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Buthus occitanus (B. occitanus) is one of the most dangerous scorpions in
the world. Despite the involvement of B. occitanus scorpion in severe cases
of envenomation in Morocco, no study has focused yet on the proteomic
composition of the Moroccan B. occitanus scorpion venom. Mass spec-
trometry-based proteomic techniques are commonly used in the study of
scorpion venoms. The implementation of top-down and bottom-up
approaches for proteomic analyses facilitates screening by allowing a global
view of the structural aspects of such complex matrices. Here, we provide a
partial overview of the venom of B. occitanus scorpion, in order to explore
the diversity of its toxins and hereafter understand their effects. To this
end, a combination of top-down and bottom-up approaches was applied
using nano-high liquid chromatography coupled to nano-electrospray tan-
dem mass spectrometry (nano-LC-ESI MS/MS). The LC-MS results
showed that B. occitanus venom contains around 200 molecular masses
ranging from 1868 to 16 720 Da, the most representative of which are
those between 5000 and 8000 Da. Interestingly, combined top-down and
bottom-up LC-MS/MS results allowed the identification of several toxins,
which were mainly those acting on ion channels, including those targeting
sodium (NaScTxs), potassium (KScTxs), chloride (CIScTxs), and calcium
channels (CaScTx), as well as antimicrobial peptides (AMPs), amphipathic
peptides, myotropic neuropeptides, and hypothetical secreted proteins. This
study reveals the molecular diversity of B. occitanus scorpion venom and
identifies components that may have useful pharmacological activities.

Abbreviations

ACN, acetonitrile; AMP, antimicrobial peptides; B. occitanus, Buthus occitanus; CaScTxs, neurotoxins affecting calcium channels; CIScTxs,
neurotoxins affecting chloride channels; Da, Dalton; EThcD, Electron-Transfer/Higher-Energy Collision Dissociation; FA, formic acid; HCD,
higher-energy C-trap dissociation; IAA, iodoacetamide; kDa, kilodalton; KScTxs, neurotoxins affecting potassium channels; LC-MS/MS, liquid
chromatography coupled to tandem mass spectrometry; LC-MS, liquid chromatography coupled to mass spectrometry; MS, mass
spectrometry; MW, molecular weight; nano-LC-ESI MS/MS, nano-liquid chromatography coupled to electrospray tandem mass
spectrometry; NaScTxs, neurotoxins affecting sodium channels; Q, quadrupole; TIC, total ion chromatogram.
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First proteomic analysis of the Moroccan Buthus occitanus scorpion venom

Each year, scorpion stings record new cases of enveno-
mation over the world with an incidence of more than
1.5 million and over 2600 deaths, mainly in tropical
and subtropical countries of South America, Asia, and
North Africa [1]. Most of these envenomation cases
were caused by scorpions belonging to the Buthidae
family, which contains dangerous species known by
their lethal venoms [2]. The venom of these family
members contains a heterogeneous cocktail of com-
pounds, including inorganic substances, enzymes,
mucopolysaccharides, allergenic compounds, and pep-
tides with high toxicity toward ionic channels of exci-
table cells [3-6]. In Morocco, 26 819 cases of scorpion
stings were reported in 2019 by the Poison Control
and Pharmacovigilance Center of Morocco, with an
incidence of 75.3 cases per 100 000 inhabitants [7].
These statistics are due to the diversified scorpion
fauna represented by over 50 species, mainly wide-
spread in the middle and southwestern provinces of
the kingdom [8]. Among these species, the yellow scor-
pion Buthus occitanus (B.occitanus) seems to be one of
the most dangerous scorpions, on account of its toxic
venom causing the majority of envenomation cases [9].
Although several studies had been carried out on this
venom [10-13], no study has yet focused on the pro-
teomic composition of the Moroccan B. occitanus
scorpion venom despite its medical importance. More-
over, there are various strategies to screen scorpion
venoms, from using conventional strategies for target-
ing one single toxin, to applying the most throughput
equipment of screening for a detailed view of all toxic
components. Nowadays, mass spectrometry-based pro-
teomic approaches are still one of the most fundamen-
tal tools to decrypt the complexity of such matrices,
owing to the revolutionary advances in instrumenta-
tion and software, in addition to improvement in
omics strategies (peptidomic, proteomic, transcrip-
tomic, and genomic) [14-19]. Among the approaches
that have improved significantly the proteomics work-
flow, there are the top-down process, which designates
a rapid analytical workflow of intact proteins, and the
bottom-up approach, which requires prior proteolytic
digestion of proteins before mass spectrometry analy-
sis. These approaches lead to acquiring mass finger-
prints, primary structural information, and post-
translational modifications [20-23]. The application of
these approaches, singly or complementary, in several
proteomic studies has increased the number of charac-
terized venoms and identified toxins [24-29]. In this
context, this work aimed to ensure an overview of the
peptidome of B. occitanus scorpion (< 30 kDa), so
exploring its toxins arsenal, using a combination of the
top-down and bottom-up approaches applied on nano-
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high liquid chromatography coupled to a nano-electro-
spray tandem mass spectrometry (nano-LC-ESI MS/
MS).

Materials and methods

Venom preparation
Venom milking

Specimens of B. occitanus were collected from the region of
Oualidia (32°44’'N 9°01'W), in eastern Morocco. The crude
venom was milked by electrical stimulation, pooled, cen-
trifuged at 10 000 g for 20 min, freeze-dried, and stored at
—20 °C until use [30].

Venom Reduction/Alkylation

At first, 2 mg of B. occitanus crude venom was subjected to
a 30 kDa ‘cutoff’ filter (Amicon® Ultra Centrifugal Filters,
Merck Millipore, Tulagreen, Ireland), then centrifuged at
16 900 g for 15 min.

Disulfide-bridged half-cysteine residues of this venom fil-
trate were reduced by 10 mm of DTT in ammonium bicar-
bonate buffer (50 mm, pH 8.3), for 45min at a
temperature of 56 °C. Cysteine residues were carboxamido-
methylated by incubation with 50 mM iodoacetamide [IAA
in ammonium bicarbonate (50 mm, pH 8.3)] for 1 h in the
dark. Then, these proteins/peptides were desalted by ZipTip
C4 (Millipore Corporation - Billerica, USA) and concen-
trated on a Savant SpeedVac (Thermo Scientific, San Jose,
CA, USA).

Mass spectrometry-based proteomic approaches
Top-down proteomics

Intact and reduced/alkylated B. occitanus venom filtrates
were carried out on an Orbitrap Fusion™ Lumos™ mass
spectrometer (Thermo Scientific™ Waltham, MA, USA),
equipped with a Dionex HPLC (Fig. 1).

For the online peptide fractionation, 2 pg of samples
was loaded to a C4 p-precolumn cartridge (300 pm i.d. x
5 mm, C4 PepMap 300 particles with 5 um size and 300 A
pores); the column was equilibrated with solution A [0.1%
(v/v) formic acid (FA)]. The separation was maintained
over 120 min at 250 nL-min~!, using a linear gradient from
5% to 60% of solution B [acetonitrile (ACN) and 0.1% (v/
v) FA].

Proteins/peptides were eluted directly from the column
into the mass spectrometer and operated in positive mode
with a spray voltage of 1.6 kV. MS spectra were acquired
at a resolution setting of 120 000.

MS/MS analysis was performed on data-dependent
acquisition, the top 10 abundant precursor ions were
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Fig. 1. Experimental workflow performed in this study. At first, B. occitanus venom was milked by electrical stimulation and applied to a
30 kDa filter. For the top-down venomic, the flow-through containing toxins < 30 kDa was analyzed by the Thermo Scientific ™ Orbitrap
Fusion Lumos Tribrid Mass Spectrometer. For the bottom-up approach, two digest methods were achieved: 1) in-solution digestion, the
flow-through containing toxin < 30 kDa was directly reduced with DTT, alkylated with IAA, and digested with trypsin; and 2) in-gel digestion,
the unstained gel was excised to small cubes, reduced, alkylated, and digested. The digest peptides were then desalted with ZipTip and

applied to the Orbitrap Q-Exactive mass spectrometer.

selected for an EThcD fragmentations (Electron-Transfer/
Higher-Energy Collision Dissociation) with a dynamic
exclusion time of 90 s. MS/MS spectra were acquired at a
resolution setting of 120 000, and the mass range was set
from 150 to 2000 m/z.

