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In brief

This systematic, worldwide catalog of

urban microbiomes represents a

metagenomic atlas important for

understanding the ecology, virulence,

and antibiotic resistance of city-specific

microbial communities.
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SUMMARY
We present a global atlas of 4,728metagenomic samples frommass-transit systems in 60 cities over 3 years,
representing the first systematic, worldwide catalog of the urbanmicrobial ecosystem. This atlas provides an
annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR)
markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR ar-
rays not found in reference databases. We identified 4,246 known species of urban microorganisms and a
consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms.
Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxo-
nomic signatures that were driven by climate and geographic differences. These results constitute a high-
resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential
public health and forensic applications, and provides a culture-independent view of AMR burden in cities.
INTRODUCTION

The high-density urban environment has historically been home

to only a fraction of all people, with the majority living in rural
3376 Cell 184, 3376–3393, June 24, 2021 ª 2021 The Author(s). Publ
This is an open access article under the CC BY license (http://creative
areas or small villages. In the last two decades, the situation

has reversed; 55% of the world’s population now lives in urban

areas (Ritchie and Roser, 2020; United Nations, 2018). Since

the introduction of germ theory and John Snow’s work on
ished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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cholera, it has been clear that people in cities interact with mi-

crobes in ways that can be markedly different than in rural areas

(Neiderud, 2015). Microbes in the built environment have been

implicated as a possible source of contagion (Cooley et al.,

1998) and certain syndromes, such as allergies, are associated

with increasing urbanization (Nicolaou et al., 2005). It is now

apparent that cities, in general, have an impact on human health,

though the mechanisms of this impact are broadly variable and

often little understood. Indeed, our understanding of microbial

dynamics in the urban environment outside of pandemics has

only just begun (Gilbert and Stephens, 2018).
Technological advances in next-generation sequencing (NGS)

and metagenomics have created an unprecedented opportunity

for rapid, global studies of microorganisms and their hosts,

providing researchers, clinicians, and policymakers with a

more comprehensive view of the functional dynamics ofmicroor-

ganisms in a city. NGS facilitates culture-independent sampling

of the microorganisms in an area with the potential for both taxo-

nomic and functional annotation; this is particularly important for

surveillance of microorganisms as they acquire antimicrobial

resistance (AMR) (Afshinnekoo et al., 2021; Fresia et al., 2019).

Metagenomic methods enable nearly real-time monitoring of
Cell 184, 3376–3393, June 24, 2021 3377
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organisms, AMR genes, and pathogens as they emerge within a

given geographical location and have the potential to reveal hid-

den microbial reservoirs and detect microbial transmission

routes as they spread around the world (Zhu et al., 2017). There

are several different drivers and sources for AMR, including agri-

culture, farming, and livestock in rural and suburban areas;

household and industrial sewage; usage of antimicrobials, hard

metals, and biocides; as well as human and animal waste. All

these factors contribute to the complexity of AMR transmission

(Allen et al., 2009; Martı́nez, 2008; Singer et al., 2016; Thanner

et al., 2016; Venter et al., 2017). A molecular map of urban envi-

ronments will enable significant new research on the impact of

urban microbiomes on human health.

Urban transit systems—including subways and buses—are a

daily contact interface for billions of people who live in cities. Ur-

ban travelers bring their commensal microorganisms with them

as they travel and come into contact with organisms and mobile

elements present in the environment. The study of the urban mi-

crobiome and the microbiome of the built environment spans

several different projects and initiatives, including work focused

on transit systems (Afshinnekoo et al., 2015; Hsu et al., 2016;

Kang et al., 2018; Leung et al., 2014; MetaSUB International

Consortium et al., 2016), hospitals (Brooks et al., 2017; Lax

et al., 2017), soil (Hoch et al., 2019; Joyner et al., 2019), and

sewage (Fresia et al., 2019; Maritz et al., 2019), among others.

For themost part, these efforts have only studied a few select cit-

ies on a limited number of occasions. This leaves a gap in scien-

tific knowledge about a microbial ecosystem with which the

global human population readily interacts. Human commensal

microbiomes have also been found to vary based on culture,

and thus geographically isolated studies are limited and may

miss key differences (Brito et al., 2016). Moreover, data on urban

microbes and AMR genes are urgently needed in developing na-
3378 Cell 184, 3376–3393, June 24, 2021
tions, where antimicrobial drug consumption is expected to rise

by 67%by 2030 (United Nations, 2016; Van Boeckel et al., 2015),

both from changes in consumer demand for livestock products

and expanding use of antimicrobials—both of which can alter

AMR profiles of these cities.

The International Metagenomics and Metadesign of Subways

andUrban Biomes (MetaSUB) Consortiumwas launched in 2015

to address this gap in knowledge on the density, types, and dy-

namics of urbanmetagenomes and AMRprofiles. Since then, we

have developed standardized collection and sequencing proto-

cols to process 4,728 samples across 60 cities worldwide (Table

S1). Sampling took place at three major time points: a pilot study

in 2015–2016 and two global city sampling days (June 21st) in

2016 and 2017. Each sample was sequenced with 5–7 million

125bp paired-end reads using Illumina NGS sequencers (see

STAR Methods). To deal with the challenging analysis of our

large dataset, we generated an open-source analysis pipeline

(MetaSUB Core Analysis Pipeline, CAP), which includes a

comprehensive set of state-of-the-art, peer-reviewed, metage-

nomic tools for taxonomic identification, k-mer analysis, AMR

gene prediction, functional profiling, de novo assembly, taxon

annotation, and geospatial mapping. To our knowledge, this

study represents the first extensive global metagenomic study

of urbanmicrobiomes. This study reveals a consistent ‘‘core’’ ur-

ban microbiome across all cities, as well as distinct geographic

variation that may reflect the epidemiological variation and that

enables a new forensic, city-specific source-tracking. Our data

demonstrate a significant fraction of the urban microbiome re-

mains to be characterized. Though 1,000 samples are sufficient

to discover roughly 80%of the observed taxa and AMRmarkers,

we continued to observe taxa and genes not found in other sam-

ples. This genetic variation is affected by environmental factors

(e.g., climate, surface type, latitude, etc.), and samples show

mailto:chm2042@med.cornell.edu
https://doi.org/10.1016/j.cell.2021.05.002


Table 1. Sample counts

Region Pilot CSD16 CSD17 Other Total

North America 28 284 371 276 959

East Asia 34 26 1,297 0 1,357

Europe 177 310 939 1 1,427

Sub-Saharan Africa 0 116 192 0 308

South America 20 44 199 68 331

Middle East 0 100 15 0 115

Oceania 0 94 32 0 126

Background control 0 0 40 0 40

Lab control 0 0 20 6 26

Positive control 0 0 33 6 39

Total 259 974 3,138 357 4,728

The number of samples collected from each region.
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greater diversity near the equator. Sequences associated with

AMRmarkers are widespread, though not necessarily abundant,

and show geographic specificity. Here, we present the results of

our global analyses and a set of tools developed to access and

analyze this extensive atlas, including two interactive map-

based visualizations for samples (metasub.org/map) and AMRs

(resistanceopen.org), an indexed search tool over raw sequence

data (https://metagraph.ethz.ch/search), a Git repository for all

analytical pipelines and figures, and application programming in-

terfaces (APIs) for computationally accessing results (https://

github.com/metasub/metasub_utils).

RESULTS

We collected 4,728 samples from the mass transit systems of 60

cities around the world (Table 1; Table S1). These samples were

collected from at least three common surfaces in each mass

transit system (railings, benches, and ticket kiosks), with addi-

tional optional surfaces also collected in each city, and all were

subjected to shotgun metagenomic sequencing (125 3 125 PE

reads, see STAR Methods). We use the microbiome of mass

transit systems as a proxy for the urban microbiome as a whole

and present our key findings here.

A core urban microbiome centers global diversity
We first investigated the distribution of microbial species across

the global urban environment. Specifically, we asked whether

the urban environment represents a singular type of microbial

ecosystem or a set of related but distinct communities, espe-

cially in terms of biodiversity.We observed a bimodal distribution

of taxa prevalence across our dataset, which we used to define

two separate sets of taxa based on the inflection points of the

distribution: the putative ‘‘sub-core’’ set of urban microbial spe-

cies that are consistently observed (>70% of samples) and the

less common ‘‘peripheral’’ (<25% of samples) species. We

also defined a set of true ‘‘core’’ taxa, which occur in essentially

all samples (>97% of samples) (Figure 1A). Applying these

thresholds, we identified 1,145 microbial species (Figure 1B),

as defined by the NCBI annotation in KrakenUniq, that make
up the sub-core urban microbiome with 31 species in the true

core microbiome (Figure 1A). Core and sub-core taxa classifica-

tions were further evaluated for sequence complexity and

genome coverage on a subset of samples. Of the sub-core spe-

cies, 69 were flagged as being low-quality classifications (see

STAR Methods). The sub-core microbiome was principally bac-

terial, with just one high-confidence eukaryote identified:

Saccharomyces cerevisiae. Notably, no archaea or viruses

were identified in the group of sub-core microorganisms. For vi-

ruses in particular, this may be affected by the DNA extraction

methods used, limitations in sequencing depth, or missing anno-

tations in reference databases used for classification. The three

most common bacterial phyla across the world’s cities ordered

by the number of species observed were Proteobacteria,Actino-

bacteria, and Firmicutes.

Despite their global prevalence, the core taxa were not uni-

formly abundant across all cities. Many species exhibited a

high standard deviation and kurtosis (Fisher’s definition) relative

to other species (Figure 1C). Some species showed distinctly

high mean abundance, often higher than core species, but

more heterogeneous global prevalence. For example, Salmo-

nella enterica was identified in <50% of samples but was the

12th most abundant species based on the fraction of DNA

ascribed to it. The most relatively abundant microbial species

wasCutibacterium acnes (Figure 1D), which had a comparatively

stable distribution of abundance across all samples, and is a

known human skin commensal. To correct for bias arising from

uneven geographic sampling, we measured the relative abun-

dance of each taxon by calculating the fraction of reads classi-

fied to each taxon and compared the raw distribution to the dis-

tribution of median abundances within each city; the two

measures closely aligned. An examination of the positive and

negative controls indicates that these results are not likely due

to contamination or batch effect (see STAR Methods). In total,

we observed 31 core taxa (>97% prevalence), 1,145 sub-core

taxa (70%–97% prevalence), 2,466 peripheral taxa (<25% prev-

alence), and 4,424 taxa across all samples. We term the set of all

high-confidence taxa observed in the urban panmicrobiome.

To estimate the number of taxa present in our samples but that

may have been missed by our methods (e.g., sampling type and

sequencing depth), we performed a rarefaction analysis on the

taxa that were identified. By estimating the number of taxa iden-

tified for different numbers of samples as a function of the num-

ber of reads, we see a diminishing trend (Figure 1D), which indi-

cates that at some point, the species in every new sample were

likely already identified in a previous one. Our rarefaction curve

did not reach a plateau, and even after including all samples, it

still showed a marginal discovery rate of roughly one new spe-

cies for every 10 samples added to the study. For clarity, we

note that this analysis only considers taxa already present in

reference databases, not newly discovered taxa (below). Despite

the remaining unidentified taxa, we estimate that most (80%) of

the classifiable taxa in the urban microbiome could be identified

with roughly 1,000 samples.

Since humans are a major part of the urban environment, the

DNA in our samples could be expected to resemble commensal

human microbiomes. To investigate this, we compared non-hu-

man DNA fragments from our samples to 50 randomly selected
Cell 184, 3376–3393, June 24, 2021 3379

http://metasub.org/map
http://resistanceopen.org
https://metagraph.ethz.ch/search
https://github.com/metasub/metasub_utils
https://github.com/metasub/metasub_utils


(legend on next page)

ll
OPEN ACCESS

3380 Cell 184, 3376–3393, June 24, 2021

Article



ll
OPEN ACCESSArticle
samples from five commensal microbiome sites (stool, skin,

airway, gastrointestinal tract, urogenital tract; 10 samples of

each type) in the HumanMicrobiome Project (HMP) (Consortium

et al., 2012). We used MASH to perform a k-mer-based compar-

ison of our samples versus the selected HMP samples, which

showed a roughly uniform dissimilarity between MetaSUB sam-

ples and those from different human body sites (Figures 1E and

S1A). Samples taken from surfaces that were likely to have been

touchedmore often by human skin, such as doorknobs, buttons,

railings, and touchscreens, were indeed more similar to the hu-

man skin microbiomes than surfaces like bollards, windows,

and the floor. For example, doorknobs were significantly more

similar to skin than windows (t test, p < 2e-16).

