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Abstract: Organic light emitting diodes (OLEDs) have recently received growing interest for their
merits as soft light and large panels at a low cost for the use in public places such as airports,
shopping centers, offices, and train or bus stations. Moreover, the flexible substrate-based OLEDs
provide an attractive feature of having curved or rolled lighting sources for the use in wearable
devices and display panels. This technology can be implemented in visible light communications
(VLC) for several applications such as visual display, data communications, and indoor localization.
This article aims to investigate the use of flexible OLED-based VLC in indoor environments (i.e., office,
corridor and semi-open corridor in shopping malls). We derive a two-term power series model to be
match with the root-mean-square delay spread and optical path loss (OPL). We show that, for OLED
positioned on outer-wall of shops, the channel gain is enhanced in contrast to them being positioned
on the inner-wall. Moreover, the channel gain in empty environments is higher compare with the
furnished rooms. We show that, the OPL for a 10 m link span are lower by 4.4 and 6.1 dB for the empty
and semi-open corridors compared with the furnished rooms, when OLED is positioned on outer-wall
of shops. Moreover, the channel gain in the corridor is higher compared with the semi-open corridor.
We also show that, in furnished and semi-open corridors the OPL values are 55.6 and 57.2 dB at the
center of corridor increasing to 87.6 and 90.7 dB at 20 m, respectively, when OLED is positioned on
outer-wall of shops.

Keywords: flexible OLED; visible light communications; optical path loss; delay spread

1. Introduction

Visible light communications (VLC) with its huge available bandwidth [1] and its dual functionality,
i.e., illumination and safe and low-cost communications [2], has a great potential for different high data
rate fixed and mobile applications [3]. The VLC technology has many advantages include inherent
security, energy efficiency, healthy for human, and unregulated bandwidth [4,5]. These features
make it attractive for numerous applications in different fields including indoor networking [6],
vehicular communication [7], medical applications [8], Internet access for vehicles and in airplane
cabins [9], and positioning systems [10].

At the receiver (Rx) side, a single photodetector (PD) is usually used, which converts the incident
optical power to the electrical power. To enhance the performance, the single PD can be replaced by an
angle diversity Rx, which contains multiple PDs oriented in different directions as reported in [11].
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For further improvement, the field of view angles of these PDs can be optimized to increase the received
signal-to-noise-ratio (SNR) as reported in [12,13]. Optical cameras have been recently introduced to
capture data [14,15], resulting in interesting VLC systems applications. It is also possible to utilize the
organic PDs with more synthetic flexibility [16], however the limited spectral responsivity range is the
drawback. VLC relies on the use of light-emitting diodes (LEDs), organic LEDs (OLEDs) as well as
white laser diodes (LDs) as the light source [17]. Owing to OLEDs attractive advantages, including
transparent displays, rich color, low power consumption and large active areas [18,19], there has been
a growing interest in using OLEDs for soft lighting and display applications in public places [20].
The main differences between OLEDs and the LEDs are (i) the modulation bandwidth of OLEDs,
which increases linearly with the drive current, is lower than silicone LEDs (i.e., kHz compared to MHz);
and (ii) OLEDs have wider radiation patterns compared with non-organic LEDs, which influences
the optical path loss (OPL). This work emphasizes on utilizing OLEDs for VLC systems, where is the
potential of flexible light sources could be used in office and public indoor environments.

Numerous efforts have been made in modeling VLC channel in order to determine the channel
impulse response (CIR) and its characteristics in terms of the average OPL and the root-mean-square
(RMS) delay spread. The achievable SNR for a given transmit power can be calculated by OPL obtained
from CIR [21]. In addition, the RMS delay spread provides a good estimate of how susceptible the
channel is to inter-symbol interference (ISI), thus leading to transmission data rate Rb restriction [18,21].
That is why quantifying channel characteristics is vital; hence, a number of studies have been done so
far. For instance, in [22], the CIR of an empty room was evaluated using Monte Carlo (MC) ray tracing
at the visible wavelength range where the surface materials reflectance were not wavelength-dependent.
However, in [23] the VLC channel was investigated including wavelength-dependent reflectance of
materials. In [24], the modified MC ray tracing approach was used for analyzing the CIR as a function
of the wavelength using a simplified matrix model. In [25], a three-dimensional (3D) model based on
MC algorithm using a CAD software was presented for the VLC system. A simulation of VLC channel
by the use of OpticStudio® simulator produced by Zemax [26] was reported in [27,28], which was
endorsed by the IEEE 802.15.7r1 Task Group. In addition, the use of OpticStudio® for validation of
the channel modelling was reported in [29]. Recently, utilizing OLEDs in VLC systems has captured
attention. In [30], it is claimed that the use of curved OLED in VLC system for an empty room offers
lower RMS delay spread and the average OPL values of 8.8% and 3 dB, respectively compared with
Lambertian source. The impact of reflections using flat and half-circular OLEDs in a furnished office
was investigated [31]. The recorded results in [31] reveals the ability of OLED based VLC system to
achieve Rb of 4 Mb/s with a bit-error-rate (BER) below the forward error correction BER limit. In [32],
investigating of a flexible OLED-based VLC link in a shopping mall was reported, in both empty and
furnished rooms using both full and half-circular OLEDs. The results indicated that, the OPL in an
empty room is about 5 dB less than the furnished room.

