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A b s t r a c t

In this paper, we take a global view at air pollution looking at cities and countries worldwide. We pay special attention at the spatial distribution of population 
and its relationship with the evolution of emissions. To do so, we build i) a unique and large dataset for more than 1200 (big) cities around the world, 
combining data on emissions of CO2 and PM2.5 with satellite data on built-up areas, population and light intensity at night at the grid-cell level for the last two 
decades, and ii) a large dataset for more than 190 countries with data from 1960 to 2010. At the city level, we find that denser cities show lower emissions per 
capita. We also find evidence for the importance of the spatial structure of the city, with polycentricity being associated with lower emissions in the largest urban 
areas, while monocentricity being more beneficial for smaller cities. In sum, our results suggest that the size and structure of urban areas matters when studying 
the density-emissions relationship. This is reinforced by results using our country-level data where we find that higher density in urban areas is associated with 
lower emissions per capita. All our main findings are robust to several controls and different specifications and esti-mation techniques, as well as different 
identification strategies.   

1. Introduction

Population growth and global warming are two of the most pressing
challenges that humanity faces in the 21st century. Increasing pop
ulations and ongoing urbanization lead to larger and, in many cases, 
denser cities. One important side effect of urban life is air pollution.1 

Pollution is an important determinant of housing prices (Chay and 
Greenstone, 2005) and location choice (Banzhaf and Walsh, 2008; Bayer 
et al., 2009), with exposure to pollution known to significantly affect 
health, human capital and productivity (see for instance Graff Zivin and 

Neidell, 2013; Brauer et al., 2015; Anderson, 2019). According to the 
World Health Organization, more than 4 million deaths every year 
worldwide are estimated to be directly related to outdoor air pollution 
(WHO, 2018). Pollution has also been shown to be associated with higher 
spread and mortality of contagious diseases, including COVID-19.2 

A larger population, other things equal, is expected to increase the 
emission of air pollutants. However, as populations grow their 
geographical distribution changes, generally with more people living in 
urban areas and cities of growing size. These changes in the spatial 
distribution of population and economic activity are likely to play a 

* Corresponding author at: Department of Applied Economics, Univ Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
E-mail addresses: David.Castells.Quintana@uab.cat (D. Castells-Quintana), elisa.dienesch@sciencespo-aix.fr (E. Dienesch), melanie.krause@uni-hamburg.de

(M. Krause).   
1 We refer to air pollution in its broad sense, as “the presence in or introduction into the air of a substance which has harmful or poisonous effects” (as currently 

defined by most environmental institutions nowadays). This includes particles but also gases. As stated by many national and international agencies, including the US 
Environmental Protection Agency and the International Panel for Climate Change, potentially hazardous gases, like CO2, can be classified as pollutants, giving its 
excessively high levels and human-originated sources.  

2 High air pollution not only reduces the capacity of the immune system to fight pathogens, but also increases their contagion. Recent studies suggest that around 
15% of global deaths due to COVID-19 were associated with high air pollution levels (see Pozzer et al., 2020). 
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dynamics and pollution at the city level have typically looked at a single 
country and/or relied on a limited sample size (Glaeser and Kahn, 2010; 
Zheng et al., 2011; Cirilli and Veneri, 2014; Hilber and Palmer, 2014; 
Borck and Schrauth, 2019; Carozzi and Roth, 2020). A global analysis of 
the relationship between the spatial distribution of population, within 
countries as well as within cities, and air pollution is missing in the 
literature. With this paper, we aim to fill this gap. 

We provide two main contribution to the literature. First, we provide 
a global analysis of emission at the city level relying on a unique dataset 
including detailed information on city-level population, density, income 
and spatial structure. Second, we enrich the literature on air pollution at 
the country level by studying the role of density in urban areas, a vari
able previously omitted by the literature and which helps us reconcile 
results at the city- and country-level. Our results show that denser cities 
exhibit lower emissions per capita. We also find new evidence of an 
Environmental Kuznets Curve (EKC) between economic development 
and pollution at the city level, and that a polycentric city structure leads 
to lower emissions per capita in the largest cities, while monocentricity 
is more beneficial for smaller cities. At the country level, we find that 
total higher population density is associated with higher emissions per 
capita. While this might look like a contradiction to the city-level results, 
considering density in urban areas reconciles these two findings: higher 
density in urban areas is associated with lower emissions per capita. 