Bottom-up proteomics
In-solution digestion

Reduced/alkylated venom filtrate was digested overnight at
a temperature of 37 °C with 0.1 pg of trypsin (Promega,
Madison, WI, USA). Tryptic digests were analyzed on a Q-
Exactive Plus instrument (Thermo Fisher Scientific, Bre-
men, Germany) coupled to an EASY-nLC 1200 chro-
matography system (Thermo Fisher Scientific). Two
micrograms was loaded on an in-house packed 50-cm
nano-HPLC column (75 um inner diameter) filled with C18
resin (1.9 um particles, 100 A pore size, Reprosil-Pur Basic
C18-HD resin; Maisch GmbH, Ammerbuch-Entringen,
Germany) and equilibrated in 97% solvent A and 3% sol-
vent B (ACN, 0.1% (v/v) FA).

Peptides were eluted at 250 nL-min~', using 3-22% gra-
dient of solvent B for 112 min, then 22-38% gradient of

solvent B for 35 min, and finally 38-60% gradient of sol-
vent B for 15 min. The instrument method for the Q-Exac-
tive Plus was set up in the data-dependent acquisition
mode. MS and MS-MS spectra were acquired at a resolu-
tion of 60 000, 10 of the most abundant precursor ions
were selected for HCD fragmentation with collision energy
adjusted to 27. Mono-charged precursors and those with a
charge state of > 7 were excluded.

In-gel digestion

At first, 2 mg of venom filtrate was unfolded for 5 min at
95 °C in sample buffer (LDS sample buffer) and then sub-
jected to a SDS/PAGE using a 4-20% of polyacrylamide
gel (SDS Precast Gel RunBlue, 4-20%, 12 well; Expedeon,
CA, USA). The electrophoresis was performed, on a Bio-
Rad system, at a constant voltage of 140 V, and the sepa-
rated proteins were stained with Coomassie Brilliant Blue
R (InstantBlue; Expedeon, CA, USA).

Stained bands corresponding to proteins/peptides with
masses < 30 kDa (Fig. S1) were manually excised into
equal small cubes of 1 mm® then washed with Milli-Q
water, ammonium bicarbonate 50 mMm, and ACN 50%.
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Subsequently, the slices were submitted to an in-gel reduc-
tion with DTT (10 mM) in ammonium bicarbonate buffer
(50 mMm, pH 8.3) for 45 min at a temperature of 56 °C.
Reduced slices were alkylated with TAA (50 mm) in ammo-
nium bicarbonate (50 mm, pH 8.3) buffer for 20 min in the
dark, followed by an overnight digestion with 0.1 ug of
trypsin (Promega) at a temperature of 37 °C [31]. The enzy-
matic reaction was stopped by adding 5 pL of FA 5%, and
desalted by loading the peptides onto ZipTip CI18. After
drying, digested peptides were dissolved in 100 puL of 0.1%
(v/v) FA and applied on a liquid chromatography coupled
to tandem mass spectrometry (LC-MS/MS) system, com-
posed of a nano-flow HPLC pump and an Orbitrap Q-
Exactive mass spectrometer (Thermo Scientific) with a
nano-electrospray ion source, as described in the section
above.

Data analysis

The top-down liquid chromatography coupled to mass
spectrometry (LC-MS) data analysis of native B. occitanus
venom filtrate was deconvoluted using the Xtract algorithm
within Thermo Scientific XcALIBUR 2.2 software (Thermo
Fisher Scientific).

For protein identification, data from both of the
venomic nano-LC-MS/MS approaches were processed
using the PROTEOME DISCOVER 2.2 software (Thermo
Fisher Scientific), against the UniProtKB database,
downloaded in 2016 10 11, taxon identifier: 6855 and
4309 entries.

Parameters of processing were as follows: a mass toler-
ance of MS set at 50 p.p.m. and 0.3 Da for MS/MS. One
unique peptide was required for protein identification, min-
imum peptide length was required at five amino acids, and
the false discovery rate cutoff was 1%. Trypsin was chosen
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as the specific enzyme, with a maximum number of two
missed cleavages for the bottom-up analysis. Variable mod-
ifications included oxidation of methionine and car-
bamidomethylation, while no fixed modification was set.

Results

Mass spectrometry-based proteomic approaches

The whole proteomic approaches are based only on
the UniProtKB database-dependent analysis without
any manually de novo sequence annotation; therefore,
the majority of reported peptide annotations are still
an approximation. Also, it is important to stress that
the relative abundances and the percentages of the
described peptides are purely based on total number
counts and not concentrations as long as no quantita-
tive analysis was performed.

Top-down proteomics

The total ion chromatogram (TIC) generated from the
top-down LC-MS analysis of native B. occitanus
venom filtrate (Fig. 2) gave a partial picture of the
venom complexity, with around 60 peaks, most of
them detected with high relative abundance.

The mass fingerprint of B. occitanus venom was gen-
erated from a manual deconvolution of spectra gained
by top-down LC-MS approach, thus detecting a total
of 197 monoisotopic masses ranging from 1868 to
16 720 Da (Table 1). We get one mass less than
2000 Da, 28 molecular masses ranging between 2000
and 5000 Da, 147 mass values from 5000 to 8000 Da,
and 21 masses for those over 8000 Da.
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Table 1. List of the 197 monoisotopic masses detected by the top-down LC-MS analysis.

Retention time (min) MW (Da)

0-10 N.D

10-20 1868.0157

20-30 2208.2634; 2506.4634

30-40 2813.4212; 2851.4287; 2966.3848; 3124.4545; 3219.5691; 3233.4756; 3461.4966; 3486.7774,3538.283; 3550.4334;
3670.8935; 3718.7023; 3823.4412; 3937.8078; 4093.8732; 4321.8654; 4366.9752; 4366.986; 5731.6152; 5919.5155.

40-50 3522.2898;3614.8741; 3807.4466; 3937.7725; 4333.933; 4366.9856; 4568.7172; 4572.9253; 5185.3781; 6148.8879;

6423.7104; 6439.6786; 6527.7246; 6539.6502; 6541.7326; 6595.7719; 6606.8166; 6610.768; 6611.7946; 6635.0442;
6744.712; 6829.8098; 6831.8926; 6832.876; 6860.9183; 6861.9012; 6872.9404; 6876.9037; 6877.9284; 6893.9821;
6940.948; 6952.1809; 6974.2357; 6979.0052; 6995.0399; 6997.024; 7014.2508; 7016.0204; 7022.0148; 7024.0653;
7107.2902; 7152.0763; 7162.3796; 7177.1647; 7218.3026; 7220.0387; 7220.2052; 7243.2414; 7297.2395;
7393.2604.

50-60 6488.9021; 6609.8127; 6611.7977; 6629.8447; 6677.8651; 6749.8876; 6765.9533; 6779.2433,6807.922; 6823.1194;
6836.974; 6837.8837; 6862.9698; 6879.9966; 6907.3347; 6919.9628; 6972.7789; 7007.0404; 7011.1444; 7012.1231;
7020.055; 7028.0976; 7035.2491; 7024.1049; 7051.0799; 7061.1245; 7062.1114; 7069.1111; 7079.1299; 7082.3444;
7115.0302; 7116.2113; 7122.274; 7130.9674, 7143.0368; 7250.1077, 7262.1172; 7266.1721; 7268.152; 7283.1496;
7307.2070; 7328.1353; 7394.3224; 7394.5252; 7400.289; 7416.5358; 7435.2763; 7449.3831; 7468.4297; 7491.1348;
7506.1972; 7534.4067; 7607.5077; 7681.4621; 7777.5363; 7840.6401; 7894.5677; 7912.5297; 7924.5736;
7943.5256; 8174.6428; 8344.5958; 9875.9204; 6896.9694; 6880.9937; 7016.998; 7056.1905; 7074.1478; 7104.0354,
7122.2913; 7115.9848; 7175.0715; 7309.2612; 7414.4224; 7600.5; 7654.5083; 7798.6334; 7817.6424; 7832.6366;
7833.6635; 8140.6441; 8159.4822; 8345.56484; 9959.0054; 11068.3376; 11243.5823;16720.7335.

