conventional PD-based Rx used in VLC, where the separation of mixed signals is not possible, the CMOS-based IS can capture lights coming from different directions and project them onto different sections of the IS (i.e., illuminating different PDs) [7]. Therefore, in these scenarios’ spatial separation of incoming light signals and their intensities can be determined by measuring the pixel value per light source images on the received frame. The data from the pixelated images can then be recovered from the captured image frames using image processing algorithm implemented in MATLAB, OpenCV and Python [7]. In this approach, the CMOS IS can be used as the MIMO-OCC Rx without the need for extended hardware. For commercial use, a number of applications have been developed including OCC for the automotive industry by Intel® (USA) [8] and for online-to-offline marketing service by Panasonic (Japan) [9]. Although OCC does not support high-capacity transmission links, which is due to the speed limit of cameras, it can be employed in numerous low Rb and short range indoor and outdoor IoT applications including device-to-device communications, indoor positioning, localization, navigation, intelligent transportation system, financial transactions, motion-based device control, small identification information, communications through advertisements, etc. [3, 10, 11]. Note, in IoT-based smart environments, links with Rb of a few kbps are sufficient for information transmission and therefore there is no need for medium speed transmission capabilities. However, the major challenge in implementing systems with low Rb is the requirement for flicker-free transmission. Authors established flicker free communication links using grouped LED array concept in [12] using 



RS-based capturing Rx with Rb of ~1 kbps. The RS acquisition mechanism that sequentially integrates light on rows of pixels is the major advantage of CMOS IS used as the Rx in OCC [13].  In OCC, the transmitted light signal will arrive at the Rx (i.e., IS) via both the line-of-sight (LOS) and non-LOS (NLOS) paths. However, the LOS becomes the dominant path when using Txs and Rxs with very narrow field of views. The RS-based MIMO-OCC transmission links are outlined below: a. LOS MIMO-OCC links: Traditional indoor VLC or LOS OCC links with high Rb over a range of transmission spans have been adopted in many applications including (i) short-range RS-based indoor MIMO-OCC LOS (1-5 m) flicker-free links using multilevel intensity modulation (IM) with Rb of 10 kbps [14];(ii) a beacon jointed packet reconstruction scheme with Rb of5.76 kbps [15]; (iii) screen modulation techniques followed by the 2M-ary quadrature-amplitude modulation format [16]; (iv) a CMOS RS effect-based scheme using the grayscale value distribution and machine learning algorithm to enhance Rb [17]; and (v) the raptor code with linear time encoding anddecoding with Rb of 1 kbps [18]. Note, in LOS-based systems it is possible some NLOS may be detected at the Rx, which willresult in time delay spread. b. NLOS MIMO-OCC links: In some scenarios such as device-to-device communications, it is possible that there might not be a LOS path between the Txs and the Rxs. Therefore, thecommunications will be via the NLOS paths, which offer mobility and flexibility but at the cost of lower Rb [19, 20]. NLOS-MIMO links based on space and time division multipleaccess technique with Rb of ~1 kbps and flicker-free transmission over a 10 m link span was reported in [19]. A 152 bits NLOS link (1.5 m) with a low level of error correction code using image processing techniques such as background compensation blooming mitigation, extinction-ratio enhancement and Bradley adaptive thresholding for RS demodulation was investigated in [21]. c. Tx and Rx orientations: Unlike previous studies, which focused on either a LOS or NLOS link, in MIMO-OCC links we need to considered both the Tx and Rx orientation angles. Some practical solutions considering different orientations and placements of the Tx and the Rx to support mobility scenarios in an indoor environment needs to be focused. In [6], theangular rotation θ from 0  ̊to 70  ̊along with parallel movement of a red, green and blue (RGB)-based LED array (16 × 16 LEDs) Tx and a 330-fps camera-based Rx operating in the GScapturing mode over a link span of 60 cm was reported.  Note, in [6], the refresh rate for the LED array was set to 82 Hz, which is less than the MFTP standard rate of 200 Hz [4], thusproviding flickering transmission and rotation support over a link span of 60 cm [6]. On the other hand, 60-LED-based array is used to provide both data transmission and framesynchronization. In [22], a practical orientation independent RS-based NOLS OCC link performing wide Rx’s orientation for indoor applications with Rb of ~ 7 kbps over a transmissionlink span of 50 cm was presented. However, the Tx should be designed in such a way to ensure that there are sufficientreflections from many directions to ensure link availability.  In [23], a CMOS RS pattern decoding scheme using the grayscale redistribution and differential grayscale packet selection was proposed and investigated to improve the decodingperformance of the links under translational or rotationalmotions. The authors showed no significant signal degradation over a transmission range of up to 150 cm. Note, in applications with mobility, to ensure link availability, it is 

