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Introducing the novel Cytoscape 
app TimeNexus to analyze 
time‑series data using temporal 
MultiLayer Networks (tMLNs)
Michaël Pierrelée1, Ana Reynders2, Fabrice Lopez3, Aziz Moqrich2, Laurent Tichit4 & 
Bianca H. Habermann1,5*

Integrating ‑omics data with biological networks such as protein–protein interaction networks is 
a popular and useful approach to interpret expression changes of genes in changing conditions, 
and to identify relevant cellular pathways, active subnetworks or network communities. Yet, most 
‑omics data integration tools are restricted to static networks and therefore cannot easily be used 
for analyzing time‑series data. Determining regulations or exploring the network structure over 
time requires time‑dependent networks which incorporate time as one component in their structure. 
Here, we present a method to project time‑series data on sequential layers of a multilayer network, 
thus creating a temporal multilayer network (tMLN). We implemented this method as a Cytoscape 
app we named TimeNexus. TimeNexus allows to easily create, manage and visualize temporal 
multilayer networks starting from a combination of node and edge tables carrying the information 
on the temporal network structure. To allow further analysis of the tMLN, TimeNexus creates and 
passes on regular Cytoscape networks in form of static versions of the tMLN in three different ways: 
(i) over the entire set of layers, (ii) over two consecutive layers at a time, (iii) or on one single layer at 
a time. We combined TimeNexus with the Cytoscape apps PathLinker and AnatApp/ANAT to extract 
active subnetworks from tMLNs. To test the usability of our app, we applied TimeNexus together 
with PathLinker or ANAT on temporal expression data of the yeast cell cycle and were able to identify 
active subnetworks relevant for different cell cycle phases. We furthermore used TimeNexus on our 
own temporal expression data from a mouse pain assay inducing hindpaw inflammation and detected 
active subnetworks relevant for an inflammatory response to injury, including immune response, cell 
stress response and regulation of apoptosis. TimeNexus is freely available from the Cytoscape app 
store at https:// apps. cytos cape. org/ apps/ TimeN exus.

Time-series gene or protein expression data can give invaluable insight into the temporal dynamics of biological 
processes. It informs about the changes in activity of molecular pathways and key players upon a cellular stimu-
lus or helps characterize molecular activity in cyclic processes, such as the cell cycle or the circadian rhythm. 
Methods and protocols exist to analyze time-series expression data and extract the dynamically expressed genes 
from a temporal dataset, some of which have been reviewed and compared  in1. Results from such tools however 
do not provide insights into the activity of key molecules or pathways at a given time point. Clustering temporal 
expression profiles of genes is another possibility to analyze time-series  data2, which is especially useful to follow 
the trajectory of expression dynamics of genes over time and to identify co-regulated gene  groups3–5.

Integrating temporal expression data with protein interaction data is more challenging. Generally, the inte-
gration of -omics data with interactomes is very useful to gain deeper insight, like identifying dysregulated 
pathways or gene communities of  interest6–9. Popular approaches in network analysis combined with expression 
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data include community detection, identification of active subnetworks or of changes in general network features 
such as centrality  measures10–21.

However, most approaches in this type of data integration are limited to static interactomes even though the 
necessity of dynamic interactomes was recognized some time  ago22. A dynamic interactome can be modeled as a 
temporal network. In brief, a temporal network can be described as a sequence of static network states ordered in 
time, whereby each state represents the activity of the network at a given time point. Temporal networks and their 
usability in different scientific disciplines have been reviewed  in23,24. In principle, the same network analysis tech-
niques used for static networks can be applied to temporal networks, for instance extracting active subnetworks 
or detecting communities, identifying important nodes by centrality measures, etc.25–27. Yet, by introducing time 
as a dimension to networks, some measures and concepts from static networks need to be  revisited23: for example, 
in a static network, a path exists from A to C via B, if edges connect (A, B) and (B, C). In a temporal network, 
with changing edge activities, a path from A to C only exists if the edges (A, B) and (B, C) are active in the cor-
rect order (edge (A, B) must be active before edge (B, C)). A number of methods for analyzing static networks, 
such as path-based centrality measures, are therefore being adapted to temporal networks (reviewed in e.g.23).

Some approaches have been introduced that enable users to analyze temporal gene expression data by inte-
grating them with an interactome in a dynamic manner. TimeXnet is a stand-alone JAVA application to identify 
active subnetworks in interactomes based on time-course expression  data28. TimeXNet assumes cellular responses 
to be divided into early, middle and late phases. It takes as an input a weighted interactome together with three 
gene lists representing the active subset of genes at the three given phases (early, middle, late). It will return the 
predicted active subnetwork together with the flow between the nodes (active genes) in the early, middle and late 
phases. The output can be directly visualized in Cytoscape in form of a network. While TimeXNet has shown 
promising results in mouse innate immune  response29, it allows only three phases, where each gene belongs to 
exactly one phase that needs to be defined a priori by the user. Thereby, TimeXNet cannot manage more com-
plex dynamic systems. The Cytoscape app DyNet allows to visualize and analyze dynamic molecular interaction 
 networks30. It offers interactive visualization of a temporal network as sets of state graphs, allowing re-arranging 
of the nodes on each state simultaneously. Moreover, network analysis functions are provided, such as compar-
ing attributes (of nodes or edges) over two or more layers or identification of the most dynamic neighborhood 
by searching for the most ‘rewired’ nodes in the temporal network. The Cytoscape app  DyNetViewer31 is able to 
construct, analyze and visualize active temporal networks. It provides four different algorithms for constructing 
one static active subnetwork for each time point by retaining only the active nodes from a large protein interac-
tion network at that time point. It provides in addition network analysis functions, mostly focusing on centrality 
measures and graph clustering algorithms of the temporal network. Furthermore, DyNetViewer enables the user 
to analyze and visualize the resulting active subnetwork. However, its functions are limited to handling one single 
layer at a time. Therefore, it does not fully apply the principles of temporal networks.

What is generally missing is an easy to use and flexible app for working with temporal data in network analy-
sis. With TimeNexus, we introduce an approach which models a temporal network as a discrete time longitudinal 
network, in which the expression changes over time are projected on the layers of a multilayer network. Expres-
sion changes of one time point are projected on one layer in the form of node weights and the layers are ordered 
in a time-dependent manner. Other than available methods, TimeNexus uses the edges connecting the layers 
(inter-layer edges) to model transition states between nodes from one time point to the next and thus takes full 
advantage of the time-series data. A priori, all layers contain the same network (the same nodes and edges) and 
thus, the multilayer network initially generated by TimeNexus is a multiplex network. TimeNexus multilayer 
networks are not temporal networks in the sense  of23, which assumes that edge activity varies over time. To avoid 
ambiguity, we refer to our networks as temporal multilayer networks (tMLNs, Fig. 1). TimeNexus can be used to 
generate, manage and visualize tMLNs.

We wanted to use TimeNexus to extract active subnetworks from time-series data. Therefore, in the current 
release of TimeNexus, we provide a connection to the Cytoscape apps  PathLinker16,17 and AnatApp/the ANAT 
 server18–21 for active subnetwork extraction based on differential expression data, making use of their respective 
programmatic interfaces. PathLinker finds a user-defined number (K) of shortest paths between source and 
target nodes in a network using an improved version of Yen’s k-shortest paths algorithm and then creates active 
subnetworks by unifying these  paths32. ANAT, on the other hand, identifies ‘functional networks’ from a large 
cellular interactome by connecting a set of target proteins (nodes that were for instance identified in a large-scale 
screen) with ‘anchor’ proteins (nodes around which the network should be constructed). ANAT then minimizes 
the sum of weights of all edges in the extracted active subnetwork, which is known as the Steiner tree  problem33. 
Theoretically, TimeNexus can be extended with any network analysis app available within Cytoscape, provided 
that it possesses a programmatic interface, as do PathLinker and ANAT.