60-70 6896.9694; 6880.9937; 7016.998; 7056.1905; 7074.1478; 7104.0354; 7122.2913; 7115.9848; 7175.0715; 7309.2612;
7414.4224; 7600.5; 7654.5083; 7798.6334; 7817.6424; 7832.6366; 7833.6635; 8140.6441; 8159.4822; 8345.5484;
9959.0054; 11068.3376; 16720.7335.

70-80 6809.9307; 6857.9428; 6859.9368; 6865.9432; 6875.9565; 6880.9796; 6982.0159; 6913.9378; 7009.0523;
7104.9914; 7172.1987; 7200.1528; 7214.1558; 7316.2804; 7377.2599; 7300.0933; 7394.5084.

80-90 7377.2678; 7301.1747; 9140.1069; 11377.1636; 12971.6074; 13004.7435.

90-100 7390.4025; 7466.4483; 7482.4543; 7500.4753; 7704.4655; 7791.56128; 7792.5813; 8672.6993; 8882.0067;
8978.0645; 14577.4253.

100-110 9302.1043; 12990.2825; 12985.6009.

110-120 N.D

N.D: not determined.

50.00 1
45.00
40.00
35.00
g 30.00 |
& 2500
8
Fig. 3. Molecular mass distribution of the § 20.00 -
monoisotopic masses from MS1 spectra E 15.00
deconvolution. 197 components were g
detected, with their MW ranging from
1868 to 16 720 Da. These peptides 200 9 I
distributed from 1000 to 17 000 Da with 000 4= M l- T .- . o U
1000 Da mass range windows. The x-axis w,QQQ ;PQQ S & S ,%000 S & ~L°°Q s QQQ & & «QQQ
represents the MW in Da, and the y-axis @QQ/ 3 %ng/ R %06\// e UGS Qo\/\’ Q&» Q&) Q&) Qo”) & & 003/»
represents the percentage (%) based on TR S
total number counts. Molecular weight (Da)
The most representative molecular masses were The analysis of reduced/alkylated B. occitanus

those from 5000 to 8000 Da, followed by those venom filtrate by tandem mass spectrometry allowed
between 2000 and 5000 Da, which represents respec- the identification of 68 peptides with a molecular
tively 74% and 10% of the total number of measured weight (MW) from 1959.13 to 7943.53 Da. The
molecular masses (Fig. 3). detected experimental sequences are shown in Table 2;
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Table 2. List of the identified peptides by top-down analysis of the reduced/alkylated B. occitanus venom filtrate. Data sets generated
from the mass spectrometer were analyzed by the PrRoTEOME DIscoVER 2.2 software, against UniProtKB/Swiss-Prot database. The amino acids
sequences colored in black were those detected by the analysis. Peptide entries in bold were identified by both top-down and bottom-up

approaches.
Category Accession Description Identified Sequence
NaScTx P59356 Alpha-like toxin Lgh6 MVRDGYIAQPENCVYHCIPDCDTLCKDNGGTGGHCGFKLGHGIACWCNALPDNVGIIV
DGVKCHK
P13488 Alpha-like toxin Bom3 MGRDGYIAQPENCVYHCFPGSSGCDTLCKEKGATSGHCGFLPGSGVACWCDNLPNK
VPIVWGGEKCH
P56678 Alpha-like toxin Lgh3 MVRDGYIAQPENCVYHCFPGSSGCDTLCKEKGGTSGHCGFKVGHGLACWCNALPDNV
GIIVEGEKCHS
Q9NJC4 Chain (toxin BmKaTx17) MLLMTGVESGRDAYIAKNYNCVYHCFRDDYCNGLCTENGADSGYCYLAGKYGNACWC
[10-73] in toxin INLPDDKPIRIPGKCHRR
BmKaTx17
Q4TUA4 Chain (alpha-toxin 4) MNYLVFFSLALLLMTGVESVRDGYIADDKNCAYFCGRNAYCDDECKKKGAESGYCQWA
[20-85] in alpha-toxin 4 GVYGNACWCYKLPDKVPIRVPGRCNGG
P59863 Beta-toxin BotIT2 MDGYIKGYKGCKITCVINDDYCDTECKAEGGTYGYCWKWGLACWCEDLPDEKRWKSE
TNTC
P60163 Toxin Cg2 MKDGYLVNKSTGCKYSCIENINDSHCNEECISSIRKGSYGYCYKFYCYCIGMPDSTQVYP
IPGKTCSTE
P60256 Toxin Boma6b MVRDAYIAQNYNCVYDCARDAYCNELCTKNGAKSGHCEWFGPHGDACWCIDLPNNVPI
KVEGKCHRK
077091 Chain(beta-insect MKFFLIFLVIFPIMGVLGKKNGYAVDSSGKVAECLFNNYCNNECTKVYYADKGYCCLLKC
excitatory toxin BmK IT-AP) YCFGLADDKPVLDIWDSTKNYCDVQIIDLS
[19-90] in beta-insect
excitatory toxin BmK IT-AP
P21150 Toxin AaHIT4 MEHGYLLNKYTGCKVWCVINNEECGYLCNKRRGGYYGYCYFWKLACYCQGARKSELW
NYKTNKCDL
P80962 Beta-insect depressant toxin MDGYIRRRDGCKVSCLFGNEGCDKECKAYGGSYGYCWTWGLACWCEGLPDDKTWKS
BalT2 ETNTCG
P01485 Alpha-mammal toxin MLVMAGVESVKDGYIVDDRNCTYFCGRNAYCNEECTKLKGESGYCQWASPYGNACYC
Bot3; chain (alpha-mammal YKVPDHVRTKGPGRCN
toxin Bot3) [10-73] in
alpha-mammal toxin Bot3
Q86BW9 Chain (Makatoxin-2) [20-83] MNYLIVISFALLLMTSVESGRDAYIADSENCTYFCGSNPYCNDLCTENGAKSGYCQWAG
in RYGNACWCIDLPDKVPIRIPGPCRGR
Makatoxin-2
G4V3T9 Neurotoxin BmK AGAP- MVKDGYIVDDKNCAYFCGRNAYCDDECEKNGAESGYCQWAGVYGNACWCYKLPDKV
SYPU2 PIRVPGRCNG
P84614 Alpha-toxin Bs-Tx28 MGVRDAYIADDKNCVYTCGSNSYCNTECTKNGAESGYCQWFGRWGNGCWCIKLPDKV
PIRIPGKCR
Q9BLM4 Toxin AahP1005; Chain MNYLVMISLALLFMTGVESKKDGYIVDDKNCTFFCGRNAYCNDECKKKGAESGYCQWA
(toxin AahP1005) [20-83] in SPYGNACYCYKLPDRVSTKKKGGCNGR
toxin AahP1005
P86408 Neurotoxin MeuNaTx-1 MVRDGYIADDKNCAYFCGRNAYCDEECKKKGAESGYCQWAGQYGNACWCYKLPDK
VPIKVSGKCN
P60255 Toxin Boma6a MVRDAYIAQNYNCVYDCARDAYCNDLCTKNGAKSGYCEWFGPHGDACWCIDLPNNV
PIKVEGKCHRK
P15225 Neurotoxin Os3 MGVRDGYIAQPHNCVYHCFPGSGGCDTLCKENGATQGSSCFILGRGTACWCKDLPDR
VGVIVDGEKCH
P45697 Alpha-like toxin BmK-M1; MNYLVMISFALLLMTGVESVRDAYIAKPHNCVYECARNEYCNDLCTKNGAKSGYCQWVY
Chain (alpha-like toxin BmK- GKYGNGCWCIELPDNVPIRVPGKCHR
M1) [20-83] in alpha-like
toxin BmK-M1
E4VP24 Chain [20-85] in sodium MNSLVMISLALLVMTGVESVRDGYIADDKNCAYFCGRNAYCDEECKKKGAESGYCQW
channel neurotoxin AGQYGNACWCYKLPDKVPIKVSGKCNGR
MeuNaTxalpha-1
P55902 Alpha-insect toxin BotIT1 MVRDAYIAQNYNCVYFCMKDDYCNDLCTKNGASSGYCQWAGKYGNACWCYALPDNV
PIRIPGKCHS
E7CAU3 Chain (neurotoxin BmK AGP- MGRDAYIAQNYNCVYHCFRDDYCNGLCTENGADSGYCYLAGKYGHACW
SYPU1) [2-65] in CINLPDDKPIRIPGKCHRR
neurotoxin BmK AGP-
SYPU1
Q11178 Toxin Td9 MIGMVAECKDGYLVGDDGCKMHCFTRPGHYCASECSRVKGKDGYCYAW
LACYCYNMPNWAPIWNSATNSCGKGK
AO0A146CJ90 Chain [20-87] in Venom MNYLILISFALLVITGVESARDAYIAQNYNCVYFCLNPWSSYCDDLCTKNGAK
toxin meuNa32 SGYCQIFGKYGNACWCIDLPDKVPIRIPGKCHFA
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No. of No. of
Coverage Measured No. of No. of unique protein No. of
(%) MW (Da) peptides PSMs peptides groups AAs calc.pl
98.46 6974.21 1 4 1 1 65 6.48
98.5 7012.14 1 1 1 1 67 6.71
98.52 7215631 1 22 1 1 68 6.48
84 7062.13 1 1 1 1 75 7.58
77.64 7218.31 1 1 0 0 85 75
98.36 6564.78 1 1 1 1 61 4.84
88.4 6871.92 1 1 1 1 69 6.92
98.5 7307.23 1 4 1 1 67 7.2
80 7943.53 2 6 2 1 90 5.36
98.48 7791.58 1 6 1 1 66 8.46
100 6845.9 1 4 1 1 62 5.31
87.67 7289.18 1 5 1 1 73 7.53
75.29 7062.11 1 4 1 1 85 5.25
98.48 7289.18 1 6 1 1 66 5.31
98.48 72142 1 1 1 1 66 8.12
75.29 7316.26 1 3 1 1 85 8.46
98.46 7218.31 1 6 1 1 65 7.85
98.5 7221.18 1 12 1 1 67 7.09
98.62 6957.15 2 6 2 1 68 6.71
76.19 7429.4 1 4 1 1 84 7.88
77.64 7336.32 1 1 1 1 85 7.85
98.48 7345.15 1 2 1 1 66 7.55
98.5 7488.32 2 8 2 1 67 7.61
86.48 7076.01 1 2 1 1 74 7.84
78.16 7690.37 1 1 1 1 87 7.53
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Table 2. Continued.