The rest of this paper is structured as follows: Section 2 relates our 
work to other theoretical and empirical papers in the literature. In 
Section 3, we perform our empirical analysis: first deriving an empirical 
specification (in section 3.1) to then study the density-emissions rela
tionship at the city level (in section 3.2) and at the country level (in 
section 3.3). Finally, Section 4 discusses and concludes. The Appendix 
contains supplementary material. 

2. Population, density and pollution: literature review

Air pollution is today a main challenge worldwide. As populations
worldwide grow, total pollution emitted is expected to increase. However, 
the relation between growing populations and emissions per capita is not 
straightforward. The evolution of emissions per capita, and the population 
density-emissions relationship, is likely to depend on several factors, 
including affluence levels, productive technologies and demand patterns. 
The literature studying emissions has in fact relied on what is called the 
IPAT model, according to which environmental Impact (I) is a (positive) 
function of population size (P), affluence (A) and environmentally 
damaging technology (T). Relying on the IPAT model, several papers have 
explored the role of demographic factors on air pollution at the country 
level (see for instance Erlich et al., 1971; Dietz and Rosa, 1997; Cole and 
Neumayer, 2004; Martínez-Zarzoso et al., 2007). Conceptually, one can 
distinguish the Malthuasian (1967) from the Boserup (1981) view: ac
cording to the first theory, population growth overexploits resources and 
its increased demand for power, industry and transportation raises emis
sions per capita (Birdsall, 1992). Holdren (1991) notes that settlement 
changes induced by population growth may result in “more transport – per 
person- in resources, goods and people” (p.247). By contrast, arguing 
along the lines of Boserup, increases in population – and in particular in 
population densities – are helpful for fostering innovation, for example in 
agricultural technology and for saving energy (see for instance Simon, 
1981). For high population densities, especially in urban areas, agglom
eration economies and lower transport costs per person are expected 
(Ahlfeldt and Pietrostefani, 2019). 

From an empirical perspective, results on the population-emissions 
per capita relationship at the country-level, have so far been inconclu
sive. Cole and Neumayer (2004) and Poumanyvong and Kaneko (2010) 
find that population increases are matched by proportional increases in 
CO2 emissions. However, Martínez-Zarzoso et al. (2007) find that for 
old, more developed EU member states, population increases in the 
1975–1999 period are associated with decreases in emissions per capita; 
while for newer, less developed EU member states, the opposite 

relevant role in how emissions per capita evolve. Nevertheless, this 
relationship is far from trivial, and global evidence and in particular on 
the role of population density in continuously growing cities, is limited 
and inconclusive (Ahlfeldt and Pietrostefani, 2019).3 

In this paper, we take a global view at air pollution looking at cities 
and countries worldwide. We focus on emissions of carbon dioxide (CO2), 
in line with related papers (e.g. Cole and Neumayer, 2004; Martnez- 
Zarzoso et al., 2007). Exposure to high concentrations of CO2 is associ-
ated with a myriad of health problems, lower life expectancy and 
increased infant mortality (see e.g. Tol, 2005; Shindell et al., 2018; 
Alberini et al., 2018). Moreover, CO2 emissions, are the major respon-
sible of current anthropogenic climate change (see IPCC, 2013).4 We also 
look at particulate matter with aerodynamic diameters of less than 2.5 μm 
(PM2.5), as another important local pollutant whose adverse health ef-
fects have been shown in numerous studies (see e.g. Kopas et al., 2020; 
Zhu et al., 2019). To study the role of density and the spatial distribution 
of population on emissions, we build i) a large and unique dataset for 
more than 1200 (big) cities around the world with data for the last two 
decades, and ii) a large dataset for more than 190 countries with data 
from 1960 to 2010. We combine data from several sources, including data 
from air quality stations around the world, national and international 
statistics, and satellite imagery. In particular, we use city-level data from 
the European Commission's Global Human Settlement Layers (GHSL) 
from the Urban Centre Database (Florczyk et al., 2019) and different 
measures for the urban form for our 1234 cities based on satellite data on 
night-time lights (Bluhm and Krause, 2018). In our city-level analysis, we 
investigate how the relationship between population density and emis-
sions per capita is shaped by various characteristics of cities, including 
their size, average income and spatial structure. We link and complement 
the insights obtained in our city-level analysis with a subsequent inves-
tigation at the country level, and paying special attention to a factor 
omitted in the literature to date, namely, density in urban areas. Popula-
tion density in a country – the variable which usually considered in 
country-level studies - may vary substantially from density in urban 
areas.5 The distinction is of vital importance, as the potential emissions- 
reducing effect of density usually depends on the economies of scale that 
come with proximity, something than mainly occurs in urban areas. Total 
population density and urban rates, as traditionally considered in the 
literature, cannot properly capture these economies of scale.6 