We performed an analogous comparison to a set of 28 meta-

genomic soil samples (Bahram et al., 2018). Our samples were

more dissimilar from the soil samples (Figure 1F) than they

were to human skin microbiomes. This suggests that unclassi-

fied DNA in our samples may represent uncharacterized taxa

that are not known commensal or soil species.

We next estimated the fraction of sequences in our data that did

not resemble sequences in known referencedatabases.We took a

subset of 10,000 reads from each sample and aligned these reads

to four large-scale sequence databases using BLASTn (Altschul

et al., 1990). We identified reads that mapped at 80%, 90%, and

95% average nucleotide identity (ANI) (Figure 1G) to sequences

in the RefSeq reference database, NCBI’s NT Environmental data-

base, a large set of Metagenome Assembled Genomes (MAGs)

from Pasolli et al. (2019), and MAGs from MetaSUB itself (see

widespread observation of biology not in reference databases).

At 80% ANI, the most permissive threshold, we observed that

34.6%of reads did notmap to any database, while 47.3%of reads

did not map to any database except MAGs from MetaSUB itself.

Thismirrors results seen by previous urbanmicrobiomeworks (Af-

shinnekoo et al., 2015; Hsu et al., 2016).Whenwebroke alignment

rates down by region, we found that samples from Europe had the

highest fraction of unaligned reads, followed by the Middle East,

while samples from Sub-Saharan Africa had the smallest fraction

of unaligned reads (Figure S1B).

Previous ecological studies have observed a decrease in taxo-

nomic diversity as the distance from the equator increases

(O’Hara et al., 2017). Our data recapitulated this result and iden-

tify a significant decrease in taxonomic diversity (thoughwith sig-

nificant noise, p < 2e16, R2 = 0.06915) as a function of absolute

latitude; samples are estimated to lose 6.97 species for each de-

gree of latitude away from the equator (Figure S1C). While this is

an observation consistent with ecological theory, we note that

our samples are somewhat clustered in specific latitudes.
Figure 1. The core microbiome

(A) Taxonomic tree showing 31 core taxa, annotated according to gram stain, ab

(B) Distribution of species prevalence from all samples and normalized by cities.

(C) Prevalence and distribution of relative abundances of the 75 most abundant

dance distribution are shown.

(D) Rarefaction analysis showing the number of species detected in randomly ch

(E) MASH (k-mer-based) similarity between MetaSUB samples and HMP skin m

(F) MASH (k-mer based) similarity between MetaSUB samples and soil microbio

(G) Fraction of reads aligned (via BLAST) to different databases at different avera

See also Figure S1.
Global diversity varies according to key covariates
Despite the core urban microbiome present in almost all sam-

ples, there was nonetheless a wide range of variation in taxon-

omy and localization across all the cities. To quantify this, we

calculated the Jaccard distance between samples based on

the presence and absence of all panmicrobiome species and

performed a dimensionality reduction of the data using UMAP

(uniform manifold approximation and projection, McInnes

et al., 2018) for visualization (Figure 2A). In principle, Jaccard dis-

tance could be influenced by read depth, where low abundance

species drop below the detection threshold. However, we

expect this issue to be minor as Jaccard distance of taxonomic

profiles correlated with k-mer-based distances (Figures S2A and

S2B) and because the total number of species identified stabi-

lized at roughly 100,000 reads (with no sharp quality drop-off;

Figures S2C and S2D) compared to an average of 6.01 million

reads per sample.

Since taxonomic profiles fromNorth America and Europewere

distinct from those collected in East Asia (with smaller clusters

for other regions), we next examined variation as function of

functional classification, climate, surface type, and year of sam-

pling. Subclusters identified by UMAP of taxonomic profiles

roughly corresponded to climate but not surface type (Figures

S3A and S3B). Similar to taxonomy, dimensionality reduction

of functional metabolic profiles showed a geospatial difference

between regions (Figure S3C), indicating stratification of the

metagenomes at both the functional and genus/species levels.

These findings confirm and extend earlier analyses performed

on a fraction of the MetaSUB data, which were run as a part of

CAMDA Challenges (camda.info). To gauge the impact of time,

we also compared variation in matched sites from cities with

two consecutive years of sampling on the summer solstice

(June 21). While taxonomic change within a city between 2016

and 2017 was usually less than the difference between cities

(Figure S3D), this may become a more important factor over

longer time periods.

We next quantified the degree to which metadata covariates

influence the taxonomic composition of our samples usingMAV-

RIC, a statistical tool to estimate the sources of variation in a

count-based dataset (Moskowitz and Greenleaf, 2018) accord-

ing to each samples’ metadata of city, population density,

average temperature in June, region, elevation above sea level,

surface type, surface material, elevation above or below ground,

and proximity to the coast. The most important factor (19% of

the variation) was the city from which a sample was taken, fol-

lowed by the world’s overall region (11%). The other four factors

accounted for 2% to 7% of the possible variation in taxonomy
ility to form biofilms, and whether the bacteria is a human commensal species.

Vertical lines show defined group cutoffs.

taxa. Mean relative abundance, standard deviation, and kurtosis of the abun-

osen sets of samples.

icrobiome samples by continent.

me samples by continent.

ge nucleotide identities.

Cell 184, 3376–3393, June 24, 2021 3381

http://camda.info


Figure 2. Differences at global scale

(A) UMAP of taxonomic profiles based on Jaccard distance between samples. Colored by the region of origin for each sample. Axes are arbitrary and without

meaningful scale. The color key is shared with (B).

(B) Association of the first 25 principal components of sample taxonomy with climate, continent, and surface material.

(C) Distribution of ma1jo0r phyla, sorted by hierarchical clustering of all samples and grouped by continent.

(D) Distribution of high-level groups of functional pathways, using the same order as taxa (C).

(E) Distribution of AMR genes by drug class (as defined in MegaRes), using the same order as taxa (C). Note that MLS is macrolide-lincosamide-streptogramin.

See also Figure S3.
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(Table S2). We note that many of the factors were confounded

with one another, so they can explain less diversity than their

sum. Of note, the population density of the sampled city had

no significant effect on taxonomic variation.

Given this strong signal from each city, we performed a prin-

cipal component analysis (PCA) on our taxonomic data, normal-

ized by the proportion of identified principal components (PCs)

that were associated with a metadata covariate (positive or

negative). We hypothesized that some principle covariates,

such as climate, continent, and surface material, might be prom-
3382 Cell 184, 3376–3393, June 24, 2021
inent factors driving the taxonomic composition of a given sam-

ple. We found that the two most prominent absolute PCs asso-

ciated strongly with the city climate (representing 28.0% and

15.7% of the variance of the original data, respectively), while

the continent and surface material associated less strongly (Fig-

ure 2B); the same trend held for the variation of AMR genes (Fig-

ures S3E–S3G) as well.

We tested if samples that were close together in cities were

more similar to one another. For pairs of samples taken in the

same city, the geographic distance between samples was



(legend on next page)
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crudely predictive of the Jensen-Shannon distance between

taxonomic profiles. Every increase of 1 km in distance between

two samples represented an increase of 0.056% in divergence

(p < 2e16, R2 = 0.01073; Figure S1D). To reduce potential bias

from samples taken from the same object, we excluded all pairs

of samples within 1 km of one another. This suggests a ‘‘neigh-

borhood effect’’ for sample similarity analogous to the effect

described by Meyer et al. (2018), albeit a very minor one.

At a global level, we examined the prevalence and abundance

of taxa and their functional profiles between cities and conti-

nents. These data showed that most samples contained species

from four phyla: Actinobacteria, Bacteroidetes, Firmicutes, and

Proteobacteria, but that the relative abundance of these phyla

varied (Figure 2C). Certain archetypes appear to be continental

to an extent; for example, the Middle East and Oceania are

showing a higher proportion of Firmicutes than other regions.

In contrast to taxonomic variation, functional pathways were

much more stable across continents, showing relatively slight

variation in the abundance of high-level categories (Figure 2D).

This pattern may also be due to the more limited range of

pathway classes and their essential role in cellular function, in

contrast to the muchmore wide-ranging taxonomic distributions

examined across metagenomes. Classes of antimicrobial resis-

tance were observed to vary by continent, as well as to occur in

groups of taxonomically similar samples (Figure 2E) but were

generally much sparser and more variable than the taxonomic

gradients. We compared the distribution of pairwise distances

between samples’ taxonomic profiles and their functional pro-

files (both equivalently normalized). Taxonomic profiles showed

a mean pairwise Jensen-Shannon divergence (JSD) of 0.61,

while pathways have a mean JSD of 0.099, which was signifi-

cantly different (Welch’s t test, unequal variances, p < 2e16).

This observation is consistent with data from the HMP, where

the metabolic function varied less than taxonomic composition

(Consortium et al., 2012; Lloyd-Price et al., 2017) within samples

from a given body site.

Microbial signatures reveal urban characteristics
To facilitate more straightforward mapping and comparison of

sequences, we created GeoDNA and MetaGraph (https://

metagraph.ethz.ch/search), a high-level web interface (Fig-

ure 3A) to search raw sequences against the MetaSUB dataset.

Users can submit sequences to be processed against a k-mer

graph-based representation of the MetaSUB data and other

sequence databases (e.g., SRA). Query sequences are mapped

to samples and collection metadata, and then a set of likely sam-

ple hits from around the world is returned to the user. This inter-
Figure 3. Microbial signatures

(A) Schematic of GeoDNA representation generation. Raw sequences of individu

filtration, the k-mers are assembled into a graph index database. Each k-mer is the

as geo-location and sampling information (top middle). Arbitrary input sequences

list of matching paths in the graph together with metadata and a score indicating

sample is used to highlight the locations of samples that contain sequences iden

(B) Classification accuracy of a random forest model for assigning city labels to

(C) Distribution of endemicity scores (term frequency inverse document frequenc

(D) Prediction accuracy of a random forest model for a given feature (rows) in sam

columns are sorted by average accuracy. Continuous features (e.g., population)

See also Figure S4.
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face allows researchers to probe the diversity in this dataset and

rapidly identify related genetic sequences, as well as the discov-

ery of city-defining k-mers and sequences that might have

forensic implications.

To test this idea of a sample’s predictive capacity for mapping

to its city of origin, we trained a Random Forest classifier (RFC)

from the taxonomic profile of each metagenome. Specifically,

we trained an RFC with 100 estimators on 90% of the samples

in our dataset and evaluated its classification accuracy on the re-

maining 10%. We repeated this procedure with multiple sub-

samples of our data at various sizes (with five replicates per

size) to show how performance varied with the amount of input

data (Figure 3B). The RFC achieved 88%on held-out data, which

compares favorably to the 7.01% that would be achieved by a

randomized classifier. Of note, we obtained similar results

even with lower numbers of estimators (e.g., 10 estimators

showed an accuracy of 78.9%). These results from our RFC

demonstrate that city-specific taxonomic signatures and k-

mers can be predictive for a sample’s origin.

We next expanded our analysis of environmental taxonomic

signatures to the prediction of features in cities not present in

our training set, including population, surfacematerial, elevation,

proximity to the coast, population density, region, average June

temperature, and Koppen climate classification. We trained an

RFC to predict each feature based on all samples that were

not taken from a given city, then used the relevant RFC to predict

the feature for samples from the held-out city and recorded the

classification accuracy (Figure 3D). While not all features and cit-

ies were equally predictable (in particular, features for several

British cities were roughly similar and could be predicted effec-

tively), in general, the predictions exceeded random chance by

a significant margin (Figure S4A). The successful geographic

classification of samples demonstrates distinct city-specific

trends in the detected taxa and city metadata that may enable

future forensic biogeographical capacities.