Category Accession Description Identified Sequence
P68410 Alpha-mammal toxin Ts2 MKEGYAMDHEGCKFSCFIRPAGFCDGYCKTHLKASSGYCAWPACYCYGV
PDHIKVWDYATNKC
P68726 Chain (Insect toxin 2-53) [22-82] MKLLLLLIVSASMLIESLVNADGYIKRRDGCKVACLVGNEGCDKECKAYGGSY
in Insect toxin 2-563 GYCWTWGLACWCEGLPDDKTWKSETNTCGGKK
Q11163 Toxin Td8; chain (toxin Td8) [21- MTRFVLFLSCFFLIGMVVECKDGYLVGDDGCKMHCFTRPGHYCASECSRVK
83] in toxin Td8 GKDGYCYAWLACYCYNMPNWAPIWNSATNRCRGRK
P56569 Makatoxin-1 MGRDAYIADSENCTYTCALNPYCNDLCTKNGAKSGYCQWAGRYGNACWCI
DLPDKVPIRISGSCR
D8UWD3 Sodium channel neurotoxin MARDGYIADDKNCAYFCGRNAYCDEECKKKGAESGYCQWAGQYGNACWC
MeuNaTxalpha-7 YKLPDKVPIKVSGKCNGR
PODMH9 Chain (alpha-toxin BmalphaTx47) MNYLIVISFALLLMTGVQSGRDAYIADSENCTYTCALNPYCNDLCTKNGAKSG
[20-83] in alpha-toxin YCQWAGRYGNACWCIDLPDKVPIRISGSCRGR
BmalphaTx47
P01483 Neurotoxin Bot2 MGRDAYIAQPENCVYECAKNSYCNDLCTKNGAKSGYCQWLGRWGNACYC
IDLPDKVPIRIEGKCHF
P17728 Chain (alpha-insect toxin LghalT) MNHLVMISLALLLLLGVESVRDAYIAKNYNCVYECFRDAYCNELCTKNGASS
[20-85] in alpha-insect toxin GYCQWAGKYGNACWCYALPDNVPIRVPGKCHRK
LghalT
P01496 Chain (toxin-3) [15-76] in toxin-5 MLVVVCLLTAGTEGKKDGYPVEYDNCAYICWNYDNAYCDKLCKDKKADSGY
CYWVHILCYCYGLPDSEPTKTNGKCKSGKK
Q1EG64 Chain [20-85] in sodium toxin MNYLVMISFAFLLMTGVESARDAYIAQNYNCVYHCARDAYCNELCTKNGAKS
peptide BmKTb' GSCPYLGEHKFACYCKDLPDNVPIRVPGKCNGG
P01488 alpha-toxin Bot1 MGRDAYIAQPENCVYECAQNSYCNDLCTKNGATSGYCQWLGKYGNACWC
KDLPDNVPIRIPGKCHF
P45698 Chain (neurotoxin BmK-M9) [15- MISFALLLMTGVESVRDAYIAKPENCVYHCATNEGCNKLCTDNGAESGYCQW
78] in neurotoxin BmK-M9 GGRYGNACWCIKLPDRVPIRVPGKCHR
P83644 Toxin Lgh4 MGVRDAYIADDKNCVYTCGANSYCNTECTKNGAESGYCQWFGKYGNACWC
IKLPDKVPIRIPGKCR
P01487 Alpha-insect toxin Lgg3 MVRDAYIAKNYNCVYECFRDSYCNDLCTKNGASSGYCQWAGKYGNACWC
YALPDNVPIRVPGKCH
H1ZzI7 Toxin Tpa6 MSIFPIALALLLIGLEEGEAARDGYPLSKNNNCKIYCPDTDVCKDTCKNRASAP
DGKCDGWNSCYCFKVPDHIPVWGDPGTKPCMT
B8XGY6 Chain [20-85] in Putative alpha- MNYLILISLAVLLTSGVESVRDAYIAQNYNCVYTCFKDAYCNDLCTKNGATSGY
toxin Tx17 CQWVGKYGNGCWCYALPDNVPIRVPGKCHSR
P81504 Insect toxin AaHITS MDGYIKRHDGCKVTCLINDNYCDTECKREGGSYGYCYSVGFACWCEGLPDD
KAWKSETNTCD
P68722 Chain (beta-insect excitatory toxin MKFFLLFLVVLPIMGVLGKKNGYAVDSKGKAPECFLSNYCNNECTKVHYADK
LahIT1b) [19-88] in beta-insect GYCCLLSCYCFGLNDDKKVLEISDTTKKYCDFTIIN
excitatory toxin LghlT1b
P60257 Toxin Boma6c MVRDAYIAQNYNCVYTCFKDAHCNDLCTKNGASSGYCQWAGKYGNACWCY
ALPDNVPIRIPGKCHRK
M1J7U4 Putative sodium channel alpha- MVRDGYIMIKDTNCKFSCNIFKKWEYCSPLCQSKGAETGYCYNFGCWCLDL
toxin Acrab PDDVPVYGDRGVICRTR
QIN682 Chain (neurotoxin BmK-M11) [20— MNYLVMISFALLLMTGVESVRDAYIAKPENCVYHCATNEGCNKLCTDNGAESG
83] in neurotoxin BmK-M11 YCQWGGKYGNACWCIKLPDDVPIRVPGKCHR
P55903 beta-insect depressant toxin MDGYIRRRDGCKVSCLFGNEGCDKECKAYGGSYGYCWTWGLACWCEGLPDD
BotIT4 KTWKSETNTCG
AOAOKOLBU9 Chain [20-83] in sodium channel MRAALLLAFSSLILTGVLTKKSGYPTQHDGCKIWCVFNHFCSNYCETYGGSGYCYT
blocker AbNaTx26 WKLACWCDNIHDWVPTWSYATTKCRAK
P0OC910 Alpha-toxin Amm3 MGRDGYIVDTKNCVYHCYPPCDGLCKKNQAKSGSCGFLYPSGLACWCVALPENV
PIKDPNDDCHK
P59360 Neurotoxin BmK-I| VRDAYIAKPHNCVYECARNEYCNDLCTKDGAKSGYCQWVGKYGNGCWCIELPDNV
PIRIPGNCH
P81240 Insect toxin LghIT5 MDGYIRGGDGCKVSCVIDHVFCDNECKAAGGSYGYCWGWGLACWCEGLPADREWK
YETNTCG
P01497 Chain (beta-insect excitatory toxin MKFLLLFLVVLPIMGVFGKKNGYAVDSSGKAPECLLSNYCNNECTKVHYADKGYCCLL
1) [19-88] in beta-insect SCYCFGLNDDKKVLEISDTRKSYCDTTIIN
excitatory toxin 1
VOP3B8 Chain [23-82] in Chain [23-82] in MKILTVEMIFIANFLSMTQVFSLKDRFLLINGSYELCLYEENLDEDCERLCKEQNASDG
Meutoxin-3 FCRQPHCFCADMPDDYPTRPTTR
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No. of No. of
Coverage Measured No. of No. of unique protein No. of
(%) MW (Da) peptides PSMs peptides groups AAs calc.pl
98.41 6655.84 1 6 1 1 63 7.61
71.76 6739.87 1 1 1 1 85 75
73.25 6986.05 1 3 1 1 86 8.34
98.46 7240.24 1 2 0 0 65 75
98.5 7295.24 1 1 1 1 67 8.1
75.29 7240.24 1 1 0 0 85 7.87
98.48 7240.24 1 19 1 1 66 7.55
77.64 7173.2 1 12 1 1 85 8.12
76.54 7105.03 1 20 1 1 81 7.49
77.64 7321.09 1 2 1 1 85 7.58
98.48 7074.14 1 3 1 1 66 6.92
81.01 7015.19 1 1 1 1 79 7.88
98.48 7155.25 1 3 1 1 66 8.1
98.5 6980.01 2 12 2 1 65 7.87
74.41 7059.12 1 2 1 1 86 5.38
77.64 7313.2 1 2 1 1 85 7.87
98.38 6894.89 1 8 1 1 62 4.83
79.54 7924.56 1 1 1 1 88 7.87
98.5 7308.21 2 14 2 1 67 8.31
98.52 7741.51 1 1 1 1 68 75
77.38 7179.21 2 2 2 1 84 7.09
100 6837.96 1 4 1 1 62 5.31
771 7505.2 1 1 1 1 83 8.31
98.46 7011.14 1 1 1 1 65 7.09
100 7431.33 2 14 2 1 65 7.09
100 6611,8 1 3 1 1 62 4.72
79.54 7928.54 1 10 1 1 88 7.53
73.17 7074.13 1 1 1 1 82 4.75
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Table 2. Continued.