To test TimeNexus, we used our app together with PathLinker and ANAT on a yeast cell cycle temporal 
study, following gene expression dynamics of the yeast cell division cycle in synchronized  cells34. We extracted 
active subnetworks of the cell cycle from a temporal multilayer network comprised of 16 temporal layers of one 
full cycle. We scored these active subnetworks for relevance to the process under study by looking for enriched 
GO-terms related to cell cycle. We also applied TimeNexus to our own data from an injury induced pain assay in 
mouse, following mechanosensitivity and associated transcriptional changes over 30 days. We predicted pathways 
relevant for this process, including immune response, stress response, apoptosis regulation and axonal growth. 
Although TimeNexus has been optimized for temporal and multiplex networks, it is also applicable to all other 
forms of multilayer networks. TimeNexus is freely available from the Cytoscape App store (https:// apps. cytos 
cape. org/ apps/ TimeN exus). The source code is also available on GitLab (https:// gitlab. com/ haber mann_ lab/ 
tempo ral- netwo rk- proje ct).

https://apps.cytoscape.org/apps/TimeNexus
https://apps.cytoscape.org/apps/TimeNexus
https://gitlab.com/habermann_lab/temporal-network-project
https://gitlab.com/habermann_lab/temporal-network-project
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Methods
Definitions. We project temporal differential gene expression data from a time-series on a multilayer net-
work structure in the Cytoscape app TimeNexus, whereby we assign the differential expression data from each 
time point to the layer representing this time point in the form of node weights. We refer to this network model 
as a temporal multilayer network (tMLN, Fig. 1). A priori, the network is the same on all layers. Therefore, the 
tMLN created by TimeNexus is a multiplex network. We refer to a node on an individual layer as a layer-node, 
as opposed to a node of a single-layer static network. Edges connecting nodes within one layer  (A1,  B1,  C1) are 
termed intra-layer edges; those connecting the same node between two different layers  (A1 and  A2) are called 
inter-layer edges. Weights can be added to intra- and inter-layer edges. Intra-layer edge weights will most of the 
time represent confidence scores on a specific interaction and are identical for all layers. Inter-layer edge scores 
on the other hand can contain information on changes in differential expression of one gene from one time point 
to the next. Thus, they represent transition weights from one layer to the next and can be used for subsequent 
network analysis tasks, such as active subnetwork extraction. For follow-up analysis of the tMLN, we further-
more need to define query nodes: a query node is a layer-node that shows significant differential expression at the 
given time point that is associated with that specific layer.

TimeNexus represents the tMLN by two simplified objects: the Flattened network and the Aggregated network 
(see Fig. 2 for a representation of an Aggregated and a Flattened network). These two networks are complementary. 
Thus, in Cytoscape, a TimeNexus tMLN is represented by a network collection, which includes the Flattened and 
the Aggregated network, as well as a static network for each layer, representing the snapshot of differential gene 
expression at a given time. The Flattened network is the visual representation of the tMLN and serves for most 
applications, such as processing the tMLN by static network tools. In the Flattened network, layer-nodes become 
independent entities and the intra- and inter-layer edges become indistinguishable. Therefore, the Cytoscape 
‘create view’ feature will not display this object properly as a temporal succession of layers and a dedicated viewer 
app is required. The Aggregated network represents the collapsed, single-layer network of all layers: all layer-nodes 
and intra-layer edges are unified in a single node and edge, respectively and all temporal information is lost.

Temporal information required for building a temporal multilayer network with TimeN‑
exus. TimeNexus builds a tMLN by converting tables into a collection of Cytoscape networks. The conver-
sion requires 2 types of tables: a node table containing attributes for each of the layer-nodes and an intra-layer 
edge table connecting the layer-nodes (Fig. 2: 1. data import). Optionally, an inter-layer edge table can be pro-
vided which specifies user-defined weight information for connecting the layers.

The node table must contain information on the nodes in form of gene or protein names. It must also con-
tain the information whether a layer-node is a query node or not. The query attribute is important as it is used 
by the active subnetwork extracting apps to identify the layer-nodes that will contribute to the extracted active 
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Figure 1.  Basic structure of a temporal multilayer network (tMLN). Here shown is a tMLN of three layers. Each 
layer of the network contains the same protein–protein interaction network (PPIN). Nodes within one layer 
(layer-nodes) are connected via intra-layer edges, the same node between two layers is connected by an inter-
layer edge. For example, the layer-nodes from a given node A  (A1,  A2,  A3) are successively linked by inter-layer 
edges  (A1 →  A2 →  A3). Numerical data, such as differential expression data from a time-series RNA-sequencing 
study, are integrated with the TimeNexus tMLN, whereby one layer represents one time point. Yellow nodes 
represent query nodes, which need to be defined a priori by the user. Query nodes can for instance be chosen 
based on significant differential expression of genes at a given time point versus a control and provided with 
a node weight. Grey nodes connect query nodes but are themselves not significantly differentially expressed. 
Intra-layer edges could contain weights in form of confidence values of the given interaction. Inter-layer edges 
should contain weights describing the change in expression of one node between the two connected layers.
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subnetwork. The query node attribute can for instance be defined based on the log2 fold change of the layer-node 
surpassing a selected cut-off and must either be TRUE or FALSE. Query nodes on each of the layers are thus pre-
set by the user. Additional layer-specific attributes such as the weight for each layer-node in form of a numerical 
value can be provided, for instance reflecting the differential expression at each time point. The interactome of 
a tMLN is assumed to be the same at each layer. It should however be noted that TimeNexus can also handle 
multilayer networks that are not multiplex. In this case, the user has to provide one node table for each layer.

The intra-layer edge table contains the information to build the interactome, which is common to each layer. 
This table contains the edge information of the interacting nodes (proteins or genes). A weight can be given to 
each intra-layer edge, for instance in form of a confidence score for the interaction. The type of interaction (pro-
tein–protein interaction (PPI) or protein-DNA interaction (PDI)) can be distinguished by adding an optional 
attribute to each edge.

The optional inter-layer edge table has the same format as the intra-layer edge table, but it defines the edges 
connecting the nodes from one layer to the next. In our example of a tMLN, the inter-layer edges connect 
the same layer-nodes from two different, consecutive layers. Their attributes represent weights, the so-called 
inter-layer edge weights, which are calculated by combining the weights of the source and target nodes. Thus, 
they carry information on the change in expression of that node between two time points. The inter-layer edge 
weights are used by the extracting apps for identifying active subnetworks. If the inter-layer edge table is not 
provided, TimeNexus will automatically create these inter-layer edge weights (see below). See Supplementary 
Tables S1-S3 for examples for the node table and the intra- and inter-layer edge tables. To create a tMLN, at least 
2 layers are required.

Connecting layers in TimeNexus. The layers are connected through the inter-layer edges. If the user does not 
provide an inter-layer edge table, the weight between a layer-node on a given layer and its counterpart on the 
next layer will be computed as

where w_i is the weight of the layer-node from the layer i and w_j the layer-node weight on the layer j = i + 1. 
Contrary to the intra-layer edges, the inter-layer edges are directed for active subnetwork extraction with ANAT. 
For PathLinker, inter-layer edge directionality is removed, as this app cannot handle mixed edge types.

