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Abstract13

Assessing rivers’ and hillslopes’ sensitivity to external forcing is paramount to understand14

landscape evolution, in particular as a response to Quaternary climate changes. River net-15

works are usually considered to be the main conveyors of environmental signals, such as16

changes in precipitation, temperature, or baselevel. Yet because hillslopes provide the source17

of sediment for river networks, their response to environmental change also modulate land-18

scape dynamics. In order to characterize such behavior we analyse the response times of a19

transport-limited hillslope. We use simple numerical models of denudation to study hillslope20

responses to oscillatory forcing and understand their filtering effects on environmental signals.21

Modifications in the frequency of climate oscillation, such as the change that occurred at the22

Mid-Pleistocene Transition, can significantly modulate hillslope sediment-flux response. We23

infer a wide range of hillslope responses, ranging from negligible change over the full range of24

climate-forcing frequencies, to a significant filtering of long-period signals.25
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Plain language summary26

Landscapes are constituted of hillslopes and rivers where different types of erosion and sediment27

transport processes take place. Due to their large extent, river networks are an important driver of28

global landscape response to climatic or tectonic changes. Hillslopes have smaller dimensions but29

are also where most sediment production occurs and for that reason it is important to have a good30

understanding of how they respond to perturbations. We use simple numerical models of hillslope31

evolution to study the influence of oscillating changes of either the efficiency of sediment transport32

across the hillslope or the rate of channel downcutting at its base. Our results indicates that the33

period of oscillations for these perturbations controls the amplitude of the sediment flux response34

out of the hillslope, and provide a framework to understand how this landscape component reacts35

to climatic cycles such as the glacial/inter-glacial oscillations of the Quaternary. For example, a36

major change occurred 800 ka ago with a shift in climate oscillation from 40 ka to 100 ka period.37

Our models suggest that in some landscapes this change in period alone could have induced a38

significant decrease in the amplitude of hillslope sediment flux response.39

1 Introduction40

Landscapes evolve in response to changes in their climatic and tectonic boundary conditions. River41

networks are usually considered to be the main agents that transmit the effects of such external42

forcing across landscapes. Due to their dominance in terms of area covered at the Earth’s surface,43

most weathering and sediment production occurs on hillslopes. Geomorphologists sometimes as-44

sume that the erosion rate on hillslopes closely follows the pace imposed by channel downcutting45

at their feet [e.g. Ouimet et al., 2009]. However, several studies have highlighted the potential for46

a more complex behavior of hillslopes, suggesting that landscape response depends on the nature47

of the coupling between channels and hillslopes and on the intrinsic dynamics of hillslopes and48

their response timescales [e.g. Langston et al., 2015; Romans et al., 2016; Watkins et al., 2018;49

Clubb et al., 2020]. The hypothesis that hillslope sediment flux depends linearly on topographic50

gradient, which underpins the diffusion theory of soil-mantled hillslope evolution, has provided51

a simple and robust framework for understanding their behavior [Gilbert, 1909; Culling, 1960].52

However, a growing body of evidence points to a nonlinear relationship between sediment flux53

and hillslope gradient [Andrews and Bucknam, 1987; Roering et al., 1999; Tucker and Bradley,54

2010; Furbish and Roering, 2013; Doane et al., 2018], which complicates the hillslope response to55
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external forcing and its relationship with the fluvial network. Forcing factors acting on landscapes56

can be classified into two broad categories [Mudd, 2016]. Climate acts directly as a Top-Down57

(TD) forcing, producing changes in surface runoff and vegetation cover, which modulate sediment58

transport efficiency along hillslopes. Bottom-Up (BU) forcing, resulting from changes in the base-59

level fall rate at the toe of the hillslope, is associated with incision or aggradation in the channel,60

and can be controlled by any factor impacting the baselevel, such as climate, tectonics, eustatic61

variations, or auto-cyclic processes.62

The response time of hillslopes has been intensively studied and characterized under these63

various types of forcing [Fernandes and Dietrich, 1997; Roering et al., 2001]. It is less clear how64

this response time interacts with the time characteristics of the input forcing, in particular when65

dealing with periodic signals associated with climatic variability. Several recent studies focusing66

on the fluvial domain have highlighted the sensitivity to periodic climatic fluctuations and the67

importance of their frequency content [Simpson and Castelltort, 2012; Godard et al., 2013; Braun68

et al., 2015]. The response of the hillslope domain to such forcing has received less attention.69

Diffusive processes are usually considered to have a strong buffering effect on environmental signals70

[e.g. Godard et al., 2013], but the signature of more complex hillslope behavior remains to be clearly71

characterized. From gently rolling hillslopes in low-relief landscapes to near-threshold slopes in72

actively uplifting areas, hillslopes can present a variety of morphologies, and understanding their73

importance for landscape evolution requires assessing which types of hillslopes, characterized by74

a given relief or erosion regime, are most sensitive to the different types of forcing factors.75

Here, we study the response of hillslopes to periodic variations in climatic and tectonic (base-76

level) boundary conditions, with a specific focus on the implication of the nonlinear relationship77

between sediment flux and gradient. We summarize the existing framework used to formulate hill-78

slope evolution, and its relationship with response time and topographic metrics. We then assess79

the controls of baselevel fall (here “uplift”) rate and transport coefficient on hillslope response. We80

specifically study the relationship between the forcing period and the response time of hillslopes,81

as set by length, uplift rate, and transport efficiency, and discuss the implications for landscape82

dynamics.83

2 Theoretical background84

We present here the theoretical formulation for hillslope erosion and sediment flux, and the mod-85

eling approaches used in this study. Mass conservation applied to 1D hillslope evolution can be86

3



expressed as,87

∂z

∂t
+
∂q

∂x
= βU, (1)

where z is land surface elevation, t time, q sediment flux ([L2T−1]), β the rock-to-regolith density88

ratio, and U the rate of rock uplift relative to baselevel at the foot of the hillslope ([LT−1]).89

Equation 1 can be combined with a Geomorphic Transport Law [GTL, Dietrich et al., 2003],90

describing sediment flux q over a hillslope. A widely used transport law for soil-mantled hillslopes91

[Roering et al., 1999, 2007] expresses the flux q as a nonlinear function of local slope gradient,92

q =
−K(∂z/∂x)

1− [(∂z/∂x)/Sc]
2 , (2)

where K is a transport coefficient ([L2T−1]) and Sc a critical hillslope gradient ([L/L]) [Roering93

et al., 1999]. This expression applies only for |∂z/∂x| < Sc. The transport law (equation 2) implies94

that the degree of nonlinearity in the relationship between gradient and sediment flux varies with95

the gradient itself. For our analysis, it is useful to quantify this degree of nonlinearity by separating96

the total flux into linear and nonlinear components. Doing so starts with the observation that97

in gently sloping parts of the landscape, such as areas close to the hilltops, the sediment flux is98

linearly related to topographic gradient as ql = −K∂z/∂x. As shown by Roering et al. [2001], the99

total flux q can be expressed as the sum of a linear ql and a nonlinear qnl component,100

q = ql + qnl = K
∂z

∂x
+
K ∂z
∂x

(
∂z/∂x
Sc

)2
1−

(
∂z/∂x
Sc

)2 . (3)

Substituting equation 2 into 1 yields a landscape evolution model describing the evolution of101

hillslope profile topography z(x, t) through space and time,102

∂z

∂t
−K ∂2z

∂x2

1 +
(
∂z/∂x
Sc

)2
(

1−
(
∂z/∂x
Sc

)2)2 = βU. (4)

We solve equation 4 using the implicit method proposed by Perron [2011]. Starting from a steady-103

state topography we submit the hillslope to time variations in either K or U , parameterized with104

sinusoidal functions,105

K(t) = K0

(
1 + a sin

(
2πt

T

))
, U(t) = U0

(
1 + a sin

(
2πt

T

))
. (5)
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K0 and U0 are the average values of K and U , respectively, a is a factor controlling the amplitude of106

the forcing, and T is the oscillation period. The reference parameter values used in our simulations107

are listed in Table S1.108

Under steady conditions (∂z/∂t = 0) equation 4 can be integrated to yield the steady-state109

topographic profile [Roering et al., 2001],110

z(x) =
KS2

c

2βU

ln

1

2

√
1 +

(
2βUx

KSc

)2

+
1

2

−
√

1 +

(
2βUx

KSc

)2

+ 1

 , (6)

with L as the hillslope length (horizontal distance from hilltop to channel). It is useful to define111

a reference erosion rate [Roering et al., 2007] as,112

ER =
KSc
2Lβ

, (7)

This reference value provides a way to normalize steady-state erosion rate E = U into its non-113

dimensional equivalent as,114

E∗ =
2LβU

KSc
. (8)

At steady state, and in the vicinity of hilltops, where topographic gradient is small (∂z/∂x� Sc),115

equation 4 simplifies to,116

U = −KCHT
β

, (9)

where hilltop curvature CHT is the second derivative of topography. Combining equations 8 and117

9 yields a form of E∗ that can be calculated directly from topographic data without needing to118

know K [Roering et al., 2007; Hurst et al., 2012],119

E∗ =
2CHTL

Sc
. (10)

In order to assess the relative non-linear contribution to the sediment flux, Roering et al. [2001]120

introduced the ratio Ψ of the two components,121

Ψ =
qnl
ql

=

(
∂z/∂x
Sc

)2
1−

(
∂z/∂x
Sc

)2 . (11)

Following Roering et al. [2001], and using equation 6, we evaluate this ratio at the base of the122
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hillslope,123

ΨL = Ψ(x = L) =

(
Sc

2βUL

(
−K +

√
K2 +

(
2βUL
Sc

)2))2

1−

(
Sc

2βUL

(
−K +

√
K2 +

(
2βUL
Sc

)2))2 , (12)

and we use their definition of an exponential equilibrium adjustment timescale for sediment flux124

or hillslope morphology calculated as,125

τ =
AL2

K(1 + ΨL)B
. (13)

The parameters A = 0.405 and B = 1.74 were calibrated by Roering et al. [2001] over a range126

of ΨL values reflecting a wide range of environmental conditions and using numerical models for127

hillslope evolution based on the same physical principles as the one we use here. Substituting128

equation 8 into 12 yields,129

ΨL =
1

2

√
1 + E∗2 − 1

2
(14)

The non-dimensional framework for hillslope morphology analysis introduced by Roering et al.130

[2007] provides a way to reduce erosion dynamics to non-dimensional erosion rates E∗ (equation 8),131

which can be computed on the basis of measurable hillslope morphological characteristics (equation132

10), such as length and hilltop curvature [Grieve et al., 2016]. Equation 14 describes the connection133

between E∗, which can be measured from topographic data, and the degree of nonlinearity of the134

sediment flux (ΨL). In order to compare theoretical predictions of hillslope behavior with actual135

landscapes, we select case studies for which landscape denudation rates have been constrained136

with terrestrial cosmogenic nuclides, and where hillslope-scale morphological properties such as137

hilltop curvature CHT and hillslope length L have been determined using methods similar to those138

proposed by Hurst et al. [2012] and Grieve et al. [2016] using high resolution topographic data139

(Figure 1 and Table S2). The topographic data enable calculation of E∗ for these sites (equation140

10), and the cosmogenic data constrain the value of the baselevel parameter U . We also use the141

global compilation of hillslope transport coefficients by Richardson et al. [2019] and denudation142

rates by Codilean et al. [2018] to put the inferred hillslope behavior into a broader context.143
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3 Results144

3.1 Controls on response time145

Low values (< 0.1) of the nonlinear transport ratio ΨL (equation 12) correspond to hillslopes146

in the linear regime (Figure 1), where response times are insensitive to changes in uplift rate147

and larger than 100 ka, for observed values of the transport coefficient [Richardson et al., 2019].148

Conversely, high ΨL values (> 1) are associated with dominant contributions of nonlinear fluxes,149

a situation where response times are controlled by both transport coefficient and uplift rate and150

where response times are less than 100 ka, expect for very low K values. Intermediate ΨL values151

(0.1-1) correspond to a transitional regime, with a drastic modification of the sensitivity of τ with152

respect to U and K. All investigated settings display ΨL > 1, expect the Southeastern Australian153

Escarpment (A1 and A2), and thus their dynamics involve significant nonlinear contributions to154

the hillslope sediment flux, with response times ranging from 10 ka (OR and GM) to several 100s155

of ka.156

Very low uplift rates (<1 m/Ma) imply a near-linear response and τ ∝ K−1 (Figure 2A),157

except for very low transport coefficients. In this regime, the more efficient the sediment transport158

is to begin with, the faster a hillslope will react to perturbations, all else being equal. On the159

other hand, for high uplift rates (>1000 m/Ma) and dominantly nonlinear behavior, τ increases160

as KB−1 over all the range of reported transport coefficient values [Richardson et al., 2019]. This161

may seem counter-intuitive at first, but it reflects the fact that greater intrinsic transport efficiency162

also implies a less steep hillslope that is farther below its threshold gradient (in a sense, it gets163

less extra help from gravity). Intermediate U values (1-100 m/Ma) are characterized by a non-164

monotonic evolution, with a maximum τ value at the transition between the linear and nonlinear165

regimes (Figure 2A).166

There is significant overlap between the arid (AI< 0.5) and humid (AI>0.5) subsets in the167

transport coefficient database of Richardson et al. [2019], with very close modal values (Figure168

2A). But arid climates’ K distribution is skewed toward lower values, with some cases displaying169

K an order of magnitude lower than the mode of the whole data set. In the nonlinear regime, for170

a given U , decreasing K by an order of magnitude will yield a similar change in the response time.171

Conversely, for a given K, an order of magnitude change in U triggers a nearly 100-fold change172

in the response time. Despite having their K and U spread over almost two orders of magnitude,173

most investigated case studies are close to the transition between the linear and nonlinear regimes174
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corresponding to the local τ maximum, with the exception of OR, which presents the maximum175

ΨL value in our dataset and is clearly in the nonlinear regime.176

We show here that E∗ and ΨL are related through equation 14, with two distinct regimes177

(Figure 2B). The first is a purely linear-diffusive regime, with ΨL � 1, E∗ � 1, and ΨL ∝ E∗2.178

The second is a nonlinear regime, for ΨL � 1 and E∗ � 1. Here, the rate of increase in ΨL with179

respect to E∗ is less rapid, with ΨL ∝ E∗. For a given K, response time is constant for low E∗
180

hillslopes, consistently with linear diffusion theory, and it decreases very rapidly with increasing181

E∗, as τ ∝ E∗−B , when moving into the nonlinear domain (dashed brown lines on Figure 2B).182

For a given baselevel fall (uplift) rate U (solid brown lines on Figure 2B), the evolution of τ is183

non-monotonic, as already observed on Figure 2A. In the linear diffusion regime, τ increases as184

E∗ and then τ ∝ E∗1−B for hillslopes dominated by nonlinear sediment fluxes. Over the range185

of U considered here, a local maximum appears at E∗ ∼ 2, coincident with the change in scaling186

between E∗ and ΨL, for ΨL between 0.1 and 1.187

We again observe that the investigated case studies are close to the transition zone between188

the two regimes, but mostly on the nonlinear side of that transition, with the exception of the189

Southeastern Australian Escarpment (A1 and A2). An increase in U or a decrease in K would190

tip them further in the nonlinear domain, with a drop in their response time τ . Conversely, a191

decrease in U or an increase in K would bring them closer to the transition, but with only a192

limited influence on τ .193

3.2 Response to oscillatory forcing194

Here we analyze hillslope response to oscillating Top-Down (K oscillations) or Bottom-Up (U195

oscillations) forcing (equations 5). We quantify the response gain, G, as the ratio between the196

normalized amplitudes of the output (sediment flux) and input (forcing) signals :197

G =
∆F/Fss

2a
, (15)

where ∆F is the peak-to-peak amplitude of the sediment flux response, Fss is the steady state198

flux, used for normalization of the output signal, and 2a is the peak-to-peak amplitude factor199

of the input forcing (equations 5 and Figures S1 and S2). Gain represents the strength of the200

response relative to that of forcing. A one-to-one relationship between forcing and response would201

correspond to G = 1; if G < 1 the response is damped, and if G > 1 it is amplified.202
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For Bottom-Up (U) fluctuations we observe that gain is near zero at high frequencies and203

moves toward 1 at low frequencies, whereas the evolution is the opposite in the Top-Down (K)204

case (Figure 3). Short-term fluctuations in K instantaneously modulate the sediment flux without205

time for morphological adjustment of the hillslope. On the other hand, longer timescale variations206

in K are slow enough to allow the hillslope to adjust its morphology and remain close to steady207

state, with a constant sediment flux matching the constant uplift rate and a gain close to 0. In208

the Bottom-Up case, high-frequency oscillations in U are too fast to be propagated upslope and209

remain a very local effect at the base of the hillslope, which does not induce a global response.210

High-frequency U oscillations therefore yield a gain close to 0. On the other hand, if the forcing211

period is longer than the hillslope response time, upslope propagation can trigger a global response212

in terms of sediment flux variation.213

Overall, decreasing K (Figure 3A, dotted curves) or increasing U (Figure 3B, dashed curves)214

by a factor of 10 with respect to the reference model moves the hillslope toward the nonlinear215

regime, with a strong decrease in the response time. For both types of forcing a decrease in K216

(Figure 3A, dotted curves) leads to an earlier transition when increasing the forcing period due217

to the corresponding shorter response time (indicated by the dotted vertical lines on Figure 3).218

Interestingly, increasing K by a factor 10 (Figure 3A, dashed curves) does not substantially change219

the response curves (for either type of forcing), which is consistent with the similar response times220

for the reference and K×10 models (solid and dashed vertical lines respectively on Figure 3). The221

response time in the K×10 model is actually slightly shorter than the reference case (Figures 1 and222

2A), as the evolution of τ is non-monotonic, with a maximum in response time at the transition223

between the linear and nonlinear regimes; the reference and K × 10 cases are located on both224

sides of this transition, and have relatively similar response times. Changes in the background225

uplift rate (Figure 3B) are similarly shifting the response to the variations in the forcing period,226

consistently with the effect of U on the response time of the hillslope (Figure 1). The amplitude227

of this shift appears to be larger than what is induced by the variations in K (Figure 3A).228

We now consider response curves to Top-Down forcing (time variations in K) using reference229

values of K from the observations compiled by Richardson et al. [2019] (Figure 4A). In order to230

further analyze the role of climatic context we first use mean K values for the whole dataset,231

and then for arid (AI<0.5) and humid subsets (solid lines on Figure 4A). Due to the considerable232

overlap between the distributions, the response curves are very similar. We also test the response233

for the lowest quartile Q1 of the arid subset (AI<0.5) and the highest quartile Q3 of the humid234
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subset (AI>0.5). In this case the two climatically contrasting settings yield distinct response235

curves, with gain differences up to 0.2 for a given forcing frequency.236

We can also analyze the impact of changes in the climatic forcing frequency, such as the shift237

occurring at the Mid-Pleistocene Transition (MPT), when the dominant period of oscillations,238

as recorded by marine oxygen isotopes, shifted from the orbital obliquity period (40 ka) to the239

eccentricity period (100 ka), at ∼800 ka ago. In the case of Top-Down forcing, such shift in240

frequency would induce a decrease in response gain. For high-K or low-U settings, where linear241

diffusion is prevalent, this decrease in gain is < 0.1, but can be > 0.2 for high-U or low-K242

situations, when the hillslope behavior is dominated by nonlinear processes. Finally, we calculate243

the response curves to Top-Down forcing using the parameters compiled for the investigated case244

studies (Table S2 and Figure 4B). We observe the whole range of responses for this selection of245

sites, with areas such as the Southeastern Australian Escarpment (A1 and A2) showing high gain,246

with only a slight decrease over the full range of periods. On the other hand, in settings such as247

the Gabilan Mesa (GM) or the Oregon Coast Range (OR) gain decreases from ∼0.9, down to <0.2248

when increasing the forcing period. When considering the MPT, the frequency shift alone would249

imply a decrease of ∼0.2 for the response gain. Overall, the sensitivity of hillslope response to250

the frequency content of climatic fluctuations appears to be quite different among these different251

locations.252

4 Discussion and conclusions253

Our results illustrate a complex hillslope response to various types of forcing, which is controlled254

by the transition between linear and nonlinear regimes [Roering et al., 2001]. The various com-255

binations of transport coefficient K and relative uplift rate U at the foot of the hillslope set its256

ΨL value and have a complex influence on its dynamics (Figure 1). Parameters describing the257

morphology of the hillslope, such as nondimensional erosion rate E∗ (equation 8), can be expressed258

as functions of the U/K ratio, such that changing U and K by the same factor does not impact259

steady state hillslope morphology. Conversely the hillslope response time τ (equation 13) can not260

be expressed as a function of the U/K ratio, which implies that a given hillslope morphology, as261

defined by E∗ value, can correspond to very different response times. These contrasts can reach262

almost one order of magnitude, depending on the individual U and K values, as illustrated by the263

differences in τ despite similar E∗ in the VA vs GM or CR vs NC case studies (Figure 2B).264

For hillslopes eroding in the 10–100 m/Ma range, the mode of K values from the Richardson265
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et al. [2019] dataset is almost coincident with the local maxima for τ (Figure 2A), implying that266

moderate climate-driven changes in K will have only a modest impact on the value of τ . The267

trade-off between U and K in controlling ΨL and E∗ values is reflected in the position of the local268

maximum in τ , which occurs at higher K values when U increases. In the nonlinear dominated269

domain, changing U by an order of magnitude implies a nearly two order of magnitude change in270

τ , whereas a similar amplitude change in K results only in less than an order of magnitude change271

in τ (Figure 2A). This importance of changes in U on hillslope response is confirmed by the steep272

slope of the constant-K curves from Figure 2B (solid brown lines) for E∗ > 1, as well as by the273

different impacts on the response curves of orders of magnitude changes in background K and U274

(Figures 3A vs 3B).275

The filtering or transmitting behavior of hillslopes with respect to high frequency environmental276

perturbations depends the values of U and K, as well as on the type of forcing, as Top-Down (TD)277

and Bottom-Up (BU) forcing are buffered at the opposite ends of the spectrum (Figure 3). For the278

usual range of K values, hillslopes transmit TD forcing up to period of ∼100 ka (gain G close to 1),279

but with a significant lowering of this limit when increasing uplift rates (Figure 3B, blue dashed280

curve). As a consequence, the sediment flux from near-threshold hillslopes in high-uplift regions281

appears less likely to be directly modulated by climate over the 10-100 ka range of astronomical282

forcing frequencies. On the other hand, BU forcing are strongly filtered at short periods (G close283

to 0) [Furbish and Fagherazzi, 2001]. Climatic fluctuations can of course act simultaneously as TD284

and BU-types forcing. Simultaneous changes in vegetation, soil moisture, and runoff generation285

can potentially lead to complex (but spatially synchronous) modulation of K in the frame of a286

TD-type forcing [e.g. Bovy et al., 2016]. The case of vegetation changes when shifting toward drier287

or wetter climates is known to trigger complex responses across landscapes. Such responses mean288

that K is not necessarily a simple linear function of mean annual precipitation. For example,289

transport efficiency may actually increase when a dense and thick forest is replaced with shrubs or290

grass under a more arid climate [Pelletier, 2014; Pelletier et al., 2016; Sharma et al., 2021]. Climate291

changes can also modulate river incision efficiency at the foot of the hillslope as a BU-type forcing,292

which acts locally and then propagates upslope with progressive adjustments. In our simulations293

we have separated the two types of forcing in order to isolate their specific properties (Figure294

3). In many settings it is likely that climatic fluctuations might trigger both types of responses,295

acting simultaneously on the hillslope, with potential constructive or destructive interactions,296

depending on the amount of phase offset between the two signals. However, orbitally-controlled297
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climatic forcing operating in the 10-100 ka range is expected to have a limited expression on river298

profiles [Goren, 2016], which is an additional argument for a limited impact of astronomically299

tuned BU-type forcing on hillslopes.300

The response curves for TD-type forcing (Figure 4) show a steep decline over the 10 ka to 1301

Ma range, implying that the 40 to 100 ka shift associated with the Mid-Pleistocene Transition302

(MPT) could have triggered a drop in gain up to 0.2 for arid and/or rapidly eroding (i.e., high303

E∗) landscapes, whereas for wetter or more slowly eroding landscapes (i.e., low E∗) the drop is304

limited to <0.1. Overall, a frequency decrease such as the MPT resulted in a significant lowering305

of the sensitivity of hillslopes to climatically driven oscillations in transport coefficient. The pure306

frequency shifts considered here are likely to be superimposed on climatically controlled increases307

or decreases in the long-term average transport coefficient value, resulting in a corresponding308

transient perturbation of the averaged sediment flux.309

For Top-Down forcing at glacial-interglacial frequencies, the expected gain ranges from about310

0.4 to 0.9 (Figure 4A). To understand how this translates into variations in hillslope sediment311

supply, one needs estimates of the amplitude of climatically modulated variations in K. An312

analysis of frost-driven creep by Anderson et al. [2013] presented an example in which variations313

in mean annual temperature similar to those associated with ice-age cycles produced variation in314

K between 0.005 and 0.04 m2/y. If one treated this as a sinusoidal variation around the mid-point,315

the corresponding amplitude would be about ±0.8 times the mean. Given the above range of gain316

values, this translates into an amplitude of sediment flux variation between 0.3 and 0.7 times the317

temporal mean.318

Conversely, given data on climatically controlled variations in hillslope sediment flux, one319

could also infer the corresponding variation in K. For example, Hughes et al. [2009] documented a320

near-doubling increase in flux (0.0012 to 0.0022 m2/y) in New Zealand associated with vegetation321

change across the Pleistocene-Holocene transition. If this were treated as sinusoidal oscillations322

about the midpoint, a flux variation amplitude of about ±0.3 times the mean with a gain range323

of 0.4 to 0.9 implies an amplitude of flux variation between about 33% and 74% of the mean flux.324

This kind of information is valuable for understanding and modeling whole-landscape response to325

cyclic climate forcing [e.g., Langston and Tucker, 2018].326

Globally, our results illustrate a complex and frequency-dependent hillslope response to os-327

cillating boundary conditions. The linear/nonlinear transition implies the potential for complex328

non-monotonic evolution and a sensitivity to changes in periodicity over Milankovitch time scales,329

12



such as the 40 to 100 ka Mid-Pleistocene Transition. As most sediment production occurs on hill-330

slopes, global-scale analysis of the impact of climate fluctuations on landscapes should integrate331

the intrinsic hillslope responses to various types of forcing.332
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Figure 1: Hillslope response timescale τ (solid contours) [Roering et al., 2001] as a function of
transport coefficient K and uplift rate U . Dashed lines correspond to different values of the non-
linear transport ratio ΨL [Roering et al., 2001]. Kernel Density Estimates for transport coefficient
[Richardson et al., 2019] and erosion rate [Codilean et al., 2018] compilations are also plotted in
front of the corresponding axes. The light blue rectangle indicates the interquartile range from
both datasets. Black white square is the reference K and U values, while small white circles
indicate other couples of values tested in figure 3. Colored circles correspond to the case studies
presented in the supplementary materials (Table S2). A1 and A2 : Southeastern Australian Es-
carpment, lowlands and highlands, respectively [Godard et al., 2019]. CR : Cascade ridge, Sierra
Nevada, CA [Hurst et al., 2012; Grieve et al., 2016]. GM : Gabilan Mesa, CA [Roering et al., 2007;
Grieve et al., 2016]. NC : Coweeta, southern Appalachians, NC [Grieve et al., 2016]. OR : Oregon
Coast Range, OR [Roering et al., 2007; Grieve et al., 2016]. VA : Valensole Plateau, Provence,
France [Godard et al., 2020].
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Figure 2: (A) Evolution of response timescale τ [Roering et al., 2001] as a function of transport
coefficient K, for different values of uplift rate U . Brown dashed line corresponds to purely linear
diffusion (ΨL = 0 in equation 13). Kernel Density Estimates for transport coefficients compiled by
Richardson et al. [2019] are also plotted above the graph. Black dashed line is the whole dataset,
whereas red and blue lines correspond to Aridity Index (AI) lower or higher than 0.5, respectively.
Colored circles correspond to the case studies presented in the text and on figure 1. Reported slope
values correspond to the exponents of asymptotic power law relationships between τ and K. (B)
Evolution of hillslope response time τ as a function of non-dimensional erosion rate E∗ [Roering
et al., 2007], for different constant transport coefficient K (dashed brown lines) or uplift rates
U (solid brown lines) values. Dashed black line shows the evolution of the nonlinear transport
ratio ΨL [Roering et al., 2001] as a function of non-dimensional erosion rate E∗. Colored circles
correspond to the case studies presented in figure 1 and supplementary materials. Reported slope
values correspond to the exponents of asymptotic power law relationships between either τ and
E∗, or ΨL and E∗.

15



Top-down
• K oscillates
• U constant

Bottom-up
• U oscillates
• K constant

A B

[K
re

f , U
re

f ]

[1
0
K

ref , U
ref ]

[0
.1

K
ref , U

ref ]

[Kref, 0
.1Uref]

[K
re

f, 
10

U re
f]

[Kref, 
Uref]

[0
.1K re

f, 
U re

f]

[1
0K

re
f, 

U re
f]

[Kref, Uref]

[K
re

f , U
re

f ]

[Kref, 10Uref]

[K
re

f , 0
.1

U
re

f ]

Changes in the 
long-term K values Response times 𝜏  

Changes in the 
long-term U values

K

U

K

U

K

U

K

U

Figure 3: Sensitivity of hillslope sediment flux to oscillation period for Top-Down (K oscillations,
blue) and Bottom-Up (U oscillations, red) forcing. The response curves show the evolution of
gain, defined as the ratio of the output to input signals normalized amplitudes (equation 15),
as a function of the input forcing period. Examples of corresponding time-series are presented
on figures S1 and S2. Thick solid lines correspond to reference values for both U and K (100
m/Ma and 0.01 m2/a, respectively, table S1). Dashed and doted lines corresponds to Uref or
Kref ×10 or ×0.1, respectively. See figure 1 for the location of the different combinations in the
(U ;K) plane. Vertical lines (solid, dashed and dotted) indicate the response times (τ) for the
corresponding hillslopes (equation 13). (A) Long-term erosion rate is fixed to the reference value
U = 100 m/Ma (but fluctuates around this value in the Bottom-Up cases). Three values of K
are tested (reference, ×10, ×0.1), which in the Top-Down cases (K oscillations) correspond to the
average value. (B) Long-term transport coefficient is fixed to the reference value K = 0.01 m2/a
(but fluctuates around this value in the Top-Down cases). Three values of U are tested (reference,
×10, ×0.1), which in the Bottom-Up cases (U oscillations) correspond to the average value.
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Figure 4: (A) Response curves for Top-Down forcing (figure 3), where the transport coefficient
is set to the average values of Richardson et al. [2019] dataset. Dark grey is for all data (K̄ =59.8
cm2/a), whereas red and blue lines correspond to Aridity Index (AI) lower (K̄ =46.2 cm2/a) or
higher (K̄ =83.9 cm2/a) than 0.5, respectively. Dashed red and blue lines correspond to first
quartile for AI<0.5 and third quartile for AI>0.5, respectively. Reference uplift rate value is
100 mm/ka, and other parameters are from table S1. Dashed and dotted gray lines correspond
to reference uplift rate multiplied by factors 2 and 0.5, respectively. Yellow curve is the power
spectrum density from Lisiecki and Raymo [2005] δ18O stack (arbitrary units). Black arrow denotes
the shift in dominant climatic oscillation period at the Mid-Pleistocene Transition (MPT, 40 ka
to 100 ka). (B) Response curves for Top-Down forcing with hillslopes parameters set to the cases
studies used here (Table S2). References to labels and colors are the same as figure 1.
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