K. Daoudi et al.

Category Accession Description Identified Sequence
Q8T3T0 Depressant insect toxin MKLFLLLLISASMLIDGLVNADGYIRGSNGCKVSCLWGNEGCNKECGAYGASYGYCW
BmK ITa1 TWGLACWCEGLPDDKTWKSESNTCGGKK
Q9GQW3 Chain (toxin BmKalT1) MNYLVMISFAFLLMTGVESVRDAYIAQNYNCVYHCARDAYCNELCTKNGAKSGSCPY
[20-83] in toxin LGEHKFACYCKDLPDNVPIRVPGKCHRR
BmKalT1
Q95WX6 Beta-insect depressant MKLFLLLVISASMLIDGLVNADGYIRGSNGCKVSCLWGNEGCNKECKAFGAYYGYCW
toxin BmKITb TWGLACWCQGLPDDKTWKSESNTCGGKK
POC5H1 Beta-toxin Isom1 MKKNGYAVDSSGKAPECLLSNYCNNECTKVHYADKGYCCLLSCYCFGLSDDKKVLEIS
DTRKKYCDYTIIN
QIGNG8 Toxin BmKaTX15 MNYLVFFSLALLVMTGVESVRDGYIADDKNCAYFCGRNAYCDDECKKNGAESGYCQW
AGVYGNACWCYKLPDKVPIRVPGKCNGG
M1JMR8 Sodium channel MVRDGYIVDDKNCTFFCGRNAYCNDECKKKGGESGYCQWASPYGNACWCYKLPDRV
alpha-toxin Acra8 PIKEKGRCNGR
AOAQU4RDS7 Chain [20-87] in MNHLVMISLAFLFMTGVASVRDGYIAQPETCAYHCIPGSSGCYTLCKEKKGESGHCGWK
sodium channel toxin SGHGSAWWCNDLPDKEGIIVDGKGCTRR
NaTx4
P82814 Insect toxin Bs|T4 MDGYIKGNKGCKVSCVINNVFCNSMCKSSGGSYGYCWSWGLACWCEGLPAAKKWLY
AATNTCG
B8XGX9 Chain [20-87] in MNYLIMISLALLLMTGVESGTGVRDAYIADDKNCVYTCALNSYCNTECTKNGAESGYCQ
Putative WLGQYGNACWCIKLPDRVPIRIPGKCRG
alpha-toxin Tx2
Q17254 Alpha-insect MSSLMISTAMKGKAPYRQVRDGYIAQPHNCAYHCLKISSGCDTLCKENGATSGHCGH
toxin Bot14 KSGHGSACWCKDLPDKVGIIVHGEKCHR
KScTx AOA059UI130 Chain (potassium MQRNLVVLLFLGMVALSSCGLREKHFQKLVKYAVPEGTLRTIIQTAVHKLGKTQFGCPA
channel toxin YQGYCDDHCQDIKKQEGFCHGFKCKCGIPMGF
Meg-beta-KTx1) [28-
91] in potassium
channel
toxin Meg-beta-KTx1
Q9IN661 Potassium channel toxin MORNLVVLLFLGMVALSSCGLREKHFOKLVKYAVPEGTLRTIQTAVHKLGKTQFGCP
BmTXK-beta-2 AYQGYCDDHCQDIKKEEGFCHGFKCKCGIPMGF
AMP AOAOATIBE7 AMP AcrAP1 MEIKYLLTVFLVLLIVSDHCQAFLFSLIPHAISGLISAFKGRRKRDLDGQIDRFRNFRKRD
AELEELLSKLPIY
Myotropic F8THJ9 Putative orcokinin MMFGIWILCGTAFFFCHVDAYLEYSNMAPGYNALVRRRSMKQPSEGRMFDNLGYNQE
neuropeptide SLVKRNFDEIDNVGFNDFGPASRPGSGRSWFPKRNWELARYNLRRLVKRATQD
ELMENKRQELDEIDKSGFGGFHKRNFDEIDRSGFNDFGKRSFDRFKLVRRADFNN
Hypothetical F1CIZ9 Hypothetical secreted MQNIFWILIGVGICITAVQCDSEMESSIRDILTKRRYLKYARSVLDDLNNQLDTLHKRSC
secreted protein VLNLPGMDCEYGDITGSGKDODYWTSGRTPGKKRRSYCSLGIGNSEECLTKQLKDDM

protein

TDFNSWNDKFRPGKK

five of the entries were identified with 100% sequence
coverage: neurotoxin BmK-IT (P59360), beta-insect
depressant toxin BotIT4 (P55903), beta-insect depres-
sant toxin BalT2 (P80962), insect toxin LqhITS5
(P81240), and insect toxin BsIT4 (P82814). These tox-
ins were reported for the first time in this Moroccan
venom, they corresponded to toxins already identified
in other scorpion venom. The determined sequence of
the neurotoxin BmK-IT (P59360) showed 100% simi-
larity with the database sequence, whereas the
observed sequences of the other toxins showed methy-
lation in the N-terminal part compared with sequences
reported in Uniprot database (Fig. 4). Therefore, the
other peptides corresponded approximately to toxins,
previously identified in other scorpion species with a
sequence identity ranging from 17% to 98% (Fig. S2).

Therefore, the detected peptides were divided into
five categories on the basis of their molecular functions
according to the UniProtKB database (https://www.uni
prot.org); 63 neurotoxins acting on sodium channels

(NaScTxs), constitute 93% of the components and rep-
resent a MW from 6564.78 to 7943.53 Da; two neuro-
toxins acting on potassium channels (KScTxs) (2.94%,
2506.46-6889.3 Da); one antimicrobial peptide (AMP)
(1.47%, 1959.13 Da); one myotropic neuropeptide
(1.47%, 3112.45 Da); and one hypothetical secreted
protein (1.47%, 3939.79 Da) (Fig. 5A).