Building, managing and visualizing tMLNs with the Cytoscape app TimeNexus. We created the Cytoscape 
app TimeNexus to build, manage and visualize tMLNs and to prepare them for extracting active subnetworks 
(defined as the region of the interactome that connects the differentially expressed nodes over  time12 (Fig. 2, see 
also Supplementary Figure S1)). TimeNexus was entirely implemented in Cytoscape 3.8.035 and using Java 11. It 
is incompatible with earlier versions of Cytoscape.

Building the temporal multilayer network (tMLN).. TimeNexus can build a tMLN from scratch by converting 
tables describing the network structure, or by converting a single-layer network into a tMLN by adding a table 
with temporal node information. To build a tMLN from scratch, TimeNexus requires at least one node table 
together with one intra-layer edge table, as well as an optional inter-layer edge table (Fig. 2: 1. data import). 
After importing and specifying the content of the tables’ columns, the TimeNexus Converter that is accessible 
from the Cytoscape Apps menu creates the tMLN (Fig. 2: 2. build temporal multilayer network; Supplemen-
tary Figure S1) which will appear as a collection of networks within Cytoscape: the Flattened network, the Aggre-
gated network, as well as one static network for each layer (Fig. 2). The Flattened network can be used to visualize 

winter - layer edge =
(

w_i+ w_j
)

/
(

1+ w_i+ w_j
)

Figure 2.  Workflow of the Cytoscape app TimeNexus for creating, managing and analyzing tMLNs. 1. Data 
import: First, the elements (layer-nodes, intra-, and inter-layer edges) structuring the temporal multilayer 
network (tMLN) have to be imported into Cytoscape in the form of tables. 2. Build temporal multilayer 
network: In the second step, TimeNexus converts these data into a tMLN. For each element and for each 
layer, the user selects the appropriate table and specifies the attribute type of each column. Once this is done, 
TimeNexus represents the tMLN as a collection of Cytoscape networks (center box). It contains a Flattened 
network, an Aggregated network and Layer-specific networks. In the Flattened network view, each layer-node, 
together with the intra- and inter-layer edges are shown. In the Aggregated network view, the layers are collapsed 
into a single-layer network. 3. Extract active subnetwork: In the next step, an active subnetwork is extracted 
from the tMLN. First, the user has to choose the method used to extract active subnetworks. TimeNexus offers 
three methods: method 1 (global): the entire Flattened network is used at once, without taking into account the 
edge type (intra- or inter-layer edges are treated as identical); method 2 (pairwise): two successive layers are used 
to extract the active subnetwork that are then combined to the final active subnetwork; method 3 (one-by-one): 
active subnetworks are extracted in each individual layer and these are combined to the final active subnetwork. 
For extraction of active subnetworks, TimeNexus offers two algorithms, PathLinker and the ANAT server. 
PathLinker is a Cytoscape app, while ANAT is executed on the cloud and thus requires a working internet 
connection. 4. Visualize temporal multilayer network: Finally, to visualize the tMLN or active subnetwork, 
TimeNexus creates a view of the Flattened network. To do so, it takes the node locations from the Aggregated 
network and transmits it on each layer. Layers are ordered in time on the X-axis from left to right. Visualization 
can also be done on the full temporal multilayer network. This is however only recommended for smaller 
networks.

◂



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13691  | https://doi.org/10.1038/s41598-021-93128-5

www.nature.com/scientificreports/

the tMLN with the TimeNexus Viewer. In this view, the layers will be ordered on the X-axis according to time 
and the layer-nodes will be placed and aligned according to their position in the Aggregated network.

Extracting active subnetworks from tMLNs using PathLinker or ANAT. TimeNexus can be used to extract active 
subnetworks. To do so, the methods and apps for extracting the active subnetworks have to be chosen with the 
TimeNexus Extractor (Fig. 2: 3. extract active subnetwork, Supplementary Figure S1). First, the method for 
applying active subnetwork extraction on the tMLN needs to be set. There are several possible logical ways to 
extract active subnetworks from a temporal multilayer network: globaI, pairwise and one-by-one (Supplemen-
tary Figure S2). Global extracts an active subnetwork from the Flattened network representation of the tMLN. 
In the global method, intra-layer and inter-layer edges are not distinguished during the extraction, but are re-
established for visualizing the final active subnetwork. This method only considers the queries of the first and 
the last layer as the source- and target-query nodes, respectively. Pairwise combines two adjacent layers in a 
single network and performs the extraction on this 2-layer Flattened network. Each layer is used twice, once as 
layer N and once as N + 1. The active subnetworks are extracted as in the global method for each pair of layers. 
Finally, all extracted active subnetworks are combined in one final active subnetwork over all time points (lay-
ers). One-by-one extracts active subnetworks on single layers and combines them at the final step into the final 
active subnetwork, again over all time points.

Second, the active subnetwork extracting app has to be selected. Currently, the TimeNexus Extractor (Fig. 2, 
Supplementary Figure S1) offers the Cytoscape app  PathLinker17, which runs in the Cytoscape environment, 
and the ANAT  server18, which is called externally, for active subnetwork extraction. PathLinker is called by 
TimeNexus by its CyRest interface and performs the extraction on the user’s computer. ANAT has a Cytoscape 
app called AnatApp, but its extraction algorithm is executed on an external server. TimeNexus directly calls this 
server through a SOAP interface and does not need the AnatApp to be installed to execute ANAT. We only refer 
to the ANAT server in this paper. When either of the extracting apps is called, TimeNexus displays the specific 
parameters that need to be set by the user (Supplementary Figure S1). Both apps provide default settings which 
can be adjusted by the user. For details on the usage and parameter choices of ANAT or PathLinker, the user 
should refer to the documentation of the respective chosen app. Either all layers of the tMLN or a subset of layers 
can be selected for active subnetwork extraction. The result of active subnetwork extraction from a tMLN is again 
a temporal multilayer network. It will appear in Cytoscape as a collection of active subnetworks similar to the 
network collection described above. It should be noted here that once active subnetworks have been extracted, 
the tMLN representing the active subnetworks is per definition no longer multiplex, as active subnetworks will 
have a different number of extracted nodes and edges on each of the layers, depending on the query nodes that 
have been defined for that specific layer (time point).

Visualizing temporal multilayer networks with TimeNexus. Finally, the TimeNexus Viewer enables users to 
visualize a temporal multilayer network. The tMLN can be visualized in several ways (Fig. 2: 4. visualize tempo-
ral multilayer network). In the Aggregated network view, all layers are collapsed into a single-layer network. The 
Flattened network shows the individual layers of the tMLN next to each other on a horizontal axis, preserving 
the position of a layer-node on each layer. The position of a layer-node depends on its position in the Aggregated 
network and layers are connected to each other by the inter-layer edges. Finally, each individual layer can be 
visualized. We provided a feature to copy the layouts to multiple multilayer networks. It should be noted that the 
TimeNexus visualization is optimized for networks that have the same semantics, in our case nodes representing 
proteins or genes and edges interactions between those.

Yeast and mouse datasets used. Yeast cell cycle dataset. The yeast dataset from Kelliher et al.34 was 
retrieved from the NCBI GEO database (GSE80474). We reprocessed the raw fastq files corresponding to the 36 
first samples of the wild-type S. cerevisiae cultures from 0 to 175 min by mapping the reads to the S. cerevisiae 
S288C genome R64-1-1 with STAR  aligner36 with default parameters. Raw read counts were determined using 
 featureCounts37.