Our paper expands the literature on the link between population 
dynamics and pollution. Previous studies have usually focused on pop-
ulation and density at the country level (Erlich et al., 1971; Dietz and 
Rosa, 1997; Shi, 2003; Cole and Neumayer, 2004; Martnez-Zarzoso 
et al., 2007; Poumanyvong and Kaneko, 2010). Results in these papers 
are mixed and do not explore in much depth the role of cities. Moreover, 
none of these papers consider density in urban areas. Papers in the 
literature which investigate the relationship between population 

3 As highlighted by Glaeser (2014), the challenge mega-cities in the devel-
oping world is that poverty and weak governance reduce the ability to address 
the negative externalities that come with density. Moreover, the problem is 
reinforced by the fact that climate change itself is already a strong force behind 
urbanization and city growth worldwide (see Castells-Quintana et al., 2021).  

4 Two reasons further justify the focus on CO2. First, as already emphasized, 
CO2 is responsible for innumerable health and environmental damages. Second, 
given our focus on density, and the fact that CO2 emissions can vary signifi-
cantly with density and the spatial distribution of population, and thus 
mobility. On-road vehicles, in particular, are responsible for 59% of all CO2 
emissions (according to the United States Environmental Protection Agency, htt 
ps://www.epa.gov/co-pollution).  

5 For example, Egypt has a comparatively low population density, but a very 
high density in urban areas, driven by a high density in its main cities such as 
Cairo.  

6 Countries can have more cities and more people living in urban areas, but 
whether the actual density in urban areas increases or not is unclear unless you 
directly measure it as we do. 

https://www.epa.gov/co-pollution
https://www.epa.gov/co-pollution
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emissions is very scarce, usually focusing on cities within a single 
country (Cirilli and Veneri, 2014, for Italy) or limited samples (Hilber 
and Palmer, 2014, for 74 global cities). 

A global analysis of the relationship between density and emissions 
per capita using a large data set for countries and cities is still missing in 
the literature. Our study aims to fill this gap and consequently also 
combine the two strands of the empirical literature at the country and 
city level. Using different scales allows us to better understand and detail 
the role of the spatial distribution of population and economic activity 
on the evolution of emission per capita. 

3. Density and pollution: empirical analysis

3.1. Deriving an empirical specification

To derive an empirical specification for our empirical analysis, first 
at the country and then at the city level, we rely on the IPAT model, as 
given by Eq. (1) and as commonly used in the literature7: 

I = PθAφT, (1) 

In logarithms, the stochastic version of Eq. (1) defines pollution as a 
linear function of Population, Affluence and Technology, suitable for 
regression analysis (the so-called STIRPAT model): 

log(Iit) = α+ θlog(Pit)+φlog(Ait)+ βlog(Tit)+ ϵit (2)  

where sub-index i refers to the unit of observation, either countries or 
cities at time period t . and ϵit is an idiosyncratic shock. For Iit we 
consider emissions. For Pitwe use total population or population density, 
while Aitand Tit are proxied for by income per capita and the share of 
industry in GDP, respectively. In our estimations, we also include time 
fixed effects, to control for global shocks, and country or city fixed ef
fects, to control for idiosyncratic time-invariant characteristics, like 
geographical location. This means that our estimates are based on 
within country or city variation over time. Also, the coefficients in our 
log-log specification, give us the elasticities we are looking for. Co
efficients for φ will capture the affluence-emissions relationship (and a 
potential Kuznets curve if we include the square of income per capita), 
while coefficients for θ represent the emissions elasticity with respect to 
population (or population density). 

3.2. Density and pollution at city level 

3.2.1. A global panel of cities: data and stylized facts 
To study the relationship between population density and air pollu

tion at the city level, we build a unique dataset including information for 
more than 1200 cities in more than 146 countries worldwide. An analysis 
of city size, density, structure and pollution has never been carried out in 
such a large global panel. Our dataset includes information on several 
variables at the city level from various sources. For pollution, population 
and physical extent of cities, we use the GHSL Urban Centre Database. The 
GHSL data identifies the urban extent based on the build-up area for more 
than 10,000 urban settlements around the world in 1975, 1990, 2000 and 
2015, providing information on physical area and population for cities 
worldwide. The dataset also includes additional measures from other 
sources, such as urban greenness (Corbane et al., 2018), CO2 emissions, 
and PM2.5 emissions and concentration (Crippa et al., 2018). Given our 
focus on population density and spatial structure, and the available data 
from other data sources, we focus on world cities which had more than 

7 Beyond the literature on the IPAT model, this specification is found in many 
theoretical papers, with a few variations, explained by different levels of 
analysis: emissions at the household, firm, or aggregated city level (see for 
instance Calmette and Péchoux, 2007; Larson et al., 2012; Borck and Tabuchi, 
2018; and Denant et al., 2018). 

happens: a higher population is associated with higher emissions per 
capita. In a similar vein, Shi (2003) finds that the impact of population 
change on emissions is much more pronounced in developing than in 
developed countries. 