However, these city-specific taxa are not uniformly distributed

across the world (Figure 3B). To quantify this ‘‘metagenome

uniqueness’’ for each city, we developed a score to reflect how

endemic a given taxon is within a city, which reflects the forensic

usefulness of a taxon. We defined the endemicity score (ES) of a

taxa as term-frequency inverse document frequency, where the

‘‘document’’ consists of samples from a group such as a city or

region. This score is designed to simultaneously reflect the

chance that a taxon would be useful to identify a given city. A

high ES for a taxon in a city could be evidence of an evolutionary

advantage in that city or neutral evolutionary drift, and the ES

alone does not distinguish between the two. The distribution of
al samples for all cities are transformed into lists of unique k-mers (left). After

n associated with its respective city label and other informativemetadata, such

(top right) can then be efficiently queried against the index, returning a ranked

the percentage of k-mer identity (bottom right). The geo-information of each

tical or close to the queried sequence (middle right).

samples as a function of the size of the training set.

y) for taxa in each region.

ples from a city (columns) that were not present in the training set. Rows and

were discretized.

https://metagraph.ethz.ch/search
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ES shows a bimodal distribution for regions and cities (Fig-

ure 3C), with some outlier cities. Each region possesses a num-

ber of taxa with ES scores close to 1 and a slightly larger number

close to 0 (note, ES is not bounded in [0, 1]). Some cities, such as

Offa (Nigeria), host many taxa with high ES while others, such as

Zurich (Switzerland), host fewer. High ES could indicate

geographic sampling bias; however, some cities from well-

sampled continents (e.g., Lisbon, Hong Kong) host many

endemic species, suggesting that ES may indicate interchange-

ability and local niches of microbiome variation.

Antimicrobial resistance genes form distinct clusters
Quantification of antimicrobial diversity and AMRs are key com-

ponents of global antibiotic stewardship. Yet, predicting anti-

biotic resistance from genetic sequences alone is challenging,

and detection accuracy depends on the class of antibiotics

(i.e., some AMR genes are associated with main metabolic path-

ways, while others are uniquely used to metabolize antibiotics).

As a first step toward a global survey of antibiotic resistance in

urban environments, we mapped reads to known antibiotic

resistance genes, using the MegaRES ontology and alignment

software. We quantified their relative abundance using reads/

kilobase/million mapped reads (RPKM) for 20 classes of anti-

biotic resistance genes detected in our samples (Figures 4A

and 4B). 2,210 samples had some sequences aligning to an

AMR gene, but no consistent core set of AMR genes was iden-

tified. The most common classes of antibiotic resistance genes

were for macrolides, lincosamides, streptogamines (MLS), and

beta-lactams, yet the most common class of antibiotic resis-

tance genes, MLS, was found in only 56% of the samples where

AMR sequence was identified. We also quantified the likely

mechanisms of identified antibiotic resistance genes. The three

most prevalent resistance mechanisms are EF-Tu inhibition,

23S rRNA methyltransferases, and multi-drug efflux pumps.

However, none of these are found in more than 25% of samples

(abundance and prevalence of AMR mechanisms (Figures S5A

and S5B).

Indeed, antibiotic resistance genes were universally in low

abundance compared to functional genes, with RPKM values

for resistance classes typically ranging from 0.1 to 1 compared

to values of 10 to 100 for typical housekeeping genes (AMR clas-

ses contain many genes, so RPKM values may be lower than

they would be for individual genes). Despite the low abundance

of the genes themselves, some samples contained sequences

from hundreds of distinct AMR genes. Clusters of high AMR di-

versity were not evenly distributed across cities (Figure 4C).

Some cities had more resistance genes identified on average

(15–203) than others (e.g., Bogota), while other cities had

bimodal distributions (e.g., San Francisco); some samples had

hundreds of genes, while others were very few. We note that

99% of the cases where we detected AMR genes showed an

average depth of 2.73, indicating that our overall global distribu-

tion would not dramatically change with altered read depth

(Figure S5E).

Since taxa could be used to classify a sample’s city of origin,

wenext examined if AMRgenes exhibited the same stratification.

A random forestmodel was trained (as above) to predict city clas-

sification based on the mapped antimicrobial resistance genes.
While this model achieved 37.6% accuracy on held out test

data (Figure S4B), showing that it is better than random chance

(7.0%), the AMR profile was much less accurate than the taxo-

nomic predictor (88.0%). Since AMR genes are more likely to

be mobile, this is not surprising and likely indicates that they

represent weaker (but possible) city-specific signatures.

Prior studies have shown that numerous AMR genes can be

carried on a single plasmid, and ecological competition may

cause multiple taxa in the same sample to develop antimicrobial

resistance, but little is known in urban environments. To examine

these phenomena, we identified clusters of AMR genes that co-

occurred in the same samples (Figure 4D). We measured the

Jaccard distance between all pairs of AMR genes found in at

least 1% of samples and performed agglomerative clustering

on the resulting distance matrix. We identified three large clus-

ters of genes and numerous smaller clusters. Of note, these clus-

ters often consist of genes from multiple classes of resistance,

and the large clusters contain far more genes than are typically

found on plasmids.

Next, we performed a rarefaction analysis on the set of all

resistance genes in the dataset, which we call the ‘‘panresis-

tome’’ (Figure S5D). Similar to the rate of detected species, the

panresistome also shows an open slope with an expected rate

of discovery of 1 new AMR gene per 10 samples. Given that

AMR gene databases are rapidly expanding, and that no AMR

genes were found in some samples, it is likely that future ana-

lyses will identify many more resistance genes in these data.

Additionally, AMR genes showed a ‘‘neighborhood’’ effect within

samples that are geographically proximal, analogous to the ef-

fect was seen for taxonomic composition (Figure S5C).

Excluding samples where no AMR genes were detected, the

Jaccard distance between sets of AMR genes increases with

distance for pairs of samples in the same city. As with taxonomic

composition, the overall effect is weak and noisy but nonetheless

significant.

Widespread observation of biology not in reference
databases
To examine these samples for large genetic elements, we

created metagenome-assembled genomes (MAGs) with meta-

SPAdes to look for viral, bacterial, and archaeal genomes and

for CRISPR arrays (see assembly methods). These MAGs

comprised 1,304 total high-quality genomes, of which 748 did

not match any known reference genome within 95% ANI.

1,302 of the genomes were classified as bacteria and 2 as

archaea. Bacterial genomes came predominantly from four

phyla: the Proteobacteria, Actinobacteria, Firmicutes, and Bac-

teroidota. Bacterial genomes that did not match any reference

were evenly spread across these phyla (Figure 5A), and assem-

bled bacterial genomeswere often identified inmultiple samples.

Several of the most prevalent bacterial genomes were species

with no known reference genome with >95% average nucleotide

identity (Figure 5B).

Some assembled genomes showed regional specificity, while

others were globally distributed. Overall, the taxonomic compo-

sition of identifiable genomes roughly matched the composition

of the core urbanmicrobiome (see a core urbanmicrobiome cen-

ters global diversity), with the number of identified bacterial
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Figure 4. Antimicrobial resistance genes

(A) Prevalence of AMR genes with resistance to particular drug classes.

(B) Abundance of AMR gene classes when detected, by drug class.

(C) Number of detected AMR genes by city.

(D) Co-occurrence of AMR genes in samples (Jaccard index) annotated by drug class.

See also Figure S5.
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MAGs somewhat related to read depth (number of reads corre-

lated with the number of OTUs in sample with R = 0.4, p < 2e 16

Pearson’s correlation), indicating additional sampling and

sequencing will continue to discover more MAGs that do not
3386 Cell 184, 3376–3393, June 24, 2021
match known reference genomes. Bacterial MAGs were roughly

evenly distributed geographically, with the notable exception of

Offa, Nigeria, which had dramatically more bacterial species

than other cities that did not match references.



(legend on next page)
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We then examined the assembled contigs for viruses using

Joint Genome Institute’s (JGI’s) uncultivated viral genomes

(UViGs) mapping method (Paez-Espino et al., 2019). This anal-

ysis revealed a set of 16,584 total UViGs. Taxonomic analysis

of the predicted UViGS yielded 2,009 viral clusters, containing

a total of 6,979 UViGs and 9,605 singleton UViGs for a total of

11,614 predicted viral species. Predicted viral species from sam-

ples collected within 10, 100, and 1,000 km of one another were

agglomerated to examine their planetary distribution at different

scales (Figure 5B). At any scale, most viral clusters appear to be

weakly cosmopolitan; the majority of their members are found at

or near one location, with a few exceptions.

We compared the MAG-derived viruses to known viral se-

quences in the Integrated Microbial Genome and Viral database

(IMG/VR) at JGI, which contains viral genomes from isolates, a

curated set of prophages, and 730,000 viral MAGs from other

studies. Of the 11,614 species discovered in the MetaSUB

MAGs, 94.1% did not match any viral sequence in IMG/VR

(Paez-Espino et al., 2019) at the species level for a total of

10,928 viruses that did not match known species. We note that

this number was obtained using a conservative pipeline

(99.6% precision) and corresponded well with our identified

CRISPR arrays (below). This suggests that urban microbiomes

contain a large, untapped amount of viral diversity not previously

observed in other environments.

Next, we attempted to identify possible bacterial and eu-

karyotic hosts for our predicted viral MAGs. For the 686 spe-

cies with similar sequences in IMG/VR, we projected known

host information onto 2,064 MetaSUB viral MAGs. Additionally,

we used CRISPR-Cas spacer matches in the Integrated Mi-

crobial Genomes and Microbiomes (IMG/M) system to assign

possible hosts to a further 1,915 predicted viral species.

Finally, we used a database of 20 million metagenome-derived

CRISPR spacers to provide further rough taxonomic assign-

ments. Our predicted viral hosts aligned with our taxonomic

profiles; 41% of species in the core microbiome (see a core

urban microbiome centers global diversity) had predicted

viral-host interactions. Many of our viral MAGs were found in

multiple locations (Figure 5D). Many viruses were found in

South America, North America, and Africa, and viral MAGs

in Japan often corresponded to those in Europe and North

America.

From these MAGs, we identified 838,532 CRISPR arrays, of

which 3,245 could be annotated for specific CRISPR systems.

The annotated CRISPR arrays were mostly type 1-E and 1-F,

but a number of type II and III systems were identified as

well (Figures 5E and 5F), and some arrays had unclear (ambig-

uous) type assignment. Critically, when we aligned spacers to

both our viral MAGs and all viral sequences in RefSeq, the

spacers in our identified CRISPR arrays closely matched our
Figure 5. Newly observed genetic sequences

(A) Taxonomic tree for metagenome-assembled genomes (MAGs) found in the M

known species, and the inner ring indicates phyla of the MAG.

(B) Top: the number of samples where the most prevalent MAGs were found. Bo

(C) Mapping rate of CRISPR spacers from MetaSUB data to viral genomes in Re

(D) Geographic distribution of viral genomes found in MetaSUB data.

(E and F) Fractional breakdowns of identifiable CRISPR systems found in the Me

3388 Cell 184, 3376–3393, June 24, 2021
predicted MAG-derived viruses. Moreover, while the total frac-

tion of spacers that could be mapped to our virus-containing

MAGS and RefSeq was similar (32.2% to our data versus

36.8% for RefSeq), the mapping rate to our viral MAGs

dramatically exceeded the mapping rate to RefSeq (Figure 5C),

which provides additional evidence supporting the veracity of

urban viruses.

DISCUSSION

MetaSUB is a global network of scientists and clinicians devel-

oping knowledge of urbanmicrobiomes by studyingmass transit

systems, the built environment, and hospitals. We collected and

sequenced 4,728 samples from 60 cities worldwide (Table 1; Ta-

ble S1), constituting the first large-scale metagenomic study of

the urban metagenome. We conclude that there is a consistent

urbanmicrobiome core (Figures 1 and 2), which is supplemented

by geographic variation (Figure 2) and microbial signatures

based on the specific attributes of a city (Figure 3). Our data

also show that taxa remain to be discovered in these and future

data (Figure 5), environmental factors (e.g., climate) significantly

affect the microbial variation, and sequences associated with

AMR genes are globally widespread but not necessarily abun-

dant (Figure 4). In addition to these results, we present several

ways to access and analyze our data including interactive

web-based visualizations, search tools over raw sequence

data, and high-level interfaces to computationally access

results.