Currently OLED panels are more costly than LEDs; however, with advances made in fabrication
and manufacturing as well as the wider use of OLED-based lights the cost will be reduced as was the
case with the non-organic LEDs a few years ago. Since, OLEDs come in different shapes and size,
we have decided to investigate their characteristics when used as a transmitter (Tx) in VLC systems.
This work emphasizes on the evaluation of an attractive feature of OLEDs, which is the mechanically
flexible potential for utilizing in VLC system. The simulation was carried out to determine the impact
of the symmetrical beam pattern of curved OLEDs, which is wider than Lambertian, on the VLC
channel. In this work, we consider a VLC system in a typical office, corridor, and semi-open corridor
environments with and without furniture. In the office environment, the user (i.e., the Rx), is moving
along a circular path while holding a mobile phone. In corridor and semi-open corridors, the user is
then moving on a straight path along the corridor. We investigate the proposed system optical features
and show a new numerical model for the RMS delay-spread and OPL for the channel. We provide
statistics for the BER performance and compared it for curved and flat OLED-based VLC systems.
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The rest of the paper is organized as follows. In Section 2, the features of simulation and scenarios
are described. Section 3 discusses the results. Finally, conclusions are given in Section 4.

2. Simulation

2.1. Simulation Features

To determine the detected optical power and path lengths from the Tx to the Rx, non-sequential
ray-tracing approach was used in the 3D environment. It evolves the specification and location of the
Tx and the Rx, features of the CAD models of objects, wavelength-dependent reflectance of surfaces
(wall, ceiling, floor, and objects), and transmission/reflection coefficient of glass windows. Next,
the captured output data of the OpticStudio® is processed in MATLAB to obtain the CIR expressed as
given by [27,32]:

h(t) =
N∑

i=1

Piδ(t− τi), (1)

where Pi and τi are the power and the propagation time of the ith ray, respectively. δ is Dirac delta
function and N is the number of rays received at the Rx. Note, a number of reflections from the floor,
ceiling, walls, and other objects are considered until the normalized intensity of rays after intercepting
an object drops to 10−3.

The spatial intensity distribution of light emitted from the light source is determined by the optical
radiation pattern profile. The luminous intensity defined in terms of the angle of irradiance φ is given
as [1]:

I(φ) =
mL + 1

2π
I(0) cosmL(φ), φ = [−

π
2

,
π
2
] (2)

where I(0) is the center luminous intensity of the OLED and mL is Lambertian order, which is defined
in terms of the Tx semi-angle φ1/2 as [1]:

mL = −
ln(2)

ln[cos(φ1/2)]
. (3)

As inputs of the simulator, the measured characteristics of a flexible OLED from UNISAGA with
a size of 200 × 50 mm2, see Figure 1a, were used. The measured beam pattern of the flexible OLED for
flat and a half-circular configuration is depicted in Figure 1b, showing symmetry but not fitting with
Lambertian radiation pattern (the solid line for mL = 1). A close match between the simulated and the
measured beam patterns can be seen in Figure 1b. The measured spectrum profile of the flexible OLED
is presented in Figure 1c, showing the red, green, and two blue components at 620, 553 and 454 and
480 nm, respectively.
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where the peak wavelengths are marked. 