necessary to investigate various transmission scenarios considering different Txs angular orientations heights and distances from each other as well as from the Rx.        In this paper, we study multi-channel MIMO-OCC considering the angular rotation of the Txs located at the same distance but different heights and distances from each other. These transmission setups are defined considering the indoor dynamic, mobility and multicasting scenarios as in shopping malls, hospitals, offices, etc., where the number of Txs can be placed at different locations with different angles depending on the interior designs and the illumination requirements.  The proposed scheme offers a valid solution irrespective of the availability of LOS and NLOS paths. It is based on the optimum angular orientation of multiple Tx units for practical indoor IoT-based scenarios such as mobility and multi-Tx/Rx (multiuser). The proposed scheme employs two MIMO-OCC Tx units with simplified design and a commercial low cost Raspberry Pi camera (RaspiCam) as the Rx. The lab-scale experiments are carried out for two different transmission setups, where the effect of optimum angular orientation θ of two Tx units located at different heights and distances from each other as well as the camera-based Rx is analyzed. For this reason, the spatial frequency fsf, which represents the projection of a target, i.e., the Tx LED array over a captured image in terms of pixels, is used. The quality matrices of the captured image in terms of the peak signal-to-noise (PSNR) and the success rate of received bit sequences for a range of θ with respect to fsf, L and SS are also analyzed.  The remainder of the paper is organized as follows: Section 2 describes the proposed MIMO-OCC system, Section 3 shows the measurement setup followed by Section 4 experiment results and analysis. Conclusions are drawn in Section 5. 
2. PROPOSED MIMO-OCC SYSTEM

A. CMOS IS noise characterization within MIMO-OCCThe block diagram of the proposed MIMO-OCC system with multiple Txs (Tx1–Txn) and IS Rx is shown in Fig. 1(a). At the Tx, the data is generated in the form of on-off keying non-return to zero (OOK-NRZ) format s(t) and is used for IM of the LED via the LED driver.  At the Rx, using an optical lens the IS captures multiple light Txs as different point sources on different sections of the IS. It is therefore straightforward to separate the multiple captured point sources and apply image processing for data detection. In this work,, for further analysis we consider the projection of one Tx on to the Rx (i.e., camera), which can also be applied to multiple captured point sources. The intensity-modulated light signal x(t) is transmitted over a free space channel and is captured at the Rx using a CMOS RS-based camera. For the LOS link, the received signal is given by [24]: 
⊗( ) = ( ) ( ) + ( ),y t ηx t h t n t  (1) where h(t) is the combined impulse response of the channel and camera,  is the quantum efficiency of the IS, ⊗ is the time domain convolution and n(t) is the additive white Gaussian noise including the ambient light induced shot noise and the noise in the camera (i.e., fixed pattern, thermal (FPN)), photocurrent shot (optical excess and electronics) and flicker noise sources), as shown in Fig. 1(b) [25]. Note, if the definition of power is scaled by the number of points in the signal, this gives the mean squared error (MSE). This notion can be extended in OCC for actual transmitted and received images by summing up twice the rows and columns of image vectors or stretching the entire image into a single vector of pixels and applying the one-dimensional definition. Therefore, in signal images OCC the SNR can be given as: 
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In this paper, we demonstrated fsf based angular behavior of multi-channel MIMO-OCC for two different transmission setups where the Tx units are placed at different heights and distances from each other and the camera. We showed that, the proposed study provided a 100 % success rate in data reception at the optimum θ up to 50  ̊for both the transmission setups at lower captured values of fsf, which is projected onto the image sensor in the form of pixels. We provided a general solution based on fsf to investigate the MIMO-OCC considering the angular movement of the Txs. The proposed study can be adopted for longer transmission distances based on fsf and employing a Tx with a larger illuminating surface area for use in indoor environments. E.g., using Txs with surface areas of 14 × 14 cm2, L can be extended to 1.6 m (i.e., 2×L) and placing the Tx units at r of 80 cm apart can provide an optimum angle θ > 50  ̊for each case.  Unlike LOS and NLOS OCC links, the proposed system can be further adopted in indoor IoT-based links with multi-Txs/Rxs and mobility, offer an improved solution when consideration of the optimum angular orientation of multiple Tx units is critical.  Although the small-scale experiments were only conducted for demonstration purposes, it is envisioned that the proposed study can readily be expanded using image processing techniques such as shape restoration using neural networks and code extraction techniques to improve the success rate of received bits.  
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