Focusing on the affluence-emissions relationship, several papers 
have explored the role of economic growth and development (see for 
instance Grossman and Krueger, 1993, 1995). A key intuition in this 
literature is the Environmental Kuznets Curve (EKC), according to which 
the income-emissions relationship follows an inverted-U pattern, with 
emissions per capita going up at early stages of development, but then 
declining as development proceeds. Empirical evidence on the EKC at 
the national level has been provided, for example, by Schmalensee et al. 
(1998), Panayotou et al. (1999), and Andreoni and Levinson (2001). 
Using night-time lights rather than GDP data, Kacprzyk and Kuchta 
(2020) have recently found an EKC with an even lower turning point, 
although the main results still hold. 

Beyond the IPAT model, at the national level emissions per capita 
may also depend on the spatial concentration of population, including 
not only density, but also urbanization rates. A higher urban rate can be 
expected to lead to higher emissions due to the typically more polluting- 
intensive behavioral patterns of those in urban areas; Ponce de León and 
Marshall (2014) show that a 1% increase in urbanization correlates with 
a 0.95% increase in total emissions. Cole and Neumayer (2004), as well 
as Poumanyvong and Kaneko (2010), also find evidence of this 
emissions-increasing role of urbanization, especially in middle-income 
countries. But Martínez-Zarzoso and Maruotti (2011) find that the 
urbanization-emissions relationship actually follows an inverted-U 
pattern, with emissions per capita falling back with further increases 
in urbanization, probably suggesting differentiated patterns in the urban 
process at different stages of development. Nevertheless, none of these 
papers empirically considers the actual density and form of urban areas. 

The study of the determinants of air pollution has recently been 
complemented by papers analyzing emissions in cities. At the city level, 
the determinants of emissions per capita may be similar to that at the 
country level, with affluence and technology playing an important role. 
But emission per capita may also depend on the size, density and spatial 
structure of the city (see Kahn, 2006). However, the empirical literature 
to date studying the density-emissions per capita relationship at the city 
level is still limited and inconclusive (Ahlfeldt and Pietrostefani, 2019). 
Papers to date have focused either on specific countries or limited 
samples. Glaeser and Kahn (2010), relying on carbon dioxide emissions 
in 66 U.S. cities in the year 2000, show that emissions per capita fall with 
density. Zheng et al. (2011) reach similar findings using data for 74 
Chinese cities in 2006. Hilber and Palmer (2014) also suggest an 
emissions-reducing role of density relying on panel data for 75 global 
cities from 2005 to 2011. This emissions-reducing role of density is 
usually explained by the fact that high density allows cities to exploit 
economies of scale for urban infrastructure, reduce car usage and 
commuting distances - the “compact city theory” (see for instance 
Newman and Kenworthy, 1989; Burton, 2000; Liddle, 2004 and Chen 
et al., 2008). However, it has also been argued that increasing urban 
density may cause more congestion, overcrowding and greater air 
pollution (Breheny, 2001; Rudlin and Falk, 1999). 