For all following steps, we selected 16 time points representing the first complete cell division cycle. These 
start at time point 25 min and last until time point 100 min as described by Kelliher according to the expres-
sion profiles of key cell cycle regulators. We renumbered these time points in our dataset to start at 0 min of the 
first full cycle (corresponding to 25 min in the original dataset) until 75 min (corresponding to 100 min in the 
original dataset). Using  edgeR38, lowly expressed genes were removed by the automatic function filterByExpr 
and the read counts were normalized by the Trimmed Mean of M-values (TMM normalization), resulting in 
normalized log-counts per million (logCPM). Then, we calculated the log2FC for each gene at time point i  (ti) 
versus its mean over the entire first cycle as follows:

where logCPM is the log-counts per million given by edgeR and < logCPM > is the average logCPM over time 
for a given gene. Genes with a |log2FC| higher than or equal to 0.25 were considered differentially expressed 
and defined as query nodes at the respective layer where this cut-off criterion was met. As no replicates were 
available, we did not consider statistical significance for this dataset.

Time-resolved assay and RNA-sequencing dataset of a mouse pain assay. Pain assay. All experiments were con-
ducted in line with the European guidelines for care and use of laboratory animals (Council Directive 86/609/
EEC). All experimental procedures were approved by an independent animal ethical committee (APAFIS), as 

log2FCnode(ti) = logCPMnode(ti) −
〈

logCPMnode

〉
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required by the French law and conform to the relevant institutional regulations of the French legislation on 
animal experimentation under the license number 2015070217242262-V5#1537. All experiments were carried 
out according to the ARRIVE guidelines. C57/Bl6JRj male mice of 8–12 weeks of age were bought from Janvier 
Labs (https:// www. janvi er- labs. com). Mice were maintained under standard housing conditions (22  °C, 40% 
humidity, 12 h light cycles, and free access to food and water). Special effort was made to minimize the number 
as well as the stress and suffering of mice used in this study.

Carrageenan-Induced inflammation. 20  µl of a solution containing 1% carrageenan in H2O (weight/vol, 
Sigma) were injected subcutaneously into the plantar side of the left hindpaw, using a 30G needled syringe. 
Mechanical thresholds of the plantar surface were determined using Von Frey’s filaments with the up-down 
 method39, prior to inflammation (D0) and one- (1d), three- (3d) and thirty-days (30d) post inflammation.

RNA extraction. Mice were deeply anesthetized with a mix of ketamine/xylazine and transcardially perfused 
with 5–10 mL RNA Later (Qiagen). L3 to L5 Dorsal Root Ganglia (DRG) were rapidly dissected and RNA was 
extracted by using RNeasy Micro Kit (Qiagen), according to manufacturer’s instructions. For quality control, 
RNAs were loaded on an RNA NanoChip (Agilent) and processed with 2100 Bioanalyzer system (Agilent tech-
nology).

RNA sequencing. DRG RNAs were extracted in experimental duplicates from 2–3 mice each (2 pooled repli-
cates). RNA-seq libraries were prepared using the TruSeq RNA Sample Preparation Kit (Illumina). All libraries 
were validated for concentration and fragment size using Agilent DNA1000 chips. Sequencing was performed 
on a HiSeq 2000 (Illumina), base calling performed using RTA (Illumina).

Data processing of RNA-seq datasets. Mouse sequencing data were quality controlled using FastQC (https:// 
www. bioin forma tics. babra ham. ac. uk/ proje cts/ fastqc/). We used cutadapt (https:// cutad apt. readt hedocs. io/40,) 
to trim adapter sequences. Resulting trimmed reads were mapped to the M. musculus genome version 10 
(mm10) using STAR aligner with default parameters. Mapped data were re-analyzed with  MultiQC41. Raw read 
counts were determined and filtered as described above for the yeast dataset. Differential expression analysis was 
done using edgeR, comparing the time points 1-day post injection (PI), 3 days PI and 30 days PI always against 
the 0 day control prior to injection. Finally, we showed the evolution of gene expression for the significantly 
differentially expressed genes of the mouse dataset by first computing the z-score of log counts per million and 
then splitting the significantly differentially expressed genes according to the time of their significant differen-
tial expression. Raw fastq files were submitted to the Gene Expression Omnibus database under the accession 
number GSE161764. We defined layer-nodes as query nodes if the associated gene had an adjusted p-value 
lower than 0.05 for that given time point (layer) versus the 0d control. Adjusted p-values were calculated using 
Benjamini–Hochberg  correction42.

Building the S. cerevisiae and M. musculus interactomes and node tables. Both interactomes 
were built from the high-quality protein–protein interactions (PPIs) provided by  HitPredict43,44. As recom-
mended, interactions with a confidence score lower than 0.281 were removed to only keep high-quality inter-
actions. We also removed self-loops in the network. For the yeast interactome, YEASTRACT + protein-DNA 
interactions (PDIs)45 were concatenated with the PPIs to obtain a more complete network. The yeast cell cycle 
interactome was built by first fetching the 130 genes assigned to the KEGG cell cycle pathway (KEGG path-
way sce04111, https:// www. genome. jp/ pathw ay/ sce04 111), and adding the interactions from HitPredict and 
YEASTRACT + . We used the extracting apps PathLinker and ANAT, both of which do not support multi-edges 
between nodes. Thus, we merged multi-edges of a given node pair by taking the mean of their confidence scores. 
For this, we assumed that a PPI is equal to 2 directed edges and set the confidence score of each PDI to 1. The 
final edge lists gave the undirected intra-layer edge tables. The nodes of the tMLN represent both, the genes and 
the proteins as the same entities, in case a node is both, a protein in a PPI or a regulated gene in a PDI. Nodes of 
genes that were not detected in the RNA-seq datasets were removed. Consequently, edges where one partner was 
removed were also filtered out. The weight for each individual layer-node was computed as follows:

where p_adj is the adjusted p-value and log2FC the log2 fold change for the time point represented by that layer. 
As no replicates were available for the yeast cell cycle data, the p_adj term was ignored for this dataset. The node 
weight was then standardized between 0.01 to 1 (a lower bound of 0.01 was chosen to avoid rejection of nodes 
with weight 0 by extracting apps). Moreover, a layer-node was tagged as a query for a layer if this layer-node had 
a |log2FC|≥ 0.25 for the yeast cell cycle dataset; or if it had been defined as significantly differentially expressed 
with an adjusted p-value < 0.05 for the mouse dataset. Node names, node weights, as well as the information 
whether a node is a query node were contained in the node tables, enabling TimeNexus to set the correct attrib-
utes to the layer-nodes.

Extraction of active subnetworks. Active subnetworks were extracted with TimeNexus in combination 
with either ANAT or PathLinker from the yeast cell cycle time-series dataset. The algorithm “anchored network” 
with the sub-algorithm “approximation” was applied for ANAT. The network was set as “undirected” for Path-
Linker. For performance tests with PathLinker, we selected the optimal parameter K = 750 by testing PathLinker 
with K-values from K = 50 to K = 2000 and optimizing for the F1-score (Supplementary Table S4; see below for 

wnode = −log10
(

p_adj
)

∗

∣

∣log2FC
∣

∣
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calculating performance measures). PathLinker with a K = 50 was used to extract an active subnetwork for the 
mouse dataset, as the network size and the number of queries were both smaller. All other parameters were 
chosen by default.

Construction of maximum-weight, node-randomized and weight-randomized networks for robustness tests. To 
test the robustness of TimeNexus, we generated 3 types of multilayer networks from the yeast cell cycle tMLN. 
The maximum-weight network had intra-layer edge weights of 1 for each connection. The node-randomized 
network had node names shuffled in the node table, so the biological meaning of the network was lost. For the 
weight-randomized network, random weights were assigned to intra-layer edges following the uniform distri-
bution [0.01,1). A lower bound of 0.01 was chosen instead of 0, as ANAT removes edges with weight 0. For all 
networks, the node and inter-layer edge weights were not changed.