Additionally, we have observed, that between these
68 peptides, 27 of them (40%) were detected as chains
or fragments, for example, venom toxin meuNa32
(AOA146CJ90); potassium channel toxin Meg-beta-
KTxl (A0A059UI30); putative alpha-toxin Tx2
(B8XGX9); sodium  channel toxin NaTx4
(AOAOU4RDS7); toxin BmKalIT1(Q9GQW3); sodium
channel blocker AbNaTx26 (AOAOKOLBUY); neuro-
toxin BmK-M11 (Q9N682); beta-insect excitatory
toxin LghIT1b (P68722); toxin-5 (P01496); toxin TdS8
(Q1I163); alpha-like toxin BmK-M1 (P45697); toxin
AahP1005 (Q9BLM4); makatoxin-2 (Q86BWY9); and
alpha-mammal toxin Bot3 (P01485) (Table 2).
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No. of No. of
Coverage Measured No. of No. of unique protein No. of
(%) MW (Da) peptides PSMs peptides groups AAs calc.pl
71.76 6632.71 1 18 1 1 85 6.38
75.29 7012.23 1 3 1 1 85 8.12
71.76 6775.93 1 4 1 1 85 7.85
98.59 7895.47 1 35 1 1 7 7.53
77.64 7211.14 1 1 1 1 85 6.4
98.5 7218.3 1 1 1 1 67 8.29
78.16 7243.29 2 4 2 1 87 7.66
100 6954.15 1 1 1 1 63 8.31
78.16 7394.28 1 3 1 1 87 75
78.82 7184.3 1 5 1 1 85 85
70.32 6889.3 1 9 1 1 91 8.76
25.27 2506.46 1 1 1 1 91 8.57
24.32 1959.13 1 1 1 1 74 9.31
16.96 3112.45 1 1 1 1 165 9.29
25.75 3939.79 1 1 1 1 132 7.99

Bottom-up proteomics

For the bottom-up workflow, two digest methods were
performed: (a) in-solution digestion, the flow-through
containing toxin < 30 kDa was directly reduced with
DTT, alkylated with TAA, and digested with trypsin;
and (b) in-gel digestion, the gel spot corresponding to
peptides under 30 kDa (Fig. S1) was excised to small
cubes, which after series of washings, were reduced,
alkylated, and digested.

The results generated by the bottom-up approach
using the in-gel digestion yielded the identification of
36 peptides, whereas 37 was the total of the identified
peptide by in-solution digestion. The detected peptides
showed similarity of sequences with peptides from
other scorpion species, and with their sequence cover-
age ranging from 10.23% (P68721) to 86.15%
(P01489) and from 8.75% (P0C294) to 92.86%
(P80669) for the in-gel and in-solution digestions,
respectively.

The identified categories of peptides using the in-gel
digestion were as follows: 27 NaScTxs; seven KscTxs;
and two ClTxs (Table 3). While, through the in-solu-
tion digestion, we identified in addition to 24
NaScTxs, eight KScTxs and three CIScTxs, one entry
that shares 60% of similarity with neurotoxin Tx-2
(P83406) purified from Hottentotta judaicus, could cor-
respond to a calcium channel activator ‘CaScTx’ scor-
pion. Besides neurotoxins, one amphipathic peptide
was detected by this digestion method (Table 4).

According to the results, 23 of the entries were
detected by both digestion methods (Tables 3 and 4).
Thus, 14 peptides were identified only by the in-solution
digestion method, for example, alpha-toxin AmmS5
(P01482), alpha-mammal toxin Bot3 (P01485), potas-
sium channel toxin alpha-KTx 9.3 (P80669), neurotoxin
Tx-2 (P83406), neurotoxin P2 (P01498), and amphi-
pathic peptide Tx348 (B8XHS50). Otherwise, regarding
the in-gel digestion results, 13 peptides were identified
only by this method of digestion, for example,
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Description: Neurotoxin BmK-Il Accession: P59360

Database sequence:

VRDAYIAKPHNCVYECARNEYCNDLCTKDGAKSGYCQWVGKYGNGCWCIELPDNVPIRIPGNCH

B viriplalY[1 Alk PHNCVYEBARNEYENDL
FBrkpeAaksegYfEoQqwvekYyGeNGgEwlI E
LPDNVPIRIPGNCH

Identified amino acid sequence

Description: Beta-insect depressant toxin BalT2 Accession: P80962
Database sequence:

DGYIRRRDGCKVSCLFGNEGCDKECKAYGGSYGYCWTWGLACWCEGLPDDKTWKSETNTCG

B vpolGlYLIRRRDGEKVSEHLFGNEGHEDKE
FBkaveesycyYfwtweLaBwBHEeEGcLPD
DKTWKSIETNTHE

Identified amino acid sequence

Description: Insect toxin BsIT4 Accession: P82814

Database sequence:

DGYIKGNKGCKVSCVINNVFCNSMCKSSGGSYGYCWSWGLACWCEGLPAAKKWLYAATNTCG

MD[GLY[IIKGNKGCKVSEHVINNVFENSM
FksscasyacYyYflwsweaLalwlHeGcLrPA
AKKWL|]YAATN|TCG

Identified amino acid sequence

Description: Insect toxin LqhIT5 Accession: P81240

Database sequence:

DGYIRGGDGCKVSCVIDHVFCDNECKAAGGSYGYCWGWGLACWCEGLPADREWKYETNTCG

BVMDIGYIRGGDGICKVSCVIDHVFCDNE
KAAGGSYGYCWGWGLACWCEGLP|A
DREWKIY EITNTCG

Identified amino acid sequence

Description: Beta-insect depressant toxin BotIT4 Accession: P55903

Database sequence:

DGYIRRRDGCKVSCLFGNEGCDKECKAYGGSYGYCWTWGLACWCEGLPDDKTWKSETNTCG

B mplGlYll RRIRDGCKVSCLFGNEGC CDKE
KAYGGSYGYCWTWGLACWCEGLPD
DKTWKSETNTC@

Identified amino acid sequence

Tec¢ L=z
Ty

Fig. 4. The detected amino acid sequences of the five toxins identified with 100% coverage by the top-down LC-MS/MS; neurotoxin BmK-
II' (P59360); beta-insect depressant toxin BalT2 (P80962); insect toxin BsIT4 (P82814); insect toxin LghlT5 (P81240); and beta-insect
depressant toxin BotlT4 (P55903).
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Fig. 5. (A) Relative abundance of the different peptide categories identified in reduced/alkylated B. occitanus venom filtrate by the top-down
LC-MS/MS analysis. Peptides were divided on the basis of their molecular functions into: neurotoxins active on sodium channels (NaScTxs),
neurotoxins active on potassium channels (KScTxs), myotropic neuropeptide, AMP, and hypothetical secreted protein. (B) Relative
abundance of the different peptide categories identified in reduced/alkylated and digested B. occitanus venom by bottom-up LC-MS/MS
analysis. The peptides were divided on the basis of their molecular functions into: neurotoxins active on sodium channels (NaScTxs),
neurotoxins active on potassium channels (KScTxs), neurotoxins active on chloride channels (CIScTxs), neurotoxins active on calcium

channels (CaScTx), toxin Acra, and amphipathic peptide.

potassium channel toxin alpha-KTx 9.11 (B3EWXO9);
sodium channel alpha-toxin Acra4 (M1JBCO0); sodium
channel alpha-toxin Acra8 (M1JMR&), alpha-toxin Ac3
(fragment) (DSHRS52); and beta-insect depressant toxin
BotIT5 (P55904).

Since the aim of using two methods of digestions was
to identify the maximum of peptide, the data generated
by bottom-up approaches using in-gel and in-solution
digestions were then summarized in Table 5; the
repeated molecules were deleted and thus allowed the
detection of a total of 50 peptides, which were divided
into different categories according to their molecular
functions. The generated data from the bottom-up pro-
cess confirmed that the family with the most diverse
members in this venom is neurotoxins, with 31 NaScTxs
(62%, 4.3-10.2 kDa), 13 KScTxs (26%, 2.9-10.4 kDa),
three CIScTxs (6%, 3.6-4 kDa), one CaScTx (2%,
2.9 kDa), and one toxin Acra (2%, 8.8 kDa).