The literature has also analyzed the relation between the spatial 
structure of cities and pollution. Theoretical insights tend to consider 
general equilibrium effects of location choices, in terms of transport 
efficiency, congestion and housing prices. An important prediction from 
these theoretical papers is that, as cities grow, more polycentric urban 
structures can lead to lower emissions per capita. The main reason 
behind this is that the average distance from residence to workplace is 
expected to be lower in denser and polycentric urban areas than in 
sparse, monocentric ones (see for instance Gaigné et al., 2012, Denant 
et al., 2018). Evidence on the reduction of commuting as density in-
crease has been shown by Duranton and Turner (2018) and Blaudin de 
Thé et al. (2018) for American and French cities, respectively. But 
empirical evidence on the role of the spatial structure of cities on 
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Table 1 presents descriptive statistics of the main variables for our 
sample of 1244 cities in our data set, for 1990, the beginning of the lights- 
based data, and 2015, the end of the sample to show the variation across 
both countries and time. Some clear trends emerge. First, the average of 
emissions per capita across our sample of cities has increased. And the 
variability in emissions per capita across cities is higher than if we look at 
variability across countries, justifying the relevance of a city-level anal
ysis. CO2 emissions per capita are still considerably larger in cities in 
developed countries, but they show a decrease from 7.73 m tons to 6.12 m 
tones since 1990 – while their counterparts in developing countries show 
an increase from 1.3 to 2.3 m tons. Second, total population and popu
lation density in the average city of our sample have increased consid
erably, particularly for cities in developing countries.9 Third, despite the 
increase in lights per capita, stark differences in luminosity still exist 
between cities around the world, which correlate strongly with income 
levels at the country level. The mean of light per capita is 40.59 DN, but it 
goes from nearly zero in some smaller African cities, with hardly any 
observed light, to 664 DN in Manama, Bahrain. Within cities, inequality 
in light has fallen in the developing world, potentially reflecting more 
electrification (Bluhm and Krause, 2018). Finally, looking at the spatial 
structure of cities (using our lights-based measures), we find that cities in 
developed countries have, on average, a higher Moran's I, suggesting 
more monocentric structures and less fragmentation. Moreover, larger 
cities are more monocentric in general, making cities below 1 m in
habitants in developing countries the least monocentric and most frag
mented. Fig. A.1 in Appendix A complements these statistics by 

illustrating the spatial structure of four different cities. 
Fig. 1 provides a geographical illustration for CO2 emissions. We map, 

for 2015, both the cross-country variability in emissions per capita as well 
as that of cities with more than 1 million inhabitants. Most polluting cities 
(in per capita terms) are located in rich regions but also in some countries 
in the Middle East and other regions in Asia, especially in China. In fact, 6 
of the 10 most polluting cities in per capita terms are Chinese. 

Fig. 2 presents some scatter plots between our main variables at the 
city level.10 We see a clear association between lights per capita and 
emissions per capita; richer cities pollute more. We also see that, on 
average, denser cities have lower CO2 emissions per capita. However, 
denser cities are, on average, poorer. Regarding the spatial structure of 
cities, we see a clear positive association between monocentricity and 
emissions per capita.11 

Finally, Fig. A.2 in Appendix A shows the evolution over time of 
emissions in the average city by sector, while Table A.4 shows correla
tions among sectors. All sectors show an increasing trend in emissions 
from 1975 to 2015. The industrial sector is typically responsible for most 
emissions, although in 2015 the energy sector has become the leading 
emitter of CO2. Transport contributes a small but growing share of CO2 
emissions. We see high correlations across the different sectors (with 
agriculture being the exception); cities that emit a lot of CO2 seem to do 
so across all sectors. 

3.2.2. Econometric analysis at the city level 
We now econometrically explore the connection between population 

density and air pollution at the city level, relying on our global panel of 
1244 cities. We rely on a STIRPAT specification where air pollution per 
capita is explained by measures of population, affluence and technology, 
as explained in Section 3.1. For air pollution, we focus on emissions of 
CO2 and PM2.5, as the most important and studied air pollutants. For 
population, we consider both total population and population density. 
The distinction is relevant for cities, contrary to countries, as there is 
variation over time not only in population but also in physical size. For 
affluence, we use lights per capita as a proxy for income. While there is 
no available information on the industry share to proxy for technology at 
the city level, we make sure that our results are robust to controlling for 
the industry share at the country level (at the expense of losing obser
vations) as well as introducing country or city fixed effects. 

Tables 2 and 3 present results of estimates using CO2 and PM2.5 
emissions as the dependent variable, respectively. In columns 1 to 3 we 
consider total population, while in columns 4 to 6 we consider population 
density. In columns 1, 2, 4 and 5 we include time fixed effects, to control 
for global shocks, and country fixed effects, to control for country-specific 
time-invariant characteristics. In this way, estimates in these columns 
rely on variation across cities within countries. In columns 2 and 5, we 
further control for city random effects. In columns 3 and 6 we include city 
fixed effects, so in this case estimates rely on within-city variation over 
time. In columns 1 and 2 we find that larger cities in a given country tend 
to display significantly higher levels of emissions per capita. However, in 
column 3, we find that as cities grow in population, they display fewer 
emissions per capita. Similarly, in columns 4 to 6, we find that higher 
density is associated with significantly lower emissions (of both CO2 and 
PM2.5). Additionally, and as expected, we find that higher income and 
share of industry are significantly associated with more emissions per 
capita, in line with the STIRPAT model. 8 As night-time lights-based variable are available from 1992 to 2013, while 

the GHSL data is given for the years 1975, 1990, 2000 and 2015, we assign the 
first year of the lights data, 1992, to 1990 as well as the last year, 2013, to 2015. 
This gives us a combined panel of three time periods, namely 1990, 2000, 2015, 
which allow us to capture within-city variation over 25 years.  