Calculating performance measures for extracted active subnetworks. We computed the extrac-
tion performances by testing if PathLinker and ANAT were able to recover the 130 genes of the KEGG yeast 
cell cycle pathway sce04111 (https:// www. genome. jp/ pathw ay/ sce04 111)46. In each extracted active subnetwork 
from the yeast cell cycle dataset, we counted the number of nodes in this active subnetwork (# subnetwork nodes) 
and the number of active subnetwork nodes overlapping with the 130 KEGG cell cycle genes (True Positives 
(TPs)). We then calculated the percentage of the active subnetwork size, the False Positives (FPs, as subnetwork 
size minus TPs), as well as the false negatives (FNs, as # KEGG cell cycle genes minus TPs). From these values, we 
computed a set of scores: the ratio of extracted nodes and the interactome size, as well as Recall, Precision, and 
F1-score as follows:

In addition, we performed GO enrichment analysis of active subnetworks to test for relevance of extracted 
nodes for the biological process ‘cell cycle’. The tests were performed using modEnrichr for  yeast47. We first 
extracted the expected enriched terms for 130 genes of the KEGG cell cycle pathway. A term was called “enriched” 
if its adjusted p-value was lower than 0.05. We then computed the percentage of these enriched terms related to 
KEGG cell cycle genes also found to be enriched for the nodes of the extracted active subnetwork. Finally, we also 
calculated this percentage of relevant terms at the first quartile (top 25% enriched terms) of the active subnetwork.

Enrichment analysis of active subnetworks extracted from mouse pain assay data. We used 
 Enrichr48 to calculate enrichments for active subnetworks extracted from the tMLN integrating the mouse pain 
assay temporal RNA-seq data and the mouse interactome. Enriched terms had an FDR < 0.05 and a combined 
score > 100.

Results
Core functions of the TimeNexus app. TimeNexus was developed with the idea to create a versatile 
framework for working with temporal multilayer networks in the Cytoscape environment (Fig. 2). This included 
a function to easily create tMLNs given tabular information on the structure of the network and its temporal 
dynamic – realized in the TimeNexus Converter. We wanted to enable users to visualize tMLNs in different 

Recall = TP / (TP + FN)
Precision = TP / (TP + FP)
F1−score = 2 ∗ ((Recall ∗ Precision) / (Recall + Precision))

Figure 3.  TimeNexus extracts active subnetworks from the yeast cell cycle interactome enriched in relevant 
biological terms related to cell cycle from early and late cell cycle stages. (a) Aggregated network of the S. 
cerevisiae cell cycle pathway, containing core components of the yeast cell cycle as defined by KEGG. Yellow 
nodes are differentially expressed query nodes in the first three time points (0 min, 5 min, 10 min) of the 
first full cycle in the time-series expression  dataset34, blue ones are differentially expressed query nodes in the 
late time points 60 min – 70 min; those with a gradient from yellow to blue are differentially regulated and 
therefore query nodes in both, early and late time points. Blue lines (intra-layer edges) represent protein–protein 
interactions, red ones protein-DNA interactions. Dotted lines represent inter-layer edges. The interaction data 
were extracted from HitPredict and the YEASTRACT + databases, respectively. (b) An active subnetwork was 
extracted from the first three time points of the yeast cell cycle (0–10 min), containing genes differentially 
expressed in early phases of the cell cycle. Layer 1 (0 min): 28 nodes and 58 intra-layer edges; layer 2 (5 min): 
41 nodes and 134 intra-layer edges; layer 3 (10 min: 35 nodes ad 95 intra-layer edges. (c) Enrichment analysis 
with genes in the early active subnetwork identified processes related to replication and active transcription. (d) 
An active subnetwork of late time points in the cell cycle (60–70 min) was extracted. Layer 1 (60 min): 22 nodes 
and 72 intra-layer edges; Layer 2 (65 min): 27 nodes and 101 intra-layer edges; Layer 3 (70 min): 21 nodes and 
70 intra-layer edges. (e) Enrichment analysis of the genes contained in the late active subnetwork from time 
points 60–70 min shown in (d) resulted in enriched pathways related to late processes in the cell cycle, such as 
contractile ring organization, cell septum assembly or septin ring assembly and organization. Shown in (b) and 
(d) are the extracted active subnetworks of core cell cycle components of the early and late phases as displayed 
by the TimeNexus Viewer. Active subnetworks were extracted using PathLinker (pairwise method, K = 150). 
Enrichment results from the modEnrichR server for yeast were sorted according to the EnrichR combined 
 score48. Colorings of enrichment plots were chosen according to the colors of the first 3 (orange) and last 3 
(blue) layers.

▸

https://www.genome.jp/pathway/sce04111
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ways – realized in the TimeNexus Viewer: in form of a Flattened network, which visualizes the tMLN itself, 
as well as an Aggregated network, representing the collapsed view of the tMLN. Finally, we wanted to be able 
to extract active subnetworks from tMLNs. We realized this by connecting TimeNexus to active subnetwork 
extracting apps available in Cytoscape that have a programmatic interface, PathLinker and the ANAT server. 
We wanted to take full advantage of the information provided by the temporal multilayer network. We therefore 
decided to include edge weights for the inter-layer edges of the tMLN that connect the same gene between two 
layers. These edge weights represent transition weights and describe the change in gene expression of a gene 
between two consecutive time points. The functionality for active subnetwork extraction was realized in the 
TimeNexus extractor.

We wanted to demonstrate and test the usability of TimeNexus by extracting active subnetworks from two 
temporal gene expression datasets: 1) yeast cell cycle expression data which offer highly resolved temporal infor-
mation; and 2) mouse temporal gene expression data following pain response after injury with low temporal 
resolution.

Active subnetwork extraction using TimeNexus and PathLinker identifies relevant processes 
involved in early and late cell cycle events in S. cerevisiae. We wanted to test TimeNexus using a 
well-described, temporal biological system. We chose the budding yeast cell cycle as our model system. During 
the cell cycle, cells duplicate their content, replicate their DNA and at the end of the cycle faithfully divide into 
two identical cells. A cyclin-dependent kinase and its various, successive binding partners, the cyclins, drive 
progression of the cell cycle by precisely controlled events of phosphorylation, which is followed by the destruc-
tion of the kinase activity by the anaphase promoting complex (APC) at the onset of mitosis. Some cell cycle 
regulators are tightly controlled at transcriptional level. To test TimeNexus, we used time-resolved expression 
data from a previous study on the transcriptional dynamics of the cell  cycle34: in that study, S. cerevisiae cells had 
been synchronized before releasing them to undergo three cell divisions. RNA had been extracted each 5 min 
and subjected to RNA-sequencing to monitor the changes in gene expression during the three cell division 
cycles. We re-processed the raw read counts and used the normalized counts (see Methods) to calculate the log2 
fold change (log2FC) in expression for each gene of a time point versus the mean over one cycle. We created a 
tMLN of the first full cell cycle, representing time points 25–100 min as described in the original  publication34. 
For demonstration purposes, we focused on three early time points of the cell cycle, which are characterized by 
cell growth and DNA replication (time points 0 min, 5 min and 10 min representing time points 25 min, 30 min 
and 35 min of the original dataset); and three late time points, which fall into the mitotic phase (60 min, 65 min 
and 70 min, representing the time points 85 min, 90 min and 95 min of the original dataset; see Supplementary 
Table S5). We also created a cell cycle interactome by adding HitPredict and YEASTRACT + interactions to the 
130 cell cycle genes as defined by KEGG (KEGG pathway sce04111, https:// www. genome. jp/ pathw ay/ sce04 111), 
resulting in a network of 130 nodes (genes/proteins) and 390 intra-layer edges (interactions, see node table and 
intra-layer edge table in Supplementary Table S5). We used a |log2FC| cut-off of ≥ 0.25 to define a layer-node as 
a query node. Using TimeNexus Viewer, we created the Flattened network of the KEGG cell cycle (Fig. 3 a). We 
used the pairwise method and PathLinker with default settings and a K of 150 to extract an active subnetwork 
from the three early and late temporal layers, respectively.