In addition to these neurotoxins, we identified one
amphipathic peptide (2%, 7.8 kDa) (Fig. 5B). Also,
some peptides were detected as fragments (10% of

total): alpha-toxin Acl (D5HRS50) and Ac3
(DSHRS52); alpha-mammal toxin Bot3 (P01485); and
neurotoxin 8 (P04098).

As we mentioned above, we aimed to gain a deeper
understanding of the B. occitanus peptidome (under
30 kDa), so the molecular diversity of its toxins. In
this context, we combined data from the top-down
and bottom-up analyses and then analyzed the gener-
ated data to infer a global and comprehensive charac-
terization of this venom.

According to this study, a total of 118 peptides were
identified from B. occitanus venom; among them, 16
were identified by both approaches, for example,
potassium channel toxin BmTXK-beta-2 (QIN661);
toxin AaHIT4 (P21150); and alpha-mammal toxin
Bot3 (Fragment) (P01485).

Among the 102 identified peptides, the most repre-
sentative category is neurotoxins, mainly NaScTxs
(77%), followed by KScTxs (14%), CIScTxs (3%),
CaScTx (1%), and toxin Acra (1%). We also charac-
terized other peptides with low percentage such as
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Table 5. List of the 50 peptides detected by the bottom-up analysis of the reduced/alkylated B. occitanus venom filtrate. Data sets
generated from the mass spectrometer were analyzed by the PROTEOME Discover 2.2 software, against UniProtKB/Swiss-Prot database.

Category Accession Description MW (kDa) Species Digestion method
NaScTx P86406 Neurotoxin MeuNaTx-6 7.8 Mesobuthus eupeus In-gel digestion
P59863 Beta-toxin BotIT2 6.9 Buthus occitanus tunetanus Both
D5HR52 Alpha-toxin Ac3 (Fragment) 7.8 Androctonus crassicauda In-gel digestion
P55904 Beta-insect depressant toxin BotIT5 6.8 Buthus occitanus tunetanus In-gel digestion
077091 Beta-insect excitatory toxin BmK IT-AP 10.2 Mesobuthus martensii Both
P68723 Beta-insect excitatory toxin LghlT1c 9.9 Leiurus quinquestriatus hebraeus In-gel digestion
P59360 Neurotoxin BmK-II 7.2 Mesobuthus martensii Both
P15224 Toxin Os1 7.6 Orthochirus scrobiculosus In-gel digestion
D5HR50 Alpha-toxin Ac1 (Fragment) 8.7 Androctonus crassicauda In-gel digestion
M1JMRS8 Sodium channel alpha-toxin Acra8 7.5 Androctonus crassicauda Both
M1JBCO Sodium channel alpha-toxin Acra4 7.1 Androctonus crassicauda In-gel digestion
Q86SE0 Toxin Aam2 9.3 Androctonus amoreuxi Both
P21150 Toxin AaHIT4 7.8 Androctonus australis Both
P01482 Alpha-toxin Amm5 7.3 Androctonus mauretanicus In-solution digestion
mauretanicus
P01481 Alpha-mammal toxin Lgg5 7.3 Leiurus quinquestriatus In-solution digestion
quinquestriatus
P13488 Alpha-like toxin Bom3 6.9 Buthus occitanus mardochei Both
P45698 Neurotoxin BmK-M9 8.8 Mesobuthus martensii In-solution digestion
P68721 Beta-insect excitatory toxin LghlT1a 9.9 Leiurus quinquestriatus hebraeus Both
PODJH8 Alpha-toxin Bu1 7.5 Buthacus macrocentrus Both
P83644 Toxin Lgh4 7.2 Leiurus quinquestriatus hebraeus Both
P01489 Alpha-toxin Lgq4 7.2 Leiurus quinquestriatus Both
quinquestriatus
P01486 Alpha-toxin Bot11 7.5 Buthus occitanus tunetanus In-solution digestion
P60255 Toxin Boma6a 7.5 Buthus occitanus mardochei Both
P17728 Alpha-insect toxin LghalT 9.6 Leiurus quinquestriatus hebraeus Both
P04098 Neurotoxin 8 (Fragment) 4.1 Buthus occitanus tunetanus Both
P55902 Alpha-insect toxin BotIT1 7.3 Buthus occitanus tunetanus Both
P01488 Alpha-toxin Bot1 7.3 Buthus occitanus tunetanus Both
P81504 Insect toxin AaHIT5 6.9 Androctonus australis Both
P01485 Alpha-mammal toxin Bot3 (Fragment) 8.1 Buthus occitanus tunetanus In-solution digestion
P83406 Neurotoxin Tx-2 2.9 Buthotus judaicus In-solution digestion
Q17254 Alpha-insect toxin Bot14 9.2 Buthus occitanus tunetanus Both
P59864 Beta-insect depressant toxin BotIT6 7.3 Buthus occitanus tunetanus In-solution digestion
P0C294 Toxin Acra I-3 8.8 Androctonus crassicauda In-solution digestion
KScTx B3EWX9 Potassium channel toxin alpha-KTx 9.11 2.9 Mesobuthus gibbosus In-gel digestion
POC161 Potassium channel toxin alpha-KTx 2.8 4.3 Centruroides elegans In-gel digestion
B8XH42 Potassium channel toxin alpha-KTx 16.6 6.5 Buthus occitanus israelis Both
POCC12 Potassium channel toxin alpha-KTx 8.5 3.2 Odontobuthus doriae In-solution digestion
P59869 Potassium channel toxin alpha-KTx 5.4 3.5 Mesobuthus tamulus In-gel digestion
B8XH40 Potassium channel toxin BuTXK-beta 10.2 Buthus occitanus israelis In-gel digestion
Q95NJ8 Potassium channel toxin alpha-KTx 17.1 6.2 Odontobuthus doriae In-solution digestion
P83407 Potassium channel toxin alpha-KTx 19.1 3.3 Mesobuthus martensii in-solution digestion
P80669 Potassium channel toxin alpha-KTx 9.3 3 Leiurus quinquestriatus hebraeus In-solution digestion
P86399 Neurotoxin lamda-MeuTx 7.2 Mesobuthus eupeus In-solution digestion
QI9NJC6 Potassium channel toxin BmTXK-beta 104 Mesobuthus martensii Both
QIN661 Potassium channel toxin BmTXK-beta-2 10.2 Mesobuthus martensii Both
CIScTx P01498 Neurotoxin P2 3.7 Androctonus mauretanicus in-solution digestion
mauretanicus
P86436 Chlorotoxin-like peptide 3.6 Androctonus australis Both
P45639 Chlorotoxin 4 Leiurus quinquestriatus Both
quinquestriatus
P80670 Toxin GaTx2 3.2 Leiurus quinquestriatus hebraeus In-solution digestion
Amphipathic B8XH50 Amphipathic peptide Tx348 7.8 Buthus occitanus israelis In-solution digestion
peptide

Peptide entries in bold were identified by both top-down and bottom-up approaches.
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AMPs (1%), amphipathic peptides (1%), hypothetical
secreted proteins (1%), and myotropic neuropeptides
(1%) (Fig. 6).

The majority of described peptides were identified
for the first time in this Moroccan B. occitanus

Toxin Acra  Myotropic
%

1% - neuropeptide

Amphipathic peptide 1%

1% CaScTx

CIScTxs %
3%

KSchs/

14%
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scorpion venom. The identified peptides showed
sequence similarities with toxins previously detected
from several genera of scorpions (Fig. 7), principally
Mesobuthus sp (30%), Buthus Sp (20%), and Androc-
tonus sp (18%).

Antimicrobial peptide
1% Hypothetical secreted
protein
1%

NaScTxs
77%

Fig. 6. Summary of the total peptides identified by top-down and bottom-up approaches. The 102 peptides were divided into neurotoxins,
including NaScTxs, KScTxs, CIScTxs, CaScTx and toxin Acra, amphipathic peptide, myotropic neuropeptide, AMPs, and hypothetical

secreted protein.