9 Density in cities has increased, while, as we will see later, density in urban 
areas (at the country level) has decreased. This is explained by two factors. 
First, the fact that our country-level data include all urban areas, for example 
lower-density towns and smaller cities, while for our city-level application, we 
focus on cities larger than 300.000 inhabitants. Second, the fact that, nation
ally, the share of population living in low density urban areas has increased (see 
OECD, 2018). 

10 Table A.2 in Appendix A shows a correlation table between the variables.  
11 We also see that richer cities (i.e., with higher values of lights per capita) 

tend to be more spatially concentrated (i.e., more monocentric) and more 
spatially unequal. This is in line with insights from the urban economics liter
ature suggesting i) that agglomeration economies lead to high concentration of 
population and economic activity in core districts of the city (Ciccone and Hall, 
1996; Rosenthal and Strange, 2004) and ii) that larger cities tend to be more 
unequal (see Castells-Quintana et al., 2020). 

300,000 inhabitants in 1990 and create a panel of these cities for the years 
1975, 1990, 2000 and 2015. 

We combine the GHSL data with satellite data on night-time lights. 
Satellite data of night-time lights have become established as a proxy for 
local economic activity in recent years (see Henderson et al., 2012; 
Donaldson and Storeygard, 2016). The ‘stable night light images’ are 
collected by the Defense Meteorological Satellite Program's Operational 
Linescan System (DMSP-OLS), operated by the National Oceanic Admin-
istration Agency (NOAA). The values are published at the pixel level (30 
arc sec, corresponding to less than 1 km2 at the equator) as a yearly panel 
from 1992 to 2013. The light values are measured by a Digital Number 
(DN) ranging from 0 (dark) to 63 (fully illuminated). While this data has 
been extensively used in development and regional economics in recent 
years, the ‘stable light’ data suffer from top-coding and fail to appropri-
ately capture the brightness of the largest cities. With cities forming the 
focus of our analysis, we therefore use the top-coding corrected data by 
Bluhm and Krause (2018). Based on this data, we calculate, for each city, 
several variables: (i) Light per capita, obtained as the sum of lights divided 
by the population, as a proxy of local economic activity, (ii) inequality in 
light, calculated as the Gini coefficient of light, giving us an indication of 
the spatial distribution of population and economic activity within the 
city, and iii) Moran's (1950) I index, as a measure of spatial autocorrela-
tion indicating how monocentric or polycentric the city is (with a low 
value indicating polycentricity, or fragmentation, and a high value indi-
cating monocentricity, see Tsai, 2005).8 Table A.1 in Appendix A gives 
definitions and sources for the variables used in our city-level analysis. 
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Results in Tables 2 and 3 suggest that denser cities, on a global
average, tend to have lower emissions per capita. This result is in line 
with previous evidence for smaller samples (Glaeser and Kahn, 2010; 
Zheng et al., 2011; Hilber and Palmer, 2014). Our results suggest an 
elasticity between 0.22 and 0.54: a 1% increase in population density is 
associated with between 0.22 and 0.52% less emissions per capita.12 

3.2.3. The Environmental Kuznets Curve and endogeneity concerns 
As shown in Tables 2 and 3 our results are robust to controlling for 

country and city time-invariant characteristics as well as for several 
time-variant ones. The inclusion of city fixed effects also helps to alle
viate measurement errors inherent to the construction of global data 
sets. In Tables A.4 and A.5 in Appendix A, we further test the robustness 
of our results. In Table A.4, we allow for a more flexible specification. In 
particular, we include our proxy for income – lights per capita - in linear 
and quadratic terms to control for potential non-linearities, as suggested 
by the EKC. We find a highly significant non-linear association yielding 
an inverted-U. This inverted U holds using CO2 or PM2.5 emissions, is 
robust across different specifications, and it suggests that as cities 
become richer, emissions per capita first increase and then decline. To 
the best of our knowledge, this is the first time that the EKC is reported 
using a global panel of cities.13 In any case, even controlling for the EKC, 
our coefficient for density remains significant.14 