Together, these data suggest that urban microbiomes should

be treated as ecologically distinct from both surrounding soil mi-

crobiomes and human commensal microbiomes. Though these

microbiomes undoubtedly interact, they nonetheless represent

distinct ecological niches with different genetic profiles. While

our metadata covariates were associated with the principal vari-

ation in our samples, they do not explain a large proportion of the

observed variance. It remains to be determined whether the vari-

ation is essentially a stochastic process or if a deeper analysis of

our covariates proves more fruitful. In particular, analysis of cit-

ies’ greenspace, tourism, and waste management systems

may be fruitful to explain variation; a study by Reese et al.,

(2016) found that urban stress could impact microbial composi-

tion.We have observed that less important PCs (roughly PCs 10–

100) are generally less associated with metadata covariates but

that PCs 1–3 do not adequately describe the data alone. This is a

pattern that was observed in the human microbiome project as

well, where minor PCs (such as our Figure 2B) were required to

separate samples from closely related body sites.

Much of the urbanmicrobiome likely represents previously un-

observed diversity, as our samples contain a significant propor-

tion of unclassified DNA. This finding is comparable to many
etaSUB data. The outer black and white ring indicate if the MAG matches a

ttom: the regional breakdown of samples where the MAG was found.

fSeq and viral genomes found in MetaSUB data.

taSUB data.
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other metagenomic and microbiome studies including other

work is done in subway environments (Afshinnekoo et al.,

2015; Hsu et al., 2016), airborne microbiomes (Yooseph et al.,

2013), work done by the Earth Microbiome Project (Thompson

et al., 2017), and others. As noted in Figure 1, more sensitive

alignment methodology only marginally increases the proportion

of classified DNA. We consider the DNA that would not be clas-

sified by a sensitive technique to be truly unclassified DNA and

postulate that it may derive from genes or species not in refer-

ence databases. Given that our samples did not closely

resemble human commensal microbiomes or soil samples, it is

possible this represents DNA sequences specific to the urban

environment.

The fraction of predicted viral sequences that belonged to pre-

viously unobserved taxa was particularly high in our study

(94.1%); however, taxonomic associations of these viruses to

observed microbial hosts and associations with novel CRISPR

sequences suggest these results are not spurious. The discovery

of more taxa not in reference databases may help to reduce the

large fraction of DNA that cannot currently be classified. Our data

do not support the presence of any viruses in the core micro-

biome. However, this cannot be excluded and should be thor-

oughly addressed in the future with more in-depth sequencing,

sampling/extraction techniques, or long-read technologies.

Many of the identified taxa are frequently implicated as infec-

tious agents in a clinical setting including specific Staphylo-

coccus, Streptococcus, Corynebacterium, Klebsiella, and

Enterobacter species. However, there is no indication that the

species identified in the urban environments are pathogenic,

and further in-depth studies are necessary to determine the clin-

ical impact of urban microbiomes. This includes microbial cul-

ture studies, explicitly searching for virulence factors and per-

forming strain-level characterization to determine biological

functions carried by specific populations. Seasonal variation

also remains open to study as the majority of the samples

collected here were from two global city sampling days (June

21, 2016, and June 21, 2017). Further studies, some generating

novel data, will need to explore whether the core microbiome

shifts over the course of the year, with a particular interest in

the role of the microbiome in flu transmission (Cáliz et al.,

2018; Korownyk et al., 2018).

The coronavirus disease 2019 crisis has thrown the need for

broad microbial surveillance into sharp relief. Microbial genetic

mapping of urban environments will give public health officials

tools to assess risk, map outbreaks, and genetically characterize

problematic species. This study identifies a large number of vi-

ruses in the environment as well as antimicrobial resistance

genes in bacteria, but they are only DNA based. Future shotgun

RNA studies (metatranscriptomics) and targeted RNA viral

studies that build on top of this infrastructure represent an impor-

tant starting point for tracking and potentially mitigating future

epidemics.

As metagenomics and next-generation sequencing becomes

more and more available for clinical (Wilson et al., 2019) and

municipal use (Hendriksen et al., 2019), it is essential to contex-

tualize the AMR markers or presence of species and strains

within a global and longitudinal context. We observed that the

microbial profile of cities can slightly shift year to year and that
this may become a more pronounced effect over longer time

frames. The most common AMR genes were found for two clas-

ses of antibiotics: MLS and beta-lactams. Both of these are crit-

ical groups of antibiotics used to treat upper respiratory, skin,

soft tissue, and sexually transmitted infections and a wide array

of other infections. Antimicrobial resistance genes are thought to

spread from a variety of sources including hospitals, agriculture,

and water (Bougnom and Piddock, 2017; Klein et al., 2018). The

antimicrobial classes particularly impacted by resistance include

beta-lactams, glycopeptides, and fluoroquinolones (Rice, 2012),

all of which we found antimicrobial resistance genes across our

samples.

We found that there was an uneven distribution of AMR genes

across cities and that fewer AMR genes were identified in sam-

ples from Oceania and the Middle East. This could be the result

of different levels of antibiotic use, differences in the urban geog-

raphy between cities, or reflect the background microbiome in

different places in the world. Techniques to estimate antibiotic

resistance from sequencing data remain an area of intense

research as certain classes of AMR gene (i.e., fluoroquinolones)

are sensitive to small mutations, and methodological improve-

ments may refine our results. A companion study to this paper

by Chng et al. (2020) has examined the spread of AMRs in hos-

pital settings. Further research is needed to explore AMR genes

fully in the urban environment, especially in medical environ-

ments, including cultural studies that directly measure the

phenotype of resistance.

In summary, this study presents the first genetic atlas of urban

and mass-transit metagenomics from across the world. By facil-

itating large-scale epidemiological comparisons, it is a first crit-

ical step toward quantifying the distribution, types, and dy-

namics of environmental microbiomes, providing requisite data

for tracking changes in ecology or virulence. As more datasets

emerge from rural and suburban areas with livestock and farms,

sewage from cities (Fresia et al., 2019; Joseph et al., 2019), and

other public sources of AMR genes, a new international AMR

mapping paradigm is possible. Ideally, these data are compo-

nents of a global sentinel monitoring network of sequencers

that tracks AMR and other microbial changes (Singer et al.,

2016; Thanner et al., 2016), which can also help with clinical

interpretation and risk stratification (Afshinnekoo et al., 2017;

Gardy and Loman, 2018; Ladner et al., 2019). Indeed, a continu-

ally updated, global microbial genetic atlas has the potential to

aid physicians, public health departments, government officials,

and scientists in tracing, diagnosing, and predicting epidemio-

logical risks and trends. This, in turn, enables data-driven policy

and medical decisions in cities around the world, with the

sequencing data simultaneously providing a constant fountain

of discovery for new microbial biology.

Limitations of the study
There are three key limitations to this study. First, this study

exclusively measured DNA, meaning RNA viruses would be

excluded, as would evidence of transcriptional activity fromBac-

teria and Archaea. Second, this study is unable to identify a large

proportion of DNA collected. This is at least partly due to the

highly novel nature of urban microbiomes, and as more data

are generated, this proportion could be improved. Third, AMR
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genes are often difficult to distinguish from similar genes that do

not confer resistance (though we have removed genes that

require SNP-level verification), so our results likely have a degree

of noise.
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Colombia; Nigerian Railway Corporation (NRC) (Ilorin and Offa Branch) and

Kwara Express Transport. MetaSUB Ukraine would like to express gratitude

to Kyiv Metro and BioLabTech for the organizational support of the sampling

days. We wish to thank all transit authorities that helped with this sampling.
AUTHOR CONTRIBUTIONS

Conceptualization, D. Danko, D.B., E.E.A., and C.E.M.; methodology, D.

Danko, D.B., S.W.T., J.H., B.M., K.I.U., M.D., S.A., E.D.-N., P.P.L., K.M.,

N.R., D.J.B., L.M.S., H. Shaaban, K.A.R., J.L.S., H. Suzuki, M.A.S., B.Y., and

A.K.; software, D. Danko; formal analysis, D. Danko, D.B., K. Kuchin, L.M.,

C.B., D.M., M.A.S., A.K., and N.C.K.; data curation, D. Danko, D.B., E.E.A.,

S.A., C.B., D.J.B., K.R.C., D. Donnellan, J.H., K.J., M.K., A.L., H.M., B.M.,

R.Y.N., A.N., O.N., T.N., E.P., K.A.R., J.L.S., H. Shaaban, M.A.S., D.T.,

O.O.A., J.A., M.B., R.B., E.C.-N., A.M.C., A.D.C., R.W.C., F.D.F., Y.D., C.D.,

E.D.-N., M.D., E.E., D.E., A.F., D.G., J.S.G., D.C.G., I.H., M.H., G.I., S.J.,

A.K., F.J.K., K. Knights, N.C.K., P.P.L., P.K.H.L., M.H.Y.L., P.O.L., G.M.-B.,

K.M., C.M., E.F.M., M.O.M., N.N., M.N.-C., H.N., M.O., S.O., O.O.O., O.O.,

D.P.-E., N.R., H.R., G.R., L.M.S., T. Semmler, O.U.S., L.S., T. Shi, L.H.S., H.

Suzuki, D.S.C., S.W.T., X.T., K.I.U., J.A.U., B.V., D.I.V., E.M.V., T.P.V., J.W.,

M.M.Z., J.Z., S.Z., and C.E.M.; writing – original draft, D. Danko, D.B., and

C.E.M.; writing – review and editing, all authors have reviewed and approved

the manuscript; supervision, C.E.M.; project administration, D. Danko, D.B.,

E.E.A., K.A.R., B.Y., and C.E.M.
DECLARATION OF INTERESTS

C.E.M. is co-founder of Biotia and Onegevity Health. D.B. is co-founder and

CSO of Poppy Health Inc. The other authors declare they have no competing

interests that impacted this study.

Received: December 2, 2020

Revised: March 5, 2021

Accepted: April 29, 2021

Published: May 26, 2021
REFERENCES

Afshinnekoo, E., Meydan, C., Chowdhury, S., Jaroudi, D., Boyer, C., Bernstein,

N., Maritz, J.M., Reeves, D., Gandara, J., Chhangawala, S., et al. (2015). Geo-

spatial Resolution of Human and Bacterial Diversity with City-Scale Metage-

nomics. Cell Syst. 1, 72–87.

Afshinnekoo, E., Chou, C., Alexander, N., Ahsanuddin, S., Schuetz, A.N., and

Mason, C.E. (2017). Precision metagenomics: Rapid metagenomic analyses

https://doi.org/10.1016/j.cell.2021.05.002
https://doi.org/10.1016/j.cell.2021.05.002
http://refhub.elsevier.com/S0092-8674(21)00585-7/sref1
http://refhub.elsevier.com/S0092-8674(21)00585-7/sref1
http://refhub.elsevier.com/S0092-8674(21)00585-7/sref1
http://refhub.elsevier.com/S0092-8674(21)00585-7/sref1
http://refhub.elsevier.com/S0092-8674(21)00585-7/sref2
http://refhub.elsevier.com/S0092-8674(21)00585-7/sref2


ll
OPEN ACCESSArticle
for infectious disease diagnostics and public health surveillance. J. Biomol.

Tech. 28, 40–45.

Afshinnekoo, E., Bhattacharya, C., Burguete-Garcı́a, A., Castro-Nallar, E.,

Deng, Y., Desnues, C., Dias-Neto, E., Elhaik, E., Iraola, G., Jang, S., et al.;

MetaSUB Consortium (2021). COVID-19 drug practices risk antimicrobial

resistance evolution. Lancet Microbe 2, e135–e136.

Allen, H.K., Moe, L.A., Rodbumrer, J., Gaarder, A., and Handelsman, J. (2009).

Functional metagenomics reveals diverse b-lactamases in a remote Alaskan

soil. ISME J. 3, 243–251.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic

Local Alignment Search Tool. J. Mol. Biol. 215, 403–410.

Bahram, M., Hildebrand, F., Forslund, S.K., Anderson, J.L., Soudzilovskaia,

N.A., Bodegom, P.M., Bengtsson-Palme, J., Anslan, S., Coelho, L.P., Harend,

H., et al. (2018). Structure and function of the global topsoil microbiome. Na-

ture 560, 233–237.

Bougnom, B.P., and Piddock, L.J. (2017). Wastewater for Urban Agriculture: A

Significant Factor in Dissemination of Antibiotic Resistance. Environ. Sci.