Figure 1. The flexible organic light emitting diodes (OLED) panel and its characteristics adopted in
the simulation: (a) photograph, (b) the emission pattern of light source modeled for a flat and curved
OLED, which is closely matched with the measured data, and (c) the normalized optical spectrum
where the peak wavelengths are marked.
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2.2. Scenarios

Figure 2 shows the analyzed example of an office environment designed with the size of
10 × 10 × 3 m3 and a number of objects within. Here, a curved OLED with the size 1 × 0.5 m2 is
mounted on the wall with a curvature radius of 32 cm. In the office environment, the scenario is
to move the Rx over a semi-circular path, where the radius d is 2 m. An angle of radiation θ with
respect to the normal from the center point of OLED (i.e., −90◦ < θ < 90◦) is given, see Figure 3. The Rx
height is assumed to be 1 m above the floor to represent people holding mobile phones while sitting
at their desks. In simulation, we have not considered the synchronization. However, in real time
systems synchronization protocols defined by the standards will be adopted, which does not affect the
transmission characteristics of the proposed system.
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Figures 4a and 5a then show the 3D corridor and semi-open corridor environments inside a
shopping mall, respectively, in which OLED acts as a light source. The semi-open corridor is typical
especially for upper floors of the shopping mall, so we have chosen an example when the user walks
on the first floor, having shop windows on one side and an open space on the other side. The user is
moving on the straight path along the corridor (show by the red dashed-lines in Figures 4b,c and 5b,c).
The Rx is positioned at the height of 1.3 m above the floor level (i.e., the holding position of mobile
by people). The user is moving along the shop windows at a distance of 2 m on the path donated
as dy from −20 to 20 m, where Tx is placed at 0 m position. For both empty and furnished corridor
and semi-open environments, we have considered two scenarios of (case1), where the OLED panel
is located on the inner shop wall behind the glass window and (case2) on the wall or shop window
inside the corridor, see Figures 4b,c and 5b,c. All the key system parameters adopted in this work,
including the reflectance values of surfaces and the transmission coefficient of the glass windows,
are given in Table 1.
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Table 1. The system parameters.

Item Parameter Value

Surface material
refractivity in % (RGB)

Chair, sofa (leather) 24 18.8 16.3
Coffee cup (ceramics) 97.1 96.2 92.3

Human clothes (cotton) 67 58 45.6
Plant (leaf) 14 5.9 8.2

Desk, book shelf, book (pine wood) 70 51 33.1
Laptop, PC, printer, and telephone (black gloss paint) 3.4 3.2 3.2

Transmission
coefficient in % (RGB) Glass windows 88 90 87

Room size

Office 10 × 10 × 3 m3

Corridor 18 × 40 × 3 m3

Semi-open corridor 26 × 40 × 3 m3

Tx

Dimension 1 × 0.5 m2

Type Flexible
Bandwidth 50 kHz

Power of lighting 10 W
Number of OLED panels 19

Number of chip/LED panel 64
Power of each chip 8.2 mW
Curvature radius 32 cm

Location in office (4, 0.33, 1.5) m

Location in corridor and semi-open corridor case1: (0.1, 20, 1.5) m
case2: (4.9, 20, 1.5) m

Channel Time resolution 0.2 ns

Rx

Active area of PD 1 cm2

Responsivity 0.4 A/W
FOV 90◦

Incident angle 0◦

One sided noise power spectral density No 10−19 W/Hz

3. Results

3.1. Comparison of Flat and Curved OLED Based System Performance

For intensity modulation/direct detection (IM/DD) optical transmission systems, the electrical
SNR is defined as

SNR =
(γPR)

2

RbNo
=

(γH(0)PE)
2

RbNo
, (4)

where γ is the photodetector’s responsivity in (A/W), PE and PR are the emitted and received optical
power, respectively, and N0/2 is double-sided power spectral density. Considering a link with
non-return-to-zero (NRZ) on-off keying (OOK), the BER is given as [33]:

BER =
1
2

erfc(

√
SNR

2
). (5)

Figure 6 shows the plots of the BER for flat and curved OLEDs at Rb of 4 and 6 Mb/s along with
the 7% forward error correction (FEC) BER limit of 3.8 × 10−3 [1] for an office. Note, for 4 Mb/s the
BER is below the FEC limit for curved OLED. As illustrated, the BER plot displays a symmetry about
the origin (i.e., at θ of 0◦) because of the same achievable SNR that is maintained across the entire
face of OLED. It is obvious that, for the curved OLED the BER is improved over a wider θ compared
with the flat OLED. Note, for the flat OLED with −30◦ < θ < 30◦ the BER values are <10−6. At Rb of
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4 Mb/s, the BER remains below the FEC limit for θwithin the range of ±90◦ and ±53◦ for the curved
and flat OLEDs, respectively. However, for Rb of 6 Mb/s, θ drops by 15◦ and 4◦ for the curved and flat
OLEDs, respectively.
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3.2. Channel Charactristics

The channel gain H(0) defines the achievable SNR for a given incident power. To quantify the
data rate, H(0) and the optical signal attenuation OPL = −10log10(H(0)) caused by reflections and
transmission in the free space are obtained [21,34]. The RMS delay spread is commonly used to define
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the time dispersion along the propagation path. The channel mean excess delay τ and the RMS delay
spread τRMS are given as [27,31].