Our results so far suggest associations that are novel, or to date in the 
literature not shown with such a large sample. These association are 
interesting in their own, and we have shown that they are robust to 
several controls, different specifications and fixed effects. We also pro
vide a simple theoretical model that reinforces our empirical analysis 
(see Appendix B). However, we must be careful to interpret our esti
mates in Tables 2 and 3 as causal effects; results may be biased due to 
reverse causality (i.e., it could be that more pollution leads to less 
density), or due to relevant omitted variables. To further address 
endogeneity concerns, in Table A.5, we perform alternative estimation 
techniques.15 In column 1, we present First Difference (FD) estimates of 
Eq (2). We find a negative and significant coefficient for density, very 
similar in magnitude to the one estimated with fixed effects. In static 
models, first differencing is almost equivalent to introducing fixed effect 
(see Wooldridge, 2010). However, a first-differences specification al
lows us to use lags of density to predict first-differences and perform 
Instrumental Variables (FD-IV) estimations, in the vein of Arellano and 
Bond (1991).16 FD-IV estimates show that lagged levels of density are 
significantly relevant to predict first-differences, and yield a negative 

and significant coefficient for density in our regression for emissions per 
capita (see column 2). In column 3 we use a simple long-run difference, 
regressing the change in emissions per capita between 1990 and 2015 on 
the same 25-years change of the right-hand-side variables. In column 4, 
we run a ‘deep’ cross-section regressing emission per capita measured in 
2015 on right-hand-side variables measured in 1990. These are alter
native strategies to further reduce problems of reverse causality and 
consider a long-run association (25 years) between density and emis
sions per capita.17 Results again yield a negative and highly significant 
coefficient for density. Finally, in columns 5 and 6, we rely on IV esti
mates using population data circa 1870, constructed with historical data 
from Mitchell (2013), but at the expense of losing observations.18 Re
sults show that historical data is relevant to predict population density in 
the last decades (either in 1990 or 2015). Our IV coefficients for density 
remain negative and significant, in line with our baseline results.19 

3.2.4. The role of city structure 
Our city-level results suggest that denser cities pollute less, in per 

capita terms. But cities do not have the same density in all its areas. 
While some cities show a highly dense core surrounded by less dense 
areas, other cities show a more polycentric structure. In this sub-section, 
we investigate the role of the spatial structure of cities on emissions per 
capita using our global panel of cities and relying on night lights-based 
measures of city structure. 

In Appendix B, we provide a simple urban economics model, building 
on Borck and Tabuchi (2018). The original model predicts a standard 
result, namely, that equilibrium population at the city level is not 
necessarily optimal, and can therefore generate too much pollution per 
capita. This allows us to compare equilibrium and optimal city size and 
determines under which conditions a city is too populated or not. On this 
basis, we introduce an index of polycentricity in the model (see eq. B.10) 
to capture the role of spatial structure in the density-emissions rela
tionship.20 According to this simple extension of the model, in large 
cities, and everything else equal, a more polycentric structure should 
lead to lower emissions per capita. In Table 4, we test this prediction 
using our city-level data, with CO2 emissions as our dependent variable 
and Moran's I as our measure of spatial structure. In columns 1 and 3 we 
look at population size, while in columns 2 and 4 we look at population 
density. According to results in columns 1 and 2, there is a negative and 
significant association between concentration and emissions; more 
monocentric cities display lower emissions per capita. However, ac
cording to columns 3 and 4, the role of the spatial structure of cities 
seems to depend on city size (but not on overall density of the city). For a 
relatively small city size, monocentricity is associated with fewer 
emissions, but as cities grow, monocentricity is associated with more 

12 Our results for density, either using CO2 emissions or PM2.5 as dependent 
variable, are also robust to excluding cities in large countries, like China or the 
USA or, splitting cities by city size, for instance between those above and below 
one million inhabitants. The results are available upon request.  
13 Harbaugh et al. (2002) looked at particles, SO2 and smoke in 72 cities in 42 

countries, and used national level income per capita. We look at particles and 
CO2 emissions in more than 1200 cities in 182 countries, with measure for 
income per capita both at the country and city level. Millimet et al. (2003) 
looked at US state level data. For more evidence on the EKC at country level see 
Schmalensee et al. (1998), Panayotou et al. (1999), Andreoni and Levinson 
(2001). Kacprzyk and Kuchta (2020) have recently used night-time lights, as we 
do, but still rely on cross-country comparisons and not on a cross-city panel as in 
our case.  
14 Our results for density, either using CO2 emissions or PM2.5 as dependent 

variable, are also robust to excluding cities in large countries, like China or the 
USA or, splitting cities by city size, for instance between those above and below 
one million inhabitants. The results are available upon request.  
15 In Table A.5, we present results using CO2 emissions as dependent variable. 