Technol. 51, 5863–5864.

Bowers, R.M., Kyrpides, N.C., Stepanauskas, R., Harmon-Smith, M., Doud,

D., Reddy, T.B.K., Schulz, F., Jarett, J., Rivers, A.R., Eloe-Fadrosh, E.A.,

et al.; Genome Standards Consortium (2018). Corrigendum: Minimum infor-

mation about a single amplified genome (MISAG) and a metagenome-assem-

bled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 36, 660.

Breitwieser, F.P., Baker, D.N., and Salzberg, S.L. (2018). KrakenUniq: confi-

dent and fast metagenomics classification using unique k-mer counts.

Genome Biol. 19, 198.

Brito, I.L., Yilmaz, S., Huang, K., Xu, L., Jupiter, S.D., Jenkins, A.P., Naisilisili,

W., Tamminen, M., Smillie, C.S., Wortman, J.R., et al. (2016). Mobile genes in

the human microbiome are structured from global to individual scales. Nature

535, 435–439.

Brooks, B., Olm, M.R., Firek, B.A., Baker, R., Thomas, B.C., Morowitz, M.J.,

and Banfield, J.F. (2017). Strain-resolved analysis of hospital rooms and in-

fants reveals overlap between the human and room microbiome. Nat. Com-

mun. 8, 1814.

Buchfink, B., Xie, C., and Huson, D.H. (2015). Fast and sensitive protein align-

ment using DIAMOND. Nat. Methods 12, 59–60.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

ZymoBiOMICS Microbial Community standard Zymo Research Catalog #D6300

ZymoBIOMICS Microbial Community DNA Standard Zymo Research Catalog #D6305

Biological samples

Environmental samples from urban and built-in

structures

Participating Consortium

members

N/A

Critical commercial assays

QIAGEN QIAseq FX DNA Library Kit QIAGEN ID: 180475

Promega DNA extraction Maxwell kit Blood Promega AS1400

Promega DNA extraction Maxwell kit Buccal Swab Promega AS1640

Zymo DNA/RNA shield Zymo Research R1100-250

MoBio PowerSoilRªDNA Isolation Kit MoBIO Cat.:12888-100

Agencourt AMPure XP Beckmann Coulter Cat.:A63881

Qubit� dsDNA HS Assay Thermofisher Q32854

QuantiFluor� ONE dsDNA System Promega E4871

Nextera Flex (Now known as Illumina DNA Prep) Illumina 20018705

Nextera DNA CD Indexes Illumina 20018708

Deposited data

NCBI/RefSeq Microbial ca. March 2017 NCBI https://www.ncbi.nlm.nih.gov/refseq/

Hg38 with Alternate Contigs UCLA https://hgdownload.cse.ucsc.edu/goldenPath/hg38

Human Microbiome Project Human Microbiome Project

Consortium, 2012

https://www.hmpdacc.org/hmp/resources/

download.php

Microbe Directory Shaaban et al., 2018 https://microbe.directory

UniRef90 Suzek et al., 2007 https://www.uniprot.org/downloads

Integrated Gut Genomes v1.0 Nayfach et al., 2019 https://github.com/snayfach/IGGdb

Genome Taxonomy Database Parks et al., 2018 https://gtdb.ecogenomic.org/downloads

MetaSUB Sequencing Data This paper https://pngb.io/metasub-2021

Software and algorithms

AdapterRemoval v2.17 Schubert et al., 2016 https://github.com/mikkelschubert/adapterremoval

Bowtie2 v2.3.0 Langmead and Salzberg,

2013

https://sourceforge.net/projects/bowtie-bio/files/

bowtie2/2.3.0/

BLASTn Altschul et al., 1990 https://ftp.ncbi.nlm.nih.gov/blast/executables/

blast+/LATEST/

KrakenUniq v0.3.2 Breitwieser et al., 2018 https://github.com/fbreitwieser/krakenuniq

MASH v2.1.1 Ondov et al., 2016 https://github.com/marbl/Mash

HUMAnN2 Franzosa et al., 2018 https://pypi.org/project/humann2/

DIAMOND v0.8.36 Buchfink et al., 2015 https://github.com/bbuchfink/diamond

metaSPAdes v3.8.1 Nurk et al., 2017 https://github.com/ablab/spades/releases/tag/v3.8.1

MegaRes v1.0.1 Lakin et al., 2017 https://megares.meglab.org/download/index.php

MetaBAT2 v2.12.1 Kang et al., 2019 https://anaconda.org/ursky/metabat2

CheckM v1.0.13 Parks et al., 2015 https://github.com/Ecogenomics/CheckM

dnadiff v1.3 Kurtz et al. 2004 https://github.com/mummer4/mummer

GTDB-Tk v1.0.2 Chaumeil et al., 2019 https://github.com/jianshu93/GTDB_Tk

FastTree v2.1.10 Price et al., 2010 https://anaconda.org/bioconda/fasttree

iTOL v5.5 Letunic and Bork 2019 https://itol.embl.de/

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

CRISPRCasFinder Couvin et al., 2018 https://github.com/dcouvin/CRISPRCasFinder

SciPy Virtanen et al., 2020 https://www.scipy.org/

dendextend v1.12.0 Galili 2015 https://github.com/cran/dendextend

MUMmer v3.23 Kurtz et al., 2004 https://github.com/mummer4/mummer

ResistomeAnalyzer (commit 15a52dd) Lakin et al., 2017 https://github.com/cdeanj/resistomeanalyzer

MetaSUB Core Analysis Pipeline Danko and Mason 2020 https://github.com/MetaSUB/CAP2

CAPalyzer Danko and Mason 2020 https://github.com/dcdanko/capalyzer

Figure Generation Code This paper https://github.com/MetaSUB/main_paper_figures

Other

Copan Liquid Amies Elution Swab Copan Diagnostic Cat.:480C

Isohelix Swabs Isohelix Cat.:MS-02

2D Thermo Scientific Matrix Thermo Scientific 3741-WP1D-BR

ZR BashingBead Lysis Tubes (0.1 & 0.5 mm) Zymo Research Cat# S6012-50
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by Christopher Mason

(chm2042@med.cornell.edu).

Materials availability
This study did not generate any new materials.

Data and code availability
Materials, Methods, and Open-Source Code

To make our study fully reproducible, we released an open-source version-controlled pipeline called the MetaSUB Core Analysis

Pipeline (CAP) (Danko andMason, 2020). This pipeline includes all steps from extracting data from raw sequence FASTQ files to pro-

ducing refined results like taxonomic and functional profiles. Every tool in the CAP is open source with a permissive license. The CAP

is available as a docker container for easier installation in some instances, and all databases used in the CAP are available for public

download. The CAP is versioned and includes all necessary databases, allowing researchers to replicate results and figures.

TheMetaSUBdataset andCAP are built and organized for full accessibility to other researchers. This is consistent with the concept

of Open Science. Specifically, we built our study with the FAIR principles in mind: Findable, Accessible, Interoperable, and Reusable.

To make our results more reproducible and accessible, we have developed a program to merge the CAP’s output into a condensed

data-packet. This data packet contains results as a series of Tidy-style data tables with descriptions. The advantage of this set-up is

that result tables for an entire dataset can be parsed with a single command in most high level analysis languages like Python and R.

This package also contains Python utilities for parsing and analyzing data packets which streamline most of the boilerplate tasks of

data analysis. All development of the CAP and data packet builder (Capalyzer) package is open source and permissively licensed.

In addition to general-purpose data analysis tools, essentially all analysis in this paper is available as a series of Jupyter notebooks.

These notebooks allow researchers to reproduce our results, build upon our results in different contexts, and better understand pre-

cisely how we arrived at our conclusions. By providing the exact source used to generate our analyses and figures, users can quickly

incorporate new data or correct any bugs.

For less technical purposes, we also provide web-based interactive visualizations of our dataset (typically broken into city-specific

groups). These visualizations are intended to provide a quick reference for major results as well as an exploratory platform for gener-

ating novel hypotheses and serendipitous discovery. The web platform used, MetaGenScope, is open source, permissively licensed,

and can be run on a moderately powerful machine (though its output relies on results from the MetaSUB CAP).

Our hope is that by making our dataset open and easily accessible to other researchers the scientific community can more rapidly

generate and test hypotheses. One of the core goals of the MetaSUB consortium is to build a dataset that benefits public health. As

the project develops, we want to make our data easy to use and access for clinicians and public health officials who may not have

computational or microbiological expertise. We intend to continue to build tooling that supports these goals.

CAMDA

Since 2017, MetaSUB has partnered with the Critical Assessment of Massive Data Analysis (CAMDA) camda.info, a whole confer-

ence track at the Intelligent Systems for Molecular Biology (ISMB) Conference. At this venue, a subset of the MetaSUB data was
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released to the CAMDA community in the form of an annual challenge addressing the issue of geographically locating samples: ‘The

MetaSUB Inter-City Challenge’ in 2017 and ‘The MetaSUB Forensics Challenge’ in 2018 and 2019. In the latter challenge the

MetaSUB data has been complemented by data from EMP (Thompson et al., 2017) and other studies (Delgado-Baquerizo et al.,

2018; Hsu et al., 2016). This Open Science approach of CAMDA has generated multiple interesting results and concepts relating

to urban microbiomics, resulting in several publications https://biologydirect.biomedcentral.com/articles/collections/camdaproc

as well as perspective manuscript about moving toward metagenomics in the intelligence community (Mason-Buck et al., 2020).

The partnership is continued in 2020 with ‘The Metagenomic Geolocation Challenge’ where the MetaSUB data has been comple-

mented by the climate/weather data in order to construct multi-source microbiome fingerprints and predict the originating ecological

niche of the sample.

Accessions and Data Access

All data from this study including data tables that resulted fromanalysesmay be found at https://pngb.io/metasub-2021. Additionally,

raw sequencing reads are uploaded to the SRA and may be found under the accession SRA ID: PRJNA732392.

METHOD DETAILS

Sample Collection and Preparation
To obtain a comprehensive picture of microbial communities within a sample, it is essential to choose a sampling method which ab-

sorbs and preserves biological materials during sampling, transport and storage until DNA extraction. The effectiveness of a swab

may be influenced by a number of factors, most importantly thematerial of the swab tip which can affect the rate at which bacteria are

collected during the sampling process. Furthermore, the design of the transport tube as well as the DNA preserving liquids can affect

the integrity of thematerial during transport. Finally, the amount of background contamination identified for different products should

be taken into account.

Sampling Materials

Surface samples were collected and preserved using a flocked swabwith a storage tube containing a buffer that is optimized for DNA

preservation. Two different sets of materials were used for collection in 2016 and 2017.

In the first method of sample collection used a Copan Liquid Amies Elution Swab (ESwab, Copan Diagnostics, Cat.: 480C) paired

with a 1mL of Liquid Amies in a plastic, screw cap tube, hereafter referred to as a ‘Copan swab’. The Amies transport medium main-

tains the sample at pH 7.0 0.5 and contains sodium thioglycolate as well as calcium, magnesium, sodium, and potassium salts to

control the permeability of bacterial cells. Once the surface was sampled, the swab was immediately placed into the collection

tube and stored in a �80C freezer once returned to the laboratory.

The second method used an individually wrapped Isohelix Buccal Mini Swab (MS Mini DNA/RNA Swab, Isohelix, Cat.: MS-02)

paired with a barcoded storage tubes (2DMatrix V-Bottom ScrewTop Tubes, Thermo Scientific, Cat.: 3741-WP1D-BR/1.0mL), here-

after referred to as ‘matrix tubes’, prefilled with 400ml of a transport and storage medium suitable for both DNA and RNA (DNA/RNA

Shield, Zymo Research, Cat.: R1100), hereafter referred to as ’Zymo Shield’. Once the surface was sampled, the swab was imme-

diately placed into a matrix tube containing Zymo Shield and stored in a �80C freezer until DNA extraction.

We assessed the absorption strength of both the Copan and Isohelix swabs for various biological and surface materials encoun-

tered when sampling metro stations. A single surface was selected for a designated sampling area to test the absorption strength.

Both swabs were moistened by submerging the swab for a few seconds in their preservative media. The area was then swabbed for

3 min, covering the selected surface. By moistening the swab prior to sampling, the swab matrix would take up more microflora

already saturated with the transport medium.