τ =

∞∫
0

t× h(t)dt

∞∫
0

h(t)dt
, (6)

τRMS =

√√√√√√√√√√√√√√√√
∞∫
0
(t− τ)2

× h(t)dt

∞∫
0

h(t)dt
. (7)

Figure 7 depicts the τRMS plot for the flat and curved OLEDs in an office. The angle θ is shown in
Figure 7 to identify the Rx’s location on the semi-circular path with the radius d. τRMS increases with θ
reaching the maximum value of 5 and 10.7 ns at θ of 90◦ for the curved and flat OLEDs, respectively.
It is obvious that, for the curved OLED, there is a slight change in τRMS by about 0.8 ns with respect to
θ. However, τRMS has changed about 7.3 ns for the flat OLED. Note, there is a significant increase in
τRMS for θ > 40◦ for the flat OLED.
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Using a non-linear approximation algorithm for both cases, a two-term power series model can be
derived from simulations for τ RMS as a function of θ given by

τRMS = p1θ
p2 + p3, (8)

where p1, p2 and p3 are summarized in Table 2. Note, the empirical parameters can vary based on the
number of objects in the room and the size of the specified confined space.

Table 2. Numerical modeling parameters for τRMS in the case of using flat and curved OLEDs in office.

OLED Type p1 p2 p3

Curved 8.707 × 10−10 4.589 4.172
Flat 1.765 × 10−5 2.875 3.312
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Figure 8 shows the azimuthal dependence of the OPL distributions for flat and curved OLEDs for
the proposed scenario in an office. OPL increases with θ reaching a maximum of 60.4 and 70.2 dB at θ
of 90◦ for curved and flat OLEDs, respectively. Note, up to ~14 dB drop in the channel gain can be
seen for the flat OLED when θ changes from 0◦ to 90◦, which is considerably higher compared with
the reduced ~2 dB channel gain for curved OLED. It can be seen that, for the flat OLED and θ < 30◦

there is an improvement in OPL by ~1.8 dB compared with the curved OLED. However, for θ > 45◦,
there is high received power enhancement for the curved OLED compared with the flat OLED, e.g.,
OPL penalties for flat OLED are 5 and 10 dB for θ of 75◦ and 90◦, respectively. In addition, for both
cases OPLs can be determined as the 2-term power series models as

OPL = a1θ
a2 + a3, (9)

where the derived parameters a1, a2 and a3 are shown in Table 3.
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Table 3. Numerical modeling parameters for OPL in the case of using flat and curved OLEDs in office.

OLED Type a1 a2 a3

Curved 0.2964 × 10−2 1.465 58.26
Flat 9.315 × 10−5 2.646 56.42

Figures 9 and 10 illustrate the channel characteristics for both open and semi-open corridor when
OLED are mounted on the inner shop wall behind the glass window and on the wall or shop window
inside the corridor while the user is moving along the corridor in terms of OPL and τRMS. As can
be seen, both OPL and τRMS plots show symmetry about the center of the indoor environment with
minimum values at the center. Note, τRMS for furnished rooms is lower than the empty room for both
corridor and semi open-corridor; e.g., in a semi-open corridor and case1, the τRMS values are 42.5 and
52.7 ns at 8 m and 52.2, 66.6 ns at 12 m for furnished and empty, respectively.
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Figure 10. Channel characteristics in term of OPL for both: (a) corridor, and (b) semi-open corridor
environment; when OLED are mounted on the inner shop wall behind the glass window (case1) and
on the wall or shop window inside the corridor (case2) while the user is moving along the corridor.

In furnished environments, τRMS increases with the distance reaching the maximum value of 40 and
60 ns at a distance of 16 m for the corridor and semi-open corridor, respectively. In all environments,
τRMS drop significantly for case2 compared with case1. Note, in both furnished environments, there is
a huge drop in τRMS for case2 compared with case1 for dy up to 10 m; however, for dy > 10 m τRMS for
case2 reaches the corresponding value of case1. E.g., in a furnished corridor, for case2, τRMS values are
lower than case1 by 13, 6 and 2 ns at dy = 0, 8 and 14 m, respectively. However, in an empty corridor
τRMS for case2 drop by 11, 5 and 5 ns at dy = 0, 8 and 14 m, respectively.