Results are similar using PM2.5. results available upon request.  
16 Gonzalez-Navarro and Turner (2018) and Castells-Quintana (2018) also 

work with panel data on city-level population across the world, and use a 
similar identification strategy, building on Olley and Pakes (1991) and Arellano 
and Bond (1991). 

17 Panel FE, or panel FD, estimates consider variation within countries over 
time, so results relate to the association between changes in density and changes 
in emissions per capita. Our cross section setting considers variation between 
countries, so results relate to the association between levels in density in the past 
(1990) and levels in emissions per capita today (2015). 
18 Recent papers have used historical data to instrument for current popula

tion (see Duranton (2015) and Castells-Quintana, 2018). We construct 
agglomeration size circa 1870 using total population of major cities around in 
1870 (or the earliest year available), and combining cities that are today part of 
the same urban agglomeration.  
19 To test for the exclusion restriction, we estimate residuals from the first and 

second stage and then run residuals of the second stage on those from the first 
stage. Results are not significant, indicating that the two residuals are not 
correlated, and providing evidence to support the exclusion restriction. 
20 Our model, based on Borck and Tabuchi (2018), is a multi-region frame

work, in which each city is characterized by a Central Business District (CBD) 
and a city border. Individuals commute towards the CBD – and these 
commuting flows will be considered as the main source of pollution. As pop
ulation increases, utility increases due to agglomeration forces while it de
creases because of longer commuting distances and competing for land. 
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emissions. Fig. B.1 in Appendix B shows the marginal effect of the spatial 
structure of the city depending on city size.21 

Results in Table 4 suggest that, for relatively small cities, mono
centricity is desirable to reduce pollution, but that for larger cities, it is 
polycentricity what reduces emissions per capita. This is in line our 
simple theoretical model. One key factor explaining this role of the 
spatial structure depending on city size is inner-city transport. In rela
tively small cities, monocentricity means a compact city, which reduces 
the need and length of commutes. By contrast, in larger cities, mono
centricity may imply more and longer commutes. In this case, a more 
polycentric structure may reduce the length of commutes. In column 5 of 

Table 4, we test this idea by looking at CO2 emissions from transport. As 
expected, we find that monocentricity is associated with fewer emissions 
in relatively small cities, but with more emissions in larger cities. 

3.3. Density and pollution at country level 

Our main results in Section 3.2 suggest that denser cities pollute less in 
per capita terms, with their inner structure playing a role. Let us now 
explore further explore the relationship between density and pollution at 
the country level. Our look at cities hints at ways to reconcile mixed re
sults from previous papers studying air pollutions in cross-country set
tings. In particular, our results suggest that we must look at density in 
urban areas, something not explored in the global literature to date. 
Traditional measures of population density, divided by calculating the 
country population by the land area, do not capture what goes on in urban 
areas. Overall population density might be low because of vast areas of 
desert or forests, yet within cities, people might huddle close together. 
Looking at density in urban areas allow us to capture the economies of 

1990 2015  

World Dev'd Dev'ing World Dev'd Dev'ing 

CO2 pc 2.7051 7.7338 1.3111 3.1431 6.1232 2.3170  
(5.8636) (9.7407) (2.9544) (6.0044) (9.6455) (4.1459 

PM2.5 pc 0.0025 0.0029 0.0024 0.0021 0.0015 0.0022  
(0.0053) (0.0032) (0.0057) (0.0032) (0.0037) (0.0030) 

Pop 1.0988 1.3007 1.0428 1.6179 1.5501 1.6367  
(2.1035) (2.4675) (1.9887) (3.2020) (2.9526) (3.2690) 

Density 4373.21 2862.66 4791.94 6284.77 3129.59 7159.40  
(2354.19) (1458.21) (2384.03) (3514.40) (1432.24) (3418.03) 

Lights pc 37.17 101.74 19.26 40.59 103.13 23.24  
(74.87) (123.54) (38.20) (54.96) (69.88) (33.48) 

Gini in 0.3327 0.2740 0.3491 0.2663 0.2937 0.2587 
Lights (0.1142) (0.0975) (0.1131) (0.0956) (0.0857) (0.0969) 
Moran's I 0.