The extracted active subnetwork of the early phase of the cell cycle contained 41 nodes and 134 intra-layer 
edges (Fig. 3b) in the aggregated state. As expected, its members included proteins important for cell prolifera-
tion, DNA replication and active transcription, such as the MCM proteins MCM1 – MCM7, the cyclin depend-
ent kinases CLB1, 2, 5, 6 and CLN2, as well as CDC28, CDC45, DBF2, SWI4, SWI5 or SIC1. To systematically 
identify enriched biological processes or phenotypes, we submitted the proteins of the active subnetwork to 
modEnrichr for yeast. We found that biological processes and phenotypes associated with early cell cycle phases 
were predominantly enriched (Fig. 3c, Supplementary Table S5).

To test whether extracted active subnetworks truly reflect cell cycle phases, we also used differentially 
expressed query genes in the three time points between 60 and 70 min, reflecting the late stages of the yeast cell 
cycle, where cells prepare to undergo cell division (Supplementary Table S5). The active subnetwork extracted 
with PathLinker in its aggregated state is substantially different from the one of the first three time points, 
with only 27 nodes and 101 intra-layer edges (Fig. 3d). In accordance with the late stage in the cell cycle, genes 
involved in cell septum assembly, bud neck septin ring organization, actomyosin contractile ring assembly, 
regulation of G2/M transition and other late cell cycle events were enriched (Fig. 3e, Supplementary Table S5). 
Taken together, TimeNexus provides a versatile and useful platform to construct, manage and visualize tMLNs. 
By linking TimeNexus to active subnetwork extraction tools such as PathLinker, it is able to extract biologically 
meaningful, active subnetworks from the tMLN as demonstrated by analyzing time-resolved expression dynam-
ics of the early and late yeast cell cycle.

TimeNexus performance in identifying relevant active cell cycle subnetworks from the S. cer-
evisiae interactome. We next wanted to test more rigorously the extraction performance of TimeNexus 
in combination with PathLinker or ANAT on tMLNs. More specifically, we were interested whether we could 
reliably extract the 130 genes defined by KEGG as being part of the yeast cell cycle pathway (KEGG pathway 
sce04111, https:// www. genome. jp/ pathw ay/ sce04 111) from the entire yeast interactome using the time-resolved 
cell-cycle expression  data34. Log2FC was calculated as described above. The absolute log2FC was used as node 
weight, to compute inter-layer edge weights and to define layer-nodes as queries when their weight was equal to 
or higher than 0.25 (Supplementary Tables S6, S7). We built a high-quality interaction network for S. cerevisiae 
which included protein–protein, as well as protein-DNA interactions and contained 5785 nodes and 110 000 
intra-layer edges in its aggregated state (see Methods and Supplementary Table S6). We constructed the tMLN 

https://www.genome.jp/pathway/sce04111
https://www.genome.jp/pathway/sce04111
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using the TimeNexus Converter and extracted active subnetworks using PathLinker or ANAT. For PathLinker, 
the parameter K was set to 750 after optimization (Supplementary Table S4). We calculated the efficiency of both 
extracting apps by calculating Precision, Recall and F1 score for each time point individually, as well as over all 
16 time points. Moreover, we performed GO enrichment analysis with the extracted nodes for each time point, 
as well as over the entire extracted active subnetwork. We scored the percentage of enriched expected terms, 
so those identical to the original 226 terms enriched for the 130 KEGG-defined cell cycle genes, as well as the 
percentage of top expected GO-terms in the first quartile of enriched GO-terms (Table 1 and Supplementary 
Table S8).

Generally, we could observe that PathLinker performed better than ANAT with our data. PathLinker extracted 
an active subnetwork that had 9.6% of the number of nodes of the entire yeast interactome in its aggregated 
form. The overall Recall of core cell-cycle nodes was 45.4% for PathLinker, though Precision was 10.6% only, 
leading to an F1-score of 17.2%. 39% of expected GO-terms were found overall, and 71.7% expected GO-terms 
were retrieved in the first quartile of enriched GO-terms. The active subnetwork extracted by ANAT contained 
12.3% of nodes of the total aggregated interactome. ANAT reached a Recall of 37.7%, a Precision of 6.9% and an 
F1-score of 11.7%. 35.2% expected GO-terms were found overall, and 68% within the first percentile of enriched 
GO-terms (Table 1). Recall, Precision and F1-score were dependent on the individual time point (layer). They 
peaked in the earlier phases of the cell cycle and dropped towards the end. This was not unexpected, as the 
number of query nodes was much lower in late phases of the cycle. Overall, expected GO-terms ranged around 
50%, whereby the expected GO-terms in the first quartile seemed to be generally high throughout the entire 
cycle and with both extracting apps (Supplementary Table S8).

We also wanted to know how sensitive active subnetwork extraction with either PathLinker or ANAT was to 
changes in the network structure or network attributes. To this end, we first changed the weights of all intra-layer 
edges to 1 (maximum edge weight); second, we shuffled the node names from the node table so the biological 
meaning of the network was lost, but its topology preserved (node-randomized); finally, we used random edge 
weights following a uniform distribution [0.01,1) for the intra-layer edges (weight-randomized). We observed 
that PathLinker was more sensitive to changes in the network structure or attributes than ANAT (Table 1): 
ANAT performance was overall in the same range for all extracted active subnetworks, though slightly higher 
performance could be observed for the maximum edge weight network. PathLinker, on the other hand showed 
significant differences (Table 1). The maximum edge weight, as well as the node-randomized networks resulted in 
very large extracted active subnetworks, both containing over 50% of the nodes of the original aggregated inter-
actome. Consequently, Recall was very high (93.1% for maximum edge weight and 83.9% for node-randomized), 
and Precision very low (3.9 and 3.7%, respectively), resulting in low F1-scores (7.6% and 7.0%, respectively). The 
weight-randomized network showed general lower performance compared to the original one (Recall 35.4%, 
Precision 6.7%, F1-score 11.3%), together with a lower percentage of enriched GO-terms relevant to cell cycle 
genes (28% expected and 47.6% top expected GO-terms). To conclude, TimeNexus in combination with par-
ticularly PathLinker was able to extract key cell cycle genes as defined by KEGG as an active subnetwork from 
the tMLN of the entire yeast interactome based on integrated temporal cell cycle expression data, resulting in a 
significant enrichment of GO-terms related to cell cycle genes in the active subnetwork.

Table 1.  Efficiency and robustness of TimeNexus-based active subnetwork extraction with PathLinker and 
the ANAT server over the entire tMLN. TN + PL: TimeNexus in combination with PathLinker; TN + ANAT: 
TimeNexus in combination with the ANAT server. Bold letters indicate the best performance in the respective 
comparison and category. Subnetwork size is calculated as the percentage of nodes retained in the extracted 
subnetwork from the full interactome, Recall represents the correctly retrieved cell cycle genes, Precision the 
percentage of cell cycle genes relative to the entire extracted subnetwork and the F1-score the overall accuracy. 
The percentage of expected GO terms is calculated based on the GO term enrichments of the 130 cell cycle 
genes (as defined by KEGG) alone, for the percentage of top expected GO terms, we only consider the first 
quartile thereof.