Sampling Protocol

A standard operating procedure (SOP) was developed for the sample collection to be followed by all members of the MetaSUB con-

sortium participating in CSD, and adapted from earlier work by Afshinnekoo et al. (2015). The aim was to standardize as much of the

sampling procedure in order to ensure high quality control across the various cities and sampling teams. Thus, it was recommended

that teams collect samples from high contact surfaces found in most metro and transit stations and systems around the world,

including ticket kiosks, turnstiles, railings, and seats or benches. Some cities had to adapt the sampling approach to better reflect

their city. For example, in cases where a city did not have a subway system, the most common form of public transit was studied

instead. While variation in the types of surfaces being sampled were allowed, modifications to the sampling procedure itself were

not. Moreover, a number of metadata were recorded for each sample during the process of collection to ensure as much contextual

information as possible was captured. Each city developed their own sampling and submitted them for review before sampling kits

were sent to them in order to ensure consistency across the various sites.

All principal investigators and MetaSUB city leaders were trained in the sampling protocol and this training was further dissemi-

nated to the respective sampling teams to ensure consistent and quality control sampling. Each participant was instructed to don

disposable latex or nitrile gloves prior to sample collection. The swab was dipped in the preservative medium for approximately

2 s before the swab was firmly dragged across the surface, using both sides and using different angles, for a total of 3 min to ensure

highest yield. Any other important notes or observations could be added to the metadata for each sample.

A sampling protocol video overview is included in the Supplemental information.
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Process Controls

To assess the quality of our sampling procedure, we created multiple controlled scenarios. As a positive laboratory control, a Copan

swab was introduced into a sterile urine cup with 30ml of a well-defined, accurately characterized microbial reference sample (Zymo-

BIOMICS Microbial Community Standard, Zymo Research, Cat.: D6300). A negative control was made by adding 50ml of the final

resuspension buffer from the DNA isolation step into a sterile urine cup before introducing a Copan swab. Furthermore, a laboratory

workbench was swabbed using our sampling procedure both before and after it was cleaned with a 10% bleach solution. To detect

background contamination due to biological material in the air in sample areas, a dampened Copan swab was held in the air for

approximately 3 min. Finally, to ensure there was no contamination could be due to the consumables we procured prior to sampling,

we also swabbed, in triplicate, the interior of a flow hood that had been sterilized with 10% bleach before wiping down with ethanol

and irradiating with ultraviolet light.

Metadata Collection and Aggregation

Metadata from individual cities was collected from a standardized form and set of data fields. The principal fields collected were the

location of sampling, the material of the object being sampled, the type of object being sampled, the elevation above or below sea

level, and the station or line where the sample was collected. However, several cities were unable to use the provided software appli-

cation for various reasons, and instead submitted their metadata as separate spreadsheets that could be added to the data repos-

itory. Additionally, certain metadata features, such as those related to sequencing and quality control, were added after initial sample

collection. To collate various metadata sources, we built a publicly available repository on Pangea (https://pngb.io/metasub-2021)

which assembled a large master spreadsheet with consistent sample universally unique identifiers (UUID). After assembling the orig-

inally collected data attributes we added normalized attributes based on the original metadata to account for surfacematerial, control

status, and features of individual cities. A full description of ontologies used is provided as part of the collating program.

DNA Extraction, Library Preparation, and Sequencing
Samples stored at�80Cwere allowed to thaw to room temperature before performing a DNA extraction suitable to the transport and

preservation medium used with the Copan swabs and Isohelix swabs in 2016 and 2017, respectively. Initially, Copan swabs in liquid

Amies were processed using the PowerSoil DNA Isolation Kit (MoBio, Cat.: 12888-100), while Isohelix swabs were processed using

the ZymoBIOMICS 96MagBead DNAKit (ZymoResearch, Cat.: D4308). Additional automation of sample processing for nucleic acid

extraction using theMaxwell RSC Instrument (Promega, Cat.: AS4500) began in 2017 using theMaxwell RSCBuccal SwabKit (Prom-

ega, Cat.: AS1640).

DNA Extraction from Copan Swabs

After spinning down the tubes containing the Copan swab in Amies at 300rpm for 1 min, the swab pad was transferred to a MoBio

PowerBead Tube containing beads using sterile scissors, which we sterilized with 70% ethanol before passing them through a flame.

The remaining 400-500ml of Amies solution was transferred into an Eppendorf tube and centrifuged at high speed to collect bacteria

and debris into a pellet. Once resuspended into a small volume of Amies, the pellet was transferred to the same MoBio PowerBead

Tube as its corresponding Copan swab. The MoBio PowerSoil DNA Isolation Kit was used according to manufacturer’s instructions

with the exception of the following modifications: both the swab and corresponding pellet were resuspended in 135ml of the C1

buffer. Sample homogenization was performed using either the TissueLyser II (QIAGEN, Cat.: 85300) with 2 cycles of 3 min at

30Hz (https://bit.ly/3ub9tap) or using a Vortex-Genie 2 adaptor for 1.5 to 2mL tubes (Vortex Adaptor for 24 tubes, QIAGEN, Cat.:

13000-V1-24) at maximum speed for 10 min. The sequencing centers in Stockholm and Shanghai used different procedures for ho-

mogenization. Stockholm used a method based on MPI FASTPREP, while Shanghai added 0.6 g of 100-micron zirconium-silica

beads to 2ml tubes containing the swab pad and the media, followed by bead beating for 1 min. Following the MoBio protocol,

the eluted samples were additionally purified by introducing 1.8X of Agencourt AMPure XPmagnetic beads (Beckman Coulter,

Cat.:A63881), allowed to incubate at 25C for 15 min, and then placed on an Invitrogen magnetic separation rack (MagnaRack) for

5 min. A wash step using 700ml of 80% ethanol was added the samples while they remained on the MagnaRack before allowing

the samples to dry. The resulting purified samples were eluted into 12ml - 50ml of buffer. Subsequently, DNA was quantified using

a Qubit 2.0 fluorometer and (dsDNA HS Assay Kit, Invitrogen, Cat.: Q32854).

DNA Extraction from Isohelix Swabs

The entire 400ml volume of Zymo Shield, along with the Isohelix swab head, were transferred into a new tube containing a 0.6mL dry

volume of 0.5mm and 0.1mm lysis matrix (BashingBead Lysis Tubes, Zymo Research, Cat.: S6012-50), as well as an additional vol-

ume of 600ml of Zymo Shield. Mechanical lysis using bead beating was performed on 18 samples at a time using a Vortex-Genie 2

adaptor at maximum power for 40 min. A 400ml volume of the resulting lysate in each tube was transferred into a separate well of a

deep-well storage plate (Nunc 96-Well Polypropylene DeepWell Storage Plate, Thermo Scientific, Cat.: 278743). High-throughput

DNA extraction was carried out on an automated liquid handling platform (Microlab STAR Liquid Handling System, Hamilton,

Cat.: Microlab STAR) using the ZymoBIOMICS 96 MagBead DNA Kit (Zymo Research, Cat.: D4308) on the Hamilton Star according

to the manufacturer’s instructions. Purified samples were eluted into 50ml ZymoBIOMICS DNase/RNase Free Water.

DNA Extraction Using an Automated Platform

TheMaxwell RSCwas used as a high throughputmeans of processing samples that used either theCopan or Isohelix swab collection

method. To process the Copan swab samples, 300ml of Promega Maxwell Lysis buffer and 30ml of Promega Maxwell Proteinase K

was added to each collection tube, then allowed to incubate in a water bath at 54C for 20 min. Following lysis, Copan swab heads
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were cut off their stem using sterile scissors and transferred into a filter tube (ClickFit Microtube, Promega, Cat.: V4745). The filter

containing the swab was placed into a 2ml Eppendorf tube and spun down at full speed for 2min. This step is necessary since

the Copan swabmaterial consists of a foam, which harbors the main liquid containing the extracted DNA. Next, the eluate was com-

bined with the corresponding sample tube media and added to a well of the Maxprep cartridge (Maxwell RSC Buccal Swab Kit,

Promega, Cat.: AS1640). Cartridges were processed using theMaxwell RSC Instrument following themanufacturer’s default instruc-

tions. Extracted DNA was eluted in 50ml Promega Elution Buffer and stored at �80C.

To process the Isohelix swabs, 300ml of PromegaMaxwell Lysis buffer was added to eachmatrix tube before vortexing at full speed

for 1 min. The Isohelix swab head material is non-porous, which allows for easy collection of the lysate. The total lysate from each

matrix tube was moved to the added to a well of the Maxprep cartridge using a 3cc syringe syringe (Blunt fill needle with Luer-Lok tip

18-G x 1 1/2-in 3-mL syringe, BD, Cat.: 305060). The Maxwell RSC Instrument was run using the ‘Blood’ program according to man-

ufacturer’s instructions. Samples were subsequently eluted in 50ml Promega Elution Buffer and stored at �80C.

Library Preparation and Sequencing

Following DNA extraction, library preparation for Illumina NGS platforms was performed at HudsonAlpha Genome Center using the

QIAGENGeneReader DNA Library Prep Kit I (QIAGEN, Cat.: 180435) aswas previously described in Afshinnekoo et al. (2015). Briefly,

this involved fragmenting with an LE Series Covaris sonicator (Woburn, MA) with a targeted average size of 500nt, a bead clean-up

step to remove fragments under 200nt, A-tailing, adaptor ligation, PCR amplification, bead-based library size selection, and a final

clean-up step. A BioAnalyzer 2100 (Agilent, Cat.: G2939BA) was used to ensure libraries fell within a range of 450-650bp. Pilot sam-

ples collected in Barcelona and Stockholm were prepared using the QIAGEN QIAseq FX DNA Library Kit. The resulting libraries were

sequenced on an Illumina HiSeq X Ten System (Illumina Inc., San Diego, CA) at HudsonAlpha Genome Center (Huntsville, Alabama)

using HiSeq X Reagent Kits according to the manufacturer’s instructions (https://www.illumina.com).

Quality Control
Evaluation of sequence quality

Wemeasured sequencing quality based on 5metrics: number of reads obtained from a sample, GC content, Shannon’s entropy of k-

mers, post PCR Qubit score, and recorded DNA concentration before PCR. The number of reads in each sample was counted both

before and after quality control, we used the number of reads after quality control for our results though the difference was slight. GC

content was estimated from 100,000 reads in each sample after low quality DNA and human reads had been removed. Shannon’s

entropy of k-mers was estimated from 10,000 reads taken from each samples. PCR Qubit score and DNA concentration are

described in the wet lab methods.

We observed good separation of negative and positive controls based on both PCRQubit and k-mer entropy. Distributions of DNA

concentration and the number of reads were as expected (Figure S2G, H, I). GC content was broadly distributed for negative controls

while positive controls were tightly clustered, expected since positive controls have a consistent taxonomic profile. Comparing the

number of reads before and after quality control did not reveal any major outliers.

Identification of potential batch effects

Batch effects are a major concern for this low-biomass study and any large-scale study. The median flowcell used in our study con-

tained samples from 3 cities and 2 continents. However, two flowcells covered 18 cities from 5 or 6 continents respectively. When

samples from these flowcells were plotted using UMAP (see global diversity varies according to key covariates for details) the major

global trendswe describedwere recapitulated (Figure S2F). Plots of the number of reads against region (Figure S2G) showed a stable

distribution of reads across cities. Analogous plots of PCRQubit scores were less stable than the number of reads but showed a clear

drop for control samples (Figure S2H). These results led us to conclude that batch effects are likely to be minimal.

Identification of potential strain contamination

We used BLASTn to align nucelotide assemblies from case samples to control samples. We used a threshold of 8,000 base pairs and

99.99% identity as a minimum to consider two sequences homologous. This threshold was chosen to be sensitive without solely

capturing conserved regions. We identified all connected groups of homologous sequences and found approximate taxonomic iden-

tifications by aligning contigs to NCBI-NT using BLASTn searching for 90%nucleotide identity over half the length of the longest con-

tig in each group.