# Androctonus sp.
1 Buthus sp
_Ilsometrus sp
.1Odontobuthus sp

1 Buthacus sp

M Centruroides sp
M Leiurus sp

i Orthochirus sp

® Buthotus sp

1 Hottentotta sp
H Mesobuthus sp
M Tityus sp

Fig. 7. Percentage of B. occitanus peptides, which showed similarity of sequences with others from several scorpion genera.
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Discussion

Envenomation following scorpion stings constitutes
one of the most encountered emergencies in large parts
of the world, especially in North Africa, where the
data show the highest incidence and lethality [1]. Mor-
occo is a country known for a high risk of envenoma-
tion owing to its huge and diversified scorpion fauna.
Among the different scorpion species living in this
country, the yellow scorpion B. occitanus is one of the
most dangerous species with venom responsible for
severe cases of envenomation.

Due to the limited knowledge about the composition
and toxin arsenal of B. occitanus venom, we aimed in
this study to elaborate the first exhaustive view of this
scorpion venom peptidome and its molecular diversity,
using mass spectrometry-based top-down and bottom-
up approaches.

Top-down data sets showed that the venom of
B. occitanus is very complex, counting around 200
MWs ranging from 1868 to 16 720 Da. A similar
number of components have been revealed by previous
studies [32-34], others showed fewer components, as
well as Leiurus abdullahbayrami (45 masses) and
Opisthacanthus elatus (106 masses) [35, 36], whereas
some other scorpion venoms were more complex, such
as the Pandinus cavimanus (390 masses) and Cen-
truroides limpidus (395 masses) [37, 38]. Additionally,
the repartition of MWs showed that < 1% were com-
ponents with molecular masses < 2000 Da, 14% were
those from 2000 to 5000 Da, 74% were those between
5000 and 8000 Da, and 10% were those over than
8000 Da, while the repartition of MW from the
French B. occitanus scorpion venom showed an abun-
dance of molecules ranging from 2000 to 3000 Da and
those less than 2000 Da [39]. Most importantly, the
whole sequences of five toxins were identified with
100% sequence coverage using the top-down
approach. These neurotoxins were detected for the
first time in this venom; they all belong to the
NaScTxs category and shared high similarities of
sequence with toxins identified from other scorpion
species: neurotoxin  BmK-II (P59360), beta-insect
depressant toxin BotIT4 (P55903), beta-insect depres-
sant toxin BalT2 (P80962), insect toxin LqhITS5
(P81240), and insect toxin BsIT4 (P82814). It is impor-
tant to stress that the observed sequence of the
P59360 entry with a MW of 7431.33 Da showed
100% similarity with the sequence of neurotoxin
BmK-II isolated from the Chinese scorpion
Mesobuthus martensii, this neurotoxin is active in
mammal and insect Nav channel [40]. In contrast, the
detected sequence of the P81240 entry (6611.8 Da)

K. Daoudi et al.

showed the presence of methionine in the N-terminal
compared with the database sequence of the Insect
toxin LghIT3, an excitatory insect beta-toxin from the
Leiurus hebraeus scorpion [41]. Similar to the P82814
entry (6954.15 Da), in which the observed sequence
corresponds 100% to the insect toxin BsIT4, a depres-
sant insect beta-toxins was isolated from Hottentotta
tamulus sindicus [42]. Also, the observed sequence of
the peptide corresponding to the depressant toxin
BotIT4 (6837. 96 Da) presents methionine in N-termi-
nal compared with the database sequence. This toxin,
identified for the first time from the Tunisian
Buthus tunetanus [43], showed also 100% sequence
identity with the P80962 entry (6845.9 Da), referred to
the beta-insect depressant toxin BalT2 isolated from
the Buthacus arenicola scorpion [44]. The high similar-
ity of the amino acid sequence, in both detected
depressant toxins and in the other peptides is com-
monly observed in scorpion toxins.

Interestingly, the combined top-down and bottom-
up data sets of B. occitanus venom provide the identifi-
cation of 102 different peptides, whereas 147 proteins
were characterized from the yellow Brazilian scorpion
Tityus serrulatus, 60 of which were detected by the
top-down approach [45]. The major representative cat-
egory of components identified in our venom was neu-
rotoxins, mainly NaScTxs (77%), these neurotoxins
are abundant in species from the Buthidae family
[38,46,47] and less representative in scorpions from the
non-Buthidae family [33,48,49]. Those toxins are the
ones responsible for envenomation symptoms [39];
their high content in the B. occitanus venom could
explain the involvement of this scorpion in lethal cases
of envenoming in the country.

Between the entries corresponding to NaScTxs, there
are alpha-like toxins, this type of toxins had been
already identified in several Buthus sp; yet, the alpha-
toxin Botl (P01488) has never been found in other
Moroccan Buthus subspecies except from Buthus mar-
dochei [39,50-53], but identified herein with a high
sequence coverage (98.48% on top-down data set). We
should mention also that we identified for the first
time, in this scorpion venom, peptides corresponding
to atypical NaScTxs, as well as makatoxin-1, fragment
from makatoxin-2, toxin Cg2, chain [20-87] in venom
toxin meuNa32, and AaHIT4 toxin (which could bind
on receptor site 3 or 4 of sodium channel) [33].

Besides NaScTxs and KScTxs (14%), CIScTxs (3%)
were identified, these categories of peptides showed
activities against autoimmune disease and cancers,
respectively [54-58]; also, we identified one entry that
shared 60% of similarity with neurotoxin Tx-2
(P83406), a calcium channel activator identified for the
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first time from the Buthotus judaicus, this category of
toxins was identified in few scorpion species, for exam-
ple, Parabuthus transvaalicus (Kurtoxin) and
Parabuthus granulatus (Kurtoxin-like I) but never been
detected in a Moroccan scorpion venom [59, 60]. And
last but not least, peptides referring to toxin Acra cate-
gory have also been screened in B. occitanus venom,
these toxins probably acting on ion channels.

Some peptides with antibacterial activities were also
found, for example, amphipathic peptide (B8XHS50)
and AMP AcrAP1 (A0AO059UI30); this category was
commonly present in scorpion venom due to its role in
the protection of venom glands and its involvement in
the neurotoxic effects [61-65]. Additionally, other com-
ponents were identified with a low percentage, such as
orcokinin, a myotropic neuropeptide identified from
crustaceans, insects, and arachnids [17, 66], and hypo-
thetical secreted proteins, which are proteins with
unknown activities. Finally, we notice that some of the
detected toxins were identified as fragments and
chains, which may be due to the proteolysis of toxins.
This process seems to be a usual PTM in scorpion and
snake venoms, whereas its biological pertinence
remains obscure [17, 45].

This study decrypted the peptidome arsenal of the
Moroccan B. occitanus scorpion venom through pro-
teomic view without the de novo sequence annotation.
These findings constitute a step forward to a ‘deeper’
understanding of this scorpion venom; nevertheless,
complete identification of this complex matrix is still a
challenging task, especially with the lack of a specific
database and/or a complete sequenced genome of this
venom.

Conclusion

Herein; we reported the first proteomic study of the
Moroccan B. occitanus scorpion peptidome, using
mass spectrometry-based top-down and bottom-up
venomic approaches. The combination of these
approaches allowed the identification of 102 compo-
nents classified, with approximation, on different cat-
egories, mainly neurotoxins (96%), including
NaScTxs (77%), KScTxs (14%), CIScTxs (3%),
CaScTx (1%), and toxin Acra (1%). We also identi-
fied AMPs (1%), amphipathic peptides (1%), hypo-
thetical secreted proteins (1%), and myotropic
neuropeptides (1%). This study constitutes for sure a
step forward to a deeper understanding of the B. oc-
citanus venom; nevertheless, complete identification
of this complex matrix is still a challenging task,
especially with the lack of a specific database and a
complete sequenced genome.

First proteomic analysis of the Moroccan Buthus occitanus scorpion venom
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Fig. S1. SDS/PAGE profile of the < 30 kDa filtrate of
Buthus occitanus venom. Molecular weight markers
(MM) are indicated in kDa. Proteins/Peptides were
stained with Coomassie Brilliant Blue R (InstantBlue,
Expedeon, CA, USA). Stained bands corresponding to
proteins/peptides with massed < 30 kDa were manu-
ally excised into equal small cubes of 1 mm® and sub-
jected to a nanoLC-MS/MS analysis.

Fig. S2. Detected amino acid sequences of the 68 pep-
tides identified by Top-down approach.
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