Robustness Subnetwork size (%) Recall (%) Precision (%) F1-score (%)
Percentage of 
expected GOs

Percentage of top 
expected GOs

TN + PL

Original 9.6 45.4 10.6 17.2 39 71.7

Maximum edge 
weight 53.2 93.1 3.9 7.6 16.2 34.4

Node-randomized 51.6 83.9 3.7 7.0 15.2 27.3

Weight-randomized 11.9 35.4 6.7 11.3 28 47.6

TN + ANAT

Original 12.3 37.7 6.9 11.7 35.2 68

Maximum edge 
weight 12.4 41.6 7.5 12.7 35.7 68

Node-randomized 15.1 41.5 6.2 10.7 29 52.7

Weight-randomized 12.6 40.8 7.3 12.4 36.4 67
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TimeNexus combined with PathLinker identifies active pathways relevant for tissue inflam‑
mation and repair in time‑course expression data of pain induction in mouse. Next we tested, 
whether we could use TimeNexus on other systems, other model organisms and with less dense time-resolved 
data on differential gene expression. We used our own data from a time-resolved study of recovery from acute 
pain in mouse. In this experiment, Carrageenan is injected in the mouse hindpaw, inducing inflammation and 
mechanical hypersensitivity (Fig. 4a). The onset and the recovery from hypersensitivity can be measured by 
testing the ability of mice to respond to Von Frey filaments with increasing caliber. In this pain model, one day 
after Carrageenan injection, mice exhibit a significant decrease in their mechanical thresholds, which is a sign 
of inflammation-induced mechanical hypersensitivity. At day 3 post-inflammation (PI) mice recover normal 
mechanical sensitivity which remains steady at day 30 PI and beyond (Fig. 4a, Supplementary Table S9). In order 
to monitor the changes in gene expression in the pain-sensing dorsal root ganglia (DRG), we extracted RNA 
from these cells and performed RNA-sequencing before (0d), 1 day (1d), 3 days (3d) and 30 days (30d) after 
Carrageenan injection.

After differential expression analysis, we found that 60 genes were significantly differentially expressed 
between day 0 and day 1 PI and 38 genes showed significant differential expression between day 0 and day 3 
PI (Supplementary Table S9). Finally, only 4 genes were significantly differentially expressed at day 30: Apoe 
(Apolipoprotein E), Itgb8 (Integrin Beta-8), Ncam2 (Neural Cell Adhesion 2) and Slc25a37 (Mitochondrial Iron 
Transporter 1). The temporal expression dynamics of significantly differentially expressed genes collected from 
the 3 comparisons showed that genes were generally upregulated between day 0 and day 1, while the majority 
of them was downregulated between day 3 and 30. Genes with a significant differential expression between day 
30 and day 0 were few (Fig. 4 b). In conclusion, acute pain induced a temporary significant differential expres-
sion of genes in DRG and the vast majority of genes returned to basal expression levels after full recovery of the 
mouse at day 30.

We next were interested whether we could extract active subnetworks relevant for this process from expres-
sion data integrated with the mouse PPI interactome using tMLNs. We built a high-quality mouse interactome 
using HitPredict, containing 3994 nodes and 7296 intra-layer edges in its aggregated form. We created a pain 
node table from the differential expression data for the three time points 1d, 3d and 30d PI compared to the 0d 
time point prior to injection. Query nodes were defined as having an adjusted p-value lower than 0.05 (Supple-
mentary Table S9). Using TimeNexus, we generated the tMLN for these data. We used PathLinker with K = 50 
and the method pairwise to extract active subnetworks (Fig. 4c). Layer ‘1d vs 0d’ contained a network with 
23 genes. Among those were genes involved in immune response (Stat1, Irf7, Traf6, Rsad2 and TifA), as well 
as cell survival and stress response (Arnt, Epas1, Hif3a, Hif1a, Mcl1, Gsk3b, Grb2 and Egfr1, as well as Stat1 
and Irf7). At the second time point at 3d versus 0d, genes involved in immune response were still prevalent, as 
were genes involved in the regulation of apoptosis. The network is less homogenous with respect to pathways 
at time point 30d versus 0d. We found some genes involved in axonal growth, as well as negative regulation of 

Figure 4.  Identification of pathways relevant for cellular stress response, apoptosis, immune response, as 
well as axonal growth in mouse sensory neurons after Carrageenan-induced inflammation. (a) We injected 
Carrageenan in the hind paw of a C57BL/6 J mouse, which induces inflammation and pain, affecting the 
sensory neurons. We monitored the mechanosensitivity of the paw before injection, as well as 1, 3 and 30 days 
after injection. We observed high mechanosensitivity up to day 1. Thereafter, we observed complete recovery of 
the mechanosensitivity by day 3, which persisted at least until day 30. We isolated the dorsal root ganglions at 
those time points and performed RNA-sequencing, identifying significant differential gene expression between 
time points compared to day 0 control (0d, before injection). (b) The 3 plots show the significantly differentially 
expressed genes varying over time. These genes were grouped according to their appearance in the 3 time 
points, day 1, day 3 or day 30 each compared against the 0d control. Consistent with the onset of injury and 
inflammation, we could see strong induction of gene expression at day 1, as well as day 3 after injury, while at 
day 30, only few genes were significantly differentially expressed compared to the 0d control. Genes that are 
significantly differentially expressed at two time points will be present in each of the two associated plots. Blue 
dots indicate significant differential expression of a gene at the given time point. Blue lines indicate significant 
differential expression between two time points. Y-axis is plotted as the z-score of the log-transformed counts 
per million. (c) From a tMLN based on the entire mouse interactome, we extracted an active subnetwork 
containing 3 layers, one for each time point compared to the 0d control using PathLinker (pairwise method, 
K = 50). We extracted an active subnetwork containing genes relevant for the pain assay: at day 1, we found 
genes involved in stress (red bubble) and immune response (blue bubble). At day 3, we identified genes involved 
in immune response (blue bubble), as well as regulation of apoptosis (cyan bubble). Finally, at day 30, a more 
heterogenous set of genes was identified, including anti-apoptotic genes (cyan arrow), as well as genes involved 
in axonal growth (green arrows). Orange nodes represent query nodes (which showed significant differential 
expression at a given time point versus 0d control). Active subnetwork extraction returned Steiner nodes (grey 
nodes), i.e. nodes that are part of the network, but were themselves not significantly differentially expressed 
and, thus, not query nodes. Solid blue lines are protein–protein interactions within one layer (intra-layer edges), 
dashed lines represent inter-layer edges. (d) Enrichr enrichment results of WikiPathways and Gene Ontology 
(GO) Biological Process (BP) and Molecular Function (MF). Nodes from each of the layers (day 1, 3, and 30) 
as well as the layers of all nodes of the active subnetwork (all) were used for enrichment analysis. Enrichments 
of the first two time points included terms related to immune and stress response, encompassing signaling 
pathways involved in these processes. The signature changed at the later time point (day 30), where more terms 
related to apoptosis, as well as axonogenesis were enriched. Enriched terms had an FDR < 0.05 and a combined 
score > 100.

◂
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apoptosis. Finally, we performed enrichment analysis of the entire active subnetwork, as well as the individual 
time points (1d, 3d, 30d, versus 0d control) and could confirm the enrichment of pathways and GO terms related 
to immune response and inflammation, regulation of apoptosis, as well as neuronal processes (Fig. 4d, Supple-
mentary Table S9). In order to test, whether active subnetwork extraction from the temporal multilayer network 
resulted in identification of more, as well as more relevant pathways, we also performed enrichment analysis 
with all differentially expressed genes identified by differential expression analysis alone (see Supplementary 
Table S9). We mostly found enriched terms involved in inflammation and immune response at day 1, followed 
by enrichment of terms related to nerve injury, as well as Wnt and MAPK signaling at day 3. Day 30 with only 
4 differentially regulated genes was not further considered in this analysis. The more detailed analysis of the 
active subnetworks thus helped us identify additional terms relevant for injury and regeneration of DRGs. In 
conclusion, by extracting active subnetworks from the temporal multilayer network created with TimeNexus, 
we could identify genes involved in direct response to inflammation, cellular stress and regulation of apoptosis, 
as well as neuronal processes in DRG following Carrageenan-induced inflammation.