Despite good separation of positive and negative controls (see STAR Methods) we identified several species in our negative

controls which were also identified as prominent taxa in the data-set as a whole (See a core urban microbiome centers global

diversity). Our dilemma was that a microbial species that is common in the urban environment might also reasonably be expected

to be common in the lab environment. In general, negative controls had lower k-mer complexity, fewer reads, and lower post PCR

Qubit scores than case samples and no major flowcell specific species were observed. Similarly, positive control samples were

not heavily contaminated. These results suggest samples are high quality but do not systematically exclude the possibility of

contamination.

Previous studies have reported that microbial species whose relative abundance is negatively correlated with DNA concentration

may be contaminants. We observed a number of species that were negatively correlated with DNA concentration but this distribution

followed the same shape as a null distribution of uniformly randomly generated relative abundances leading us to conclude that nega-

tive correlation may simply be a statistical artifact.
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We analyzed the total complexity of case samples in comparison to control samples. Case samples had a significantly higher taxo-

nomic diversity (Figure S2I) than any type of negative control sample.We also compared the confidence of taxonomic assignments to

control assignments for prominent taxa using the number of unique marker k-mers to compare assignments. We found that case

samples had more and higher quality assignments than could be found in controls. In contrast, the taxonomic assignment of one

species, Bradyrhizobium sp. BTAi1, was not clearly more accurate in case samples than controls. Nevertheless, we were able to

assemble genomes for this species in several unique samples, so we feel the species is not definitively a negative control

contaminant.

Finally, we compared assemblies from negative controls to assemblies from our case samples searching for regions of high sim-

ilarity that could be from an identical microbial strain. We reasoned that uncontaminated samples may contain the same species as

negative controls but were less likely to contain identical strains. Only 137 case samples were observed to have any sequence with

high similarity to an assembled sequence from a negative control (8,000 base pairs minimum of 99.99% identity). The identified se-

quences were principally from Bradyrhizobium and Cutibacterium. Since these genera are core taxa (See a core urban microbiome

centers global diversity) observed in nearly every sample but high similarity was only identified in a few samples, we elected not to

remove species from these genera from case samples.

Comparison of taxonomic and k-mer based metrics to establish database quality

Wegenerated 31-mer profiles for raw reads using Jellyfish. All k-mers that occurred at least twice in a given sample were retained.We

also generated MASH sketches from the non-human reads of each sample with 10 million unique minimizers per sketch. We calcu-

lated the Shannon’s entropy of k-mers by sampling 31-mers from a uniform 10,000 reads per sample.

We found clear correlations between k-mer based Jaccard distance (MASH) and taxonomic Jaccard distance (Figure S2A). We

also compared alpha diversity metrics (Figure S2B): Shannon entropy of k-mers, and Shannon entropy of taxonomic profiles. As

with pairwise distances these metrics were correlated though noise was present. This noise may reflect sub-species taxonomic vari-

ation in our samples.

Evaluation of unmapped DNA to establish aligner performance

A large proportion of the reads in our samples were not mapped to any reference sequence. There are three major reasons why a

fragment of DNA would not be classified in our analysis 1) The DNA originated from a non-human and non-microbial species which

would not be present in the databases we used for classification 2) Our classifier (KrakenUniq) failed to classify a DNA fragment

that was in the database due to slight mismatch 3) The DNA fragment is not represented in any existing database. Explanations (1)

and (2) are essentially drawbacks of the database and computational model used, and we can quantify them by mapping reads

using a more sensitive aligner to a larger database, such as BLASTn (Altschul et al., 1990), or ensemble methods for analysis

(McIntyre et al., 2017). To estimate the proportion of reads which could be assigned, we took 10k read subsets from each sample

and mapped these to a set of large database using BLASTn (see a core urban microbiome centers global diversity for details). This

resulted in 34.6% reads which could not be mapped to any external database compared to 41.3% of reads mapped using our

approach with KrakenUniq. We note that our approach to estimate the fraction of reads that could be classified using BLASTn

does not account for hits to low quality taxa which would ultimately be discarded in our pipeline, and so represents a worst-

case comparison. Explanation (3) is altogether more interesting and we refer to this DNA as true unclassified DNA. In this analysis

we do not seek to quantify the origins of true unclassified DNA except to postulate that it may derive from previously unknown

species as have been identified in other similar studies.

Computational analysis of sequencing data
We processed raw reads from all samples into taxonomic, functional and AMR profiles for each sample using the MetaSUB Core

Analysis Pipeline (Danko and Mason, 2020) (v1.0.0). This pipeline includes a preprocessing stage followed by steps to evaluate

the taxonomic, functional, and k-mer profiles of metagenomic samples.

Sequence Preprocessing

Sequence data were processed with AdapterRemoval (v2.17, Schubert et al. (2016)) to remove low quality reads and reads with

ambiguous bases. Subsequently reads were aligned to the human genome (hg38, including alternate contigs) using Bowtie2

(v2.3.0, fast preset, Langmead and Salzberg (2013)). Read pairs where both ends mapped to the human genome were separated

from read pairs where neither mate mapped. Read pairs where only one mate mapped were discarded. Hereafter, we refer to the

read sets as human reads and non-human reads.

Generating taxonomic profiles for samples

Wegenerated taxonomic profiles by processing non-human readswith KrakenUniq (v0.3.2 Breitwieser et al. (2018)) using a database

based on all draft and reference genomes in NCBI/RefSeq Microbial (bacteria/archaea, fungi and virus) ca. March 2017. KrakenUniq

was selected because its high performance, as it has been demonstrated to be comparable or having higher sensitivity than the best

tools identified in a recent benchmarking study (McIntyre et al. (2017)) on the same comparative dataset. In addition, KrakenUniq

allows for tunable specificity and identifies k-mers that are unique to particular taxa in a database. Reads are broken into k-mers

and searched against this database. Finally, the taxonomic makeup of a sample is given by identifying the taxa with the greatest

leaf to ancestor weight.
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KrakenUniq reports the number of unique marker k-mers assigned to each taxon, as well as the total number of reads, the fraction

of available marker k-mers found, and the mean copy number of those k-mers. We found that requiring more k-mers to identify a

species resulted in a roughly log-linear decrease in the total number of species identified without a plateau or any other clear point

to set a threshold (Figure S2C).

At a minimum, for an initial taxonomic call, we required three reads assigned to a taxa with 64 unique marker k-mers. This setting

captures a group of taxa with low abundance but reasonable (10%–20%) coverage of the k-mers in their marker set (Figure S2E).

However, this also allows for a number of taxa with very high (105) duplication of the identified marker k-mers and very few k-

mers per read which we believe is biologically implausible. To remove these we filtered taxonomic calls further by requiring that

the number of reads not exceed 10 times the number of unique k-mers, unless the set of unique k-mers was saturated (> 90%

completeness). We include a full list of all taxonomic calls from all samples including diagnostic values for each call. We do not

attempt to classify reads below the species level in this study.

Evaluating taxonomic calls

We further evaluated prominent taxonomic classifications for sequence complexity and genome coverage. For each microbe eval-

uated we calculated two indices generated using a random subset of 152 samples: the average topological entropy of reads as-

signed to the microbe and the Gini-coefficient of read positions on the microbial genome. For brevity we refer to these as mean

sequence entropy (MSE) and coverage equality (CE). The formula for topological entropy of a DNA sequence is described by Ko-

slicki (2011). Values close to 0 correspond to low-complexity sequences and values near 1 are high complexity. In this work we

use a word size of 3 with an overall sequence length of 64 since this readily fits into our reads. To find the MSE of a microbial

classification we take the arithmetic mean of the topological entropy of all reads that map to a given microbial genome in a sam-

ple. The Gini-coefficient is a classic economic measure of income inequality. We repurpose it here to evaluate the evenness of

read coverage over a microbial classification. Reads mapping to a microbial genome are assigned to a contiguous 10kbp bin

and the Gini-coefficient of all bins is calculated. Like MSE, the Gini-coefficient is bounded in [0, 1]. Lower values indicate greater

inequality, very low values indicate that a taxon may be misidentified from conserved and near conserved regions. We down-

loaded one representative genome per species evaluated and mapped all reads from samples to using Bowtie2 (sensitive-local

preset). Indices were processed from alignments using a custom script. Species classifications with an average MSE less than

0.75 or CE less than 0.1 were flagged.

Estimating relative abundance of taxa

To determine relative abundance of taxa (where applicable) in each profile we sub-sampled each sample to 100,000 classified reads,

computed the proportion of reads assigned to each taxon, and took the distribution of values from all samples. This was theminimum

number of reads sufficient to maintain taxonomic richness (Figure S2D). We chose sub-sampling (sometimes referred to as rarefac-

tion in the literature) based on the study by Weiss et al. (2017), showing that sub-sampling effectively estimates relative abundance.

Note that we use the term prevalence to describe the fraction of samples where a given taxon is found at any abundance and we use

the term relative abundance to describe the fraction of DNA in a sample from a given taxon.

Contextualizing samples

Wecompared our samples tometagenomic samples from theHumanMicrobiomeProject and ametagenomic study of European soil

samples using MASH (Ondov et al., 2016), a fast k-mer based comparison tool. We built MASH sketches from all samples with 10

million unique k-mers to ensure a sensitive and accurate comparison. We used MASH’s built-in Jaccard distance function to

generate distances between our samples and HMP samples. We then took the distribution of distances to soil and to each particular

human commensal community as a proxy for the actual similarity of our samples to the site.

We used the Microbe Directory (Shaaban et al., 2018) to annotate taxonomic calls. The Microbe Directory is a hand curated, ma-

chine readable, database of functional annotations for 5,000 microbial species.

Functional and metabolic analysis of samples

We analyzed the metabolic functions in each of our samples by processing non-human reads with HUMAnN2 (Franzosa et al., 2018).

We aligned all reads to UniRef90 (Suzek et al., 2015) using DIAMOND (v0.8.36, (Buchfink et al., 2015)) and used HUMAnN2 to pro-

duce estimate of pathway abundance and completeness.We filtered all pathways that were less than 50%covered in a given sample

but otherwise took the reported pathway abundance as is after relative abundance normalization (using HUMAnN2’s attached script).

High level categories of functional pathways were found by grouping positively correlated pathways and manually annotating re-

sulting clusters.

Analysis of Antimicrobial Resistance Genes

We generated profiles of antimicrobial resistance genes using MegaRes (v1.0.1, Lakin et al. (2017)). To generate profiles fromMega-

Res, wemapped non-human reads to theMegaRes database using Bowtie2 (v2.3.0, very-sensitive presets, Langmead and Salzberg

(2013)). Subsequently, alignments were analyzed using ResistomeAnalyzer (commit 15a52dd https://github.com/cdeanj/

resistomeanalyzer) and normalized by total reads per sample and gene length to give RPKMs. MegaRes includes an ontology

grouping resistance genes into gene classes, AMR mechanisms, and gene groups. AMR detection remains a difficult problem

and we note that detection of a homologous sequence to a known AMR gene does not necessarily imply an equivalent resistance

in our samples. Currently, the gold standard for detecting AMR is via culturing.

Known AMR genes can come from gene families with homologous regions of sequence. To reduce spurious mapping from gene

homology we used BLASTn to align all MegaRes AMR genes against themselves. We considered any connected group of genes with
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an average nucleotide identity of 80% across 50%of the gene length as a set of potentially confounded genes. We collapsed all such

groups into a single pseudo-gene with the mean abundance of all constituent genes. Before clustering genes we removed all genes

which were annotated as requiring SNP verification to predict resistance.

Analysis of Alpha and Beta Diversity

Inter-sample (beta) diversity wasmeasured by the Jaccard distances between the taxonomic and functional profiles of samples. Jac-

card distance does not use relative abundance information. Matrices of Jaccard distances were produced using built in SciPy (Vir-

tanen et al., 2020) functions treating all elements greater than 0 as present. Hierarchical clustering (average linkage) was performed

on the matrix of Jaccard distances using SciPy.

Dimensionality reduction of taxonomic and functional profiles was performed using UMAP (McInnes et al., 2018) on the matrix of

Jaccard distances with 100 neighbors (UMAP-learn package, random seed of 42). We did not use Principal Component Analysis as a

preprocessing step before UMAP as is sometimes done for high dimensional data.