Note, positioning OLEDs behind the window will result in decreased received optical power
compare with when located on the outer-wall of shops inside the corridor; i.e., OPL for case2 is lower
than case1 in all empty and furnished indoor environments. For instance, in a furnished semi-open
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corridor for case1, OPL penalties of 6.5, 4.8, 3.4, and 1.6 dB at 5, 10, 15, and 20 m, respectively, can be
seen in comparison to case2. Additionally, for both cases, OPL in the corridor is lower compared
with the semi-open corridor. e.g., in furnished environments and case2, OPL in the corridor reaches
the maximum of 87.6 dB, which is lower than the value corresponding to the semi-open corridor
(i.e., 90.7 dB). Note, the channel gain for both cases in furnished environments for dy < 4 m remains
the same; however, for case1 and dy > 4 m, the OPL penalty of the furnished semi-open corridor is
~1 dB in contrary with the furnished corridor. For case2, there is a drop in OPL for the furnished
corridor by 1.7 and 2.4 dB at dy of longer distances of 10 and 15 m in comparison with the furnished
semi-open corridor.

In addition, the channel gain enhancement in an empty corridor in contrary with furnished one is
5 dB at 5 m reaching 7 dB at 15 m for case1. However, for case2 it remains around 4 dB for dy > 4 m.
In addition, the channel gain enhancement in an empty semi-open corridor in contrary with furnished
one are 7.2 and 5 dB at 5 m increasing to 9.1 and 7 dB at 15 m for case1 and case2, respectively.

Using a non-linear approximation algorithm for both cases in all environment, a two-term power
series model have been derived from simulations for τRMS and OPL as a function of dy given by

τRMS = r1dy
r2 + r3, (10)

OPL = l1dy
l2 + l3, (11)

where the derived values of r1, r2, r3, l1, l2, and l3 are summarized in Tables 4 and 5.

Table 4. Numerical modeling parameters for τRMS in both corridor and semi-open corridor.

Environment r1 r2 r3

case1 empty-corridor 5.32 0.7519 16.83
case2 empty-corridor 11.26 0.5358 2.446

case1 furnished-corridor 0.409 1.424 19.79
case2 furnished-corridor 0.890 1.296 7.947

case1 empty-semi-open corridor 9.777 0.7035 10.5
case2 empty-semi-open corridor 11.9 0.5637 8.267

case1 furnished-semi-open corridor 3.860 0.864 19.214
case2 furnished-semi-open corridor 2.020 1.143 14.513

Table 5. Numerical modeling parameters for OPL in both corridor and semi-open corridor.

Environment l1 l2 l3

case1 empty-corridor 1.160 0.852 69.95
case2 empty-corridor 7.893 0.446 53.01

case1 furnished-corridor 6.379 0.469 65.823
case2 furnished-corridor 10.010 0.403 54.130

case1 empty-semi-open corridor 1.265 0.838 68.190
case2 empty-semi-open corridor 6.946 0.480 53.670

case1 furnished-semi-open corridor 6.453 0.470 66.451
case2 furnished-semi-open corridor 8.039 0.485 56.180

4. Conclusions

In this paper, we investigated the performance of OLED-based VLC system and the channel
characteristics in office, corridor, and semi-open environments. The measured beam pattern profile
of the curved OLED was closely matched with the simulation result. We showed that, when a flat
OLED was used in an office, τRMS increased significantly by 7.3 ns compared with 1 ns for the curved
OLED. In the office, contrary to the flat OLED, the curved OLED showed improved BER performance
over a wider range of θ. A data rate of 4 Mb/s was achieved using both the curved and flat OLEDs
for θwithin the range of ±90◦ and ±53◦, respectively. A two-term power series model was found to
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match τRMS and OPL as a function of θ and dy for the office and corridors, respectively and models’
parameters for all three environments with and without furniture were derived. We showed that,
when OLED is positioned on the outer wall of shops inside the corridor, the channel gain enhanced in
contrast to them being located on inner shop wall, e.g., the channel gain enhanced by 5.2 and 4.8 dB
at 10 m for furnished corridor and semi-open corridor, respectively. Moreover, the channel gain in
the corridor was higher compared with the semi-open corridor. As a result, for case2, there was an
enhancement in the channel gain for the furnished corridor by 1.7 and 2.4 dB at dy of 10 and 15 m in
comparison with the furnished semi-open corridor.
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