Discussion
We introduced here TimeNexus, a Cytoscape app to create, manage and visualize temporal multilayer networks. 
TimeNexus is easy to use: tMLNs can be created either by uploading a collection of tables that contain attributes 
of the nodes, as well as information on edges; or by adding temporal information to a static Cytoscape network. 
The TimeNexus Viewer allows to visualize the tMLN by creating different views, enabling users to focus on the 
single static, as well as the dynamic features of the tMLN. This first release of TimeNexus furthermore provides 
a framework to extract active subnetworks from a tMLN. To this end, we create static networks of the tMLN in 
three different ways which are standard Cytoscape networks that can be handled by basic Cytoscape features, 
as well as other Cytoscape apps. These objects are created either globally over the entire tMLN by combining all 
layers in a single-layer network with layer-nodes as separate entities and by ignoring the differences between 
intra- and inter-layer edges; pairwise by creating a single-layer network from two consecutive layers similar to 
the global method, over the entire tMLN structure; or one-by-one by creating a single-layer network for each 
individual layer. The global method has the drawback that the network to be analyzed increases drastically, as 
the initial interactome is multiplied by the number of layers. Active subnetwork extraction is therefore compute-
intense. Moreover, only nodes from the first and last layers will be used as source and target nodes and active 
subnetworks will only be extracted if they span the entire dataset. The one-by-one method on the other hand uses 
less memory, but does not consider inter-layer edges, so the nature of the temporal multilayer network is ignored. 
The pairwise method is a good compromise between both methods and therefore recommended especially with 
larger networks or many time points. The global and pairwise method also take full advantage of TimeNexus’ 
unique feature to work with transition weights between layers, representing expression changes of a gene between 
two time points. While we have combined TimeNexus with tools to extract active subnetworks from interac-
tomes, it should be noted that any Cytoscape app for network analysis can be combined with TimeNexus, as 
algorithms are applied to a classical static network structure by the global, pairwise or one-by-one method. The 
only pre-requisite is the availability of a programmatic interface for the chosen app.

We tested TimeNexus by extracting active subnetworks in combination with the Cytoscape apps PathLinker 
and the ANAT server. PathLinker outperformed ANAT in extracting biologically relevant, active subnetworks 
and worked better in our hands. It was however also more sensitive to specific network attributes, such as intra-
layer edge weights. This is not surprising, as it uses edge weights to calculate scores for paths between nodes to 
extract active subnetworks. The user should therefore carefully choose intra-layer edge weights in order to extract 
meaningful biological information from the network. We also observed that the selection of query nodes has a 
substantial effect on the results. In general, the overall performance of both extracting apps was mediocre, which 
might be owed to the test itself: we tried to extract cell cycle genes from the KEGG-defined yeast cell cycle path-
way. Many of these genes are not regulated on RNA-level but rather by phosphorylation or protein degradation. 
While for some processes, RNA- and protein expression levels correlate quite  well49, this is not necessarily the 
case for cyclic processes such as the cell cycle, where a rapid activation or destruction of regulatory proteins is 
required and thus, protein phosphorylation as well as degradation play an important role. However, we did not 
want to artificially bias the test to extract differentially expressed genes, but rather wanted to know, how efficiently 
we could recover well-described, core cell cycle genes from the tMLN using either of the two apps, irrespective 
of their RNA expression dynamics. Therefore, it might not be surprising that both, Recall, as well as Precision 
were not high with either of the two tested apps. Furthermore, it should be noted that PathLinker and ANAT 
are optimized to extract active subnetworks from static single-layer networks, not from a temporal multilayer 
network and thus may not fully consider the information a multilayer network offers.

There are three other Cytoscape apps available for integrating temporal data with interactomes: DyNetViewer, 
DyNet and TimeXNet. DyNet is not able to extract active subnetworks, which excluded it from further considera-
tion. DyNetViewer creates individual temporal layers from expression data directly, removing all nodes from an 
interactome that are not significantly differentially expressed. In principle, the output of the DyNetViewer could 
be used to create directly an active subnetwork within TimeNexus. But this app also omits transition weights 
from one layer to the next and therefore, is not taking full advantage of the temporal information provided. Yet, 
its visualization properties exceed those of TimeNexus. TimeXNet can be used for active subnetwork extraction 
from temporal expression data. However, it defines only three phases, representing early, middle and late genes, 
which could correspond to the layers in a multilayer network representation. If a higher temporal resolution is 
required and available, as is the case for a cyclic process such as the cell cycle, the classification in these three 
phases is difficult to make. Moreover, in TimeXNet, one gene can only be part of one phase, which limits the 
usability of this tool for cyclic processes even further. We therefore decided not to use it for performance tests, 
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as it would have significant disadvantages compared to TimeNexus in combination with the extracting apps 
PathLinker or ANAT.

We used TimeNexus in combination with PathLinker to extract active subnetworks from a time-resolved 
pain assay in mouse, based on expression data from the pain sensing dorsal root ganglia. While we did not find 
a large amount of significantly differentially expressed genes, we identified by performing tMLN analysis with 
TimeNexus an active subnetwork that contained genes relevant for the process of inflammation: genes involved 
in immune response, in cellular stress response and in anti-apoptotic signaling, as well as – at late stages – genes 
involved in axonal growth. Our active subnetwork contained many Steiner nodes (non-query nodes), repre-
senting genes that were not initially identified as significantly differentially expressed. This demonstrates that 
integrating and analyzing temporal gene expression data together with interaction data leads to meaningful 
biological insights that can also help in the design of further experimental studies.

We see several possibilities to improve TimeNexus in the future. First, due to the multiplication of the net-
work on temporal layers, the Cytoscape object used for processing and calculation tends to be very large. Thus, 
a computer with sufficient memory is needed to be able to extract active subnetworks using TimeNexus and the 
associated apps, PathLinker or ANAT. Programmatically, the TimeNexus object representing the tMLN could 
be simplified, as the nodes and intra-layer edges are the same on each layer and are just distinguished by their 
weight. Second, as extracting apps cannot distinguish between intra- and inter-layer edges, it would be desirable 
to develop a subnetwork extraction algorithm designed to work with tMLNs, which takes full advantage of their 
inherent temporal information. Finally, TimeNexus in its current form does not have an API, but rather relies 
on APIs of other Cytoscape apps for its workflow. In future releases, we will provide an API that will allow to 
include TimeNexus in the workflow of other apps.

In conclusion, TimeNexus is a Cytoscape app that introduces true temporal multilayer networks within 
the Cytoscape environment. While we have used it to create, manage, visualize and analyze temporal data 
projected on a multilayer network that is multiplex, it can also handle other kinds of multilayer networks. We 
have combined the first release of TimeNexus with two apps for active subnetwork extraction, PathLinker and 
ANAT. However, TimeNexus builds native Cytoscape objects which can be handled by core Cytoscape features 
or other apps dedicated to network analysis. Therefore, TimeNexus can be extended with other Cytoscape apps, 
provided they offer a programmatic interface. Consequently, TimeNexus can be added into existing pipelines 
and workflows as an app for analyzing temporal multilayer networks.
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