Intra-sample (alpha) diversity was measured by using Species Richness and Shannon’s Entropy. We took species richness as the

total number of detected species in a sample after rarefaction to 1million reads. Shannon’s entropy is defined asH = ailog2aiwhere ai
is the relative abundance of taxon i in the sample. This formulation is robust to sample read depth and accounts for the relative size of

each group in diversity estimation. For alpha diversity based on k-mers or pathways, we simply substitute the relative abundance of a

species for the relative abundance of the relevant type of object.

Identifying Bacteria and Archaea
Metagenomic Assembly and Binning

All samples were assembled with metaSPAdes (v3.10.1 Nurk et al. (2017)) using the Bridges system at the Pittsburgh Supercomput-

ing Center (PSC) available through the Extreme Science and Engineering Discovery Environment (XSEDE) (Nystrom et al., 2015;

Towns et al., 2014); contigs with length < 1000nt were excluded from further analysis. We mapped reads back to the remaining con-

tigs via Bowtie2 (v2.3.4 Langmead and Salzberg (2013)) using the –very-sensitive-local preset to generate coverage metrics for each

contig. Contigs with coverage informationwere binned usingMetaBAT2 (v2.12.1 Kang et al. (2019)) with default parameters, resulting

in 14,080 bins. Draft genome quality of each bin was assessed via CheckM (v1.0.13 Parks et al. (2015)) using the lineage_wf workflow

with default parameters. Using the strategy proposed by Parks et al. (2018) we filtered bins by quality score, defined as QS =

completeness - 5 * contamination; bins with QS < 50 were removed from consideration. The remaining 6,107 bins were labeled

by quality based on the MIMAG standard (Bowers et al. (2018)), with minor modification: 1,448 high quality (completeness > 90%,

contamination < 5%, strain heterogeneity < 0.5%) bins, 4,532 medium quality (completeness > 50%, contamination < 5%) bins,

all others low quality. Bins of at least medium quality were selected as acceptable Metagenome Assembled Genomes (MAGs)

(5,980 total). PSC Bridges and XSEDE were used in the processing of these assemblies (Nystrom et al. (2015), Towns et al. (2014)).

Identifying replicated MAGs

OTUs (representative MAGs from a cluster) were chosen with a two-step clustering strategy. Rough single-linkage clustering formed

primary clusters of MAGs based on Mash ANI (v2.1.1), with intra-cluster identity at 90%. Though Mash ANI can be inaccurate for

potentially incomplete genomes (Olm et al. (2017)), we can leverage the technique’s speed for the many pairwise comparisons

needed in this granular step. Within primary clusters, MAGs were compared pairwise by a more accurate whole-genome ANI

(gANI) via dnadiff (v1.3) fromMUMmer (v3.23 Kurtz et al. (2004)). Secondary, more refined clusters were grouped based n gANI using

average-linkage hierarchical clustering from the R package dendextend (v1.12.0 Galili (2015)). A gANI cut-off of 95% resulted in 1,304

representative OTUs.

Matching OTUs to Reference Genomes

OTUs were compared against reference genomes from RefSeq (release 96 from November 2019, complete bacterial and archaeal

genomes only, with ‘‘Exclude anomalous’’ and ‘‘Exclude derived from surveillance project’’ applied) as well as the full Integrated Gut

Genomes (IGG) dataset (v1.0 Nayfach et al. (2019); 23,790 representative genomes). A MinHash sketch was created for each refer-

ence genome viaMash (v2.1.1) with default parameters to findMash distances and select candidate ‘‘best matches’’ from each refer-

ence database. Then, dnadiff (v1.3) was used to further quantify differences between each OTU and its best match from either data-

base. ANI between OTUs and their matches was found as ‘‘M-to-M AvgIdentity’’ in the query report column (ANI 95%over 60%OTU

sequence qualified as a match).

OTU Taxonomic Assignment

OTUs were placed into a bacterial or archaeal reference tree (based on the Genome Database Taxonomy, GTDB Parks et al. (2020))

and then assigned taxonomic classifications using GTDB-Tk (v1.0.2 Chaumeil et al. (2019)). GTDB-Tk relies on 120 bacterial and 122

archaeal marker genes; domain assignment is chosen based on domain-specific marker content of the OTU sequence. Using the

GTDB-Tk placements, we built an OTU-only bacterial phylogeny with FastTree (v2.1.10 Price et al. (2010)). The tree was visualized

using iTOL (v5.5 Letunic and Bork (2019)).

Viral Discovery

We followed the protocol described by Paez-Espino et al. (2017). Briefly, we used an expanded and curated set of viral protein fam-

ilies (VPFs) as bait in combination with recommended filtering steps to identify 16,584 UViGs directly from all MetaSUBmetagenomic
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assemblies greater than 5kb. Then, the UViGs were clustered with the content of the IMG/VR system (a total of over 730k viral se-

quences including isolate viruses, prophages, and UViGs from all kind of habitats). The clustering step relied on a sequence-based

classification framework (based on 95%sequence identity across 85%of the shortest sequence length) followed by themarkov clus-

tering (mcl). This approach yielded 2,009 viral clusters (ranging from 2-611members) and 9,605 singletons (or viral clusters of 1mem-

ber), sequences that failed to cluster with any sequence from the dataset or the references from IMG/VR, resulting in a total of 11,614

vOTUs. We define viral species from vOTUs as sequences sharing at least 95% identity over 85% of their length. Out of this total

MetaSUB viral diversity, only 686 vOTUs clustered with any known viral sequence in IMG/VR.

Identifying Host Virus Interactions

Weused two computational methods to reveal putative host-virus connections (Paez-Espino et al., 2016a). (1) For the 686 vOTUs that

clustered with viral sequences from the IMG/VR system, we projected the known host information to all the members of the group

(total of 2,064 MetaSUB UViGs). (2) We used bacterial/archaeal CRISPR-Cas spacer matches (from the IMG/M 1.1 million isolate

spacer database) to the UViGs (allowing only for 1 SNP over the whole spacer length) to assigned a host to 1,915 MetaSUB vOTUs.

Additionally, we also used a database of over 20 million CRISPR-Cas spacers identified from metagenomic contigs from the IMG/M

systemwith taxonomy assigned. Since some of these spacers may derive from short contigs these results should be interpreted with

caution.

CRISPR Array Detection and Annotation

Using CRISPRCasFinder (Couvin et al., 2018) the MetaSUB database was investigated to predict CRISPR arrays and annotate them

with their corresponding predicted type based on CRISPR-Cas genes in their vicinity. CRISPRCasFinder was runwith default param-

eters, ‘‘-so’’ and ‘‘-cas’’ options to identify cas genes. The precision and recall of the virus detection was 99.6% and 37.5% respec-

tively, as previously reported by (Paez-Espino et al., 2016).

CRISPR-Cas types were assigned to arrays based on detected cas genes within a 10 kilobases vicinity. Cases where CRISPRCas-

Finder associated several cas genes of contradicting CRISPR-Cas types with the same CRISPR array were regarded as unclear

annotation. This procedure yielded 838,532 predicted CRISPR arrays (with additional CRISPR arrays predicted with default param-

eters for PILER-CR), of which, 3,245CRISPR arrays had unambiguous annotation, resulting in 43,656 unique spacers queried against

genomic databases using BLASTN.

Matching CRISPR Spacers to Organism Databases

In order to associate detected spacers within defined groups (plasmids, prophages, viruses) four different genomic databases were

aggregated to be searched with BLASTN. The aggregated database consisted of IMG/VR, PHASTER, and PLSDB alongside bac-

terial and archaeal genomic sequences from the National Center for Biotechnology Information (NCBI). All database downloads

weremade on the 28th January 2020. Detected and annotated spacerswere searched against the databasesmentioned above using

BLASTN with the following additional arguments, which correspond to the default parameters of CRISPRTarget: word_size = 7,

evalue = 1, gapopen = 10, gapextend = 2, penalty = �1, reward = 1.

GeoDNA Sequence Search
For building the sequence graph index, each sample was processed with KMC (version 3, Kokot et al., 2017) to convert the reads in

FASTA format into lists of k-mer counts, using different values of k ranging from 13 to 19 in increments of 2. All k-mers that contained

the character ‘‘N’’ or occurred in a sample less than twicewere removed. For each value of k, we built a separate index, consisting of a

labeled de Bruijn graph, using an implicit representation of the complete graph and a compressed label representation based onMul-

tiary Binary Relation Wavelet Trees (Multi-BRWT). For further details, we refer to the manuscript (Karasikov et al., 2020). To build the

index, for each sample the KMC k-mer count lists were transformed into de Bruijn graphs, from which path covers in the form of con-

tig setswere extracted and stored as intermediate FASTA files. The contig sets of each sample were then transformed into annotation

columns (one column per sample) bymapping them onto an implicit complete de Bruijn graph of order k. All annotation columnswere

then merged into a joint annotation matrix and transformed into Multi-BRWT format. Finally, the topology of the Multi-BRWT repre-

sentation was optimized by relaxing its internal tree arity constraints to allow for a maximum arity of 40.

QUANTIFICATION AND STATISTICAL ANALYSIS

For each statistical test in this manuscript, the type of test, the size (n) of the test, and statistical summaries or measures of dispersion

are clearly defined in the figure legends or in the accompanying text throughout the manuscript.

ADDITIONAL RESOURCES

Interactive visualizations and maps
https://pngb.io/metasub-maps

BLAST-like sequence search tool
https://dnaloc.ethz.ch
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Raw and Analyzed Data Files
https://pngb.io/metasub-2021

Collated Metadata
https://pngb.io/metasub-2021, https://github.com/MetaSUB/MetaSUB-metadata

Jupyter notebooks used to generate the figures and statistics in this study
https://www.github.com/MetaSUB/main_paper_figures
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Supplemental figures

Figure S1. Core urban taxa and ecological trends, related to Figure 1
(A) Jaccard similarity of MASH indices to HMP samples for different surface types.

(B) Fraction of reads assigned at 80% ANI to different databases by BLAST for each region.

(C) Correlation between species richness and latitude. Richness decreases significantly with latitude.

(D) Neighborhood effect. Taxonomic distance weakly correlates with geographic distance within cities.
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Figure S2. Quality control and metrics, related to Figures 1 and 2

(A) Jaccard distance of taxonomic profiles versus MASH Jaccard distance of k-mers.

(B) Shannon’s Entropy of taxonomic profiles versus Shannon’s Entropy of k-mers.

(C) Number of species detected as k-mer threshold increases for 100 randomly selected samples.

(D) Number of species detected as number of sub-sampled reads increase.

(E) Number of reads by region.

(legend continued on next page)
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(F) PCR Qubit by surface material.

(G) Taxonomic Richness in Cases versus Types of Controls.

(H) Flowcells versus quality control metrics See also Methods.

(I) k-mer counts compared to number of reads for species level annotations in 100 randomly selected samples, colored by coverage of marker k-mer set.
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Figure S3. Diversity and variation, related to Figure 2

(A) UMAP of taxonomic profiles colored by climate classification.

(B) UMAP of taxonomic profiles colored by surface type.

(C) UMAP of functional profiles colored by region.

(D) Taxonomic shift over time in cities with two years of sampling. UMAP dimensionality reduction of taxonomic profiles for each sample shows variation within

cities across time (2016, circles and 2017, triangles) though generally less variation than between cities (colors).

(E–G) Sources of variation for AMRs. Association of the first 25 principal components of AMR genes with climate, region, and surface material.
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Figure S4. Microbial signatures in the urban environment, related to Figure 3

(A) Classification accuracy that would be achieved by a random model predicting features (rows) for held out cities (columns).

(B) Classification accuracy of a random forest model predicting city labels for held out samples from antimicrobial resistance genes.
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(legend on next page)
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Figure S5. Antimicrobial resistance in the urban environment, related to Figure 4

(A) Prevalence of AMR genes with a particular resistance mechanism.

(B) Abundance of AMR genes when categorized by resistance mechanism.

(C) Distribution of reads per gene (normalized by kilobases of gene length) for AMR gene calls. The vertical red line indicates that 99% of AMR genes have more

than 9.06 reads per kilobase and would still be called at a lower read depth.

(D) Rarefaction analysis of antimicrobial resistance genes. Curve does not flatten suggesting we would identify more AMR genes with more samples.

(E) Neighborhood effect. Jaccard distance of AMR genes weakly correlates with geographic distance within cities.

(F) Relationship of the number of AMR genes (richness) to the number of species (richness) in each sample. No clear correlation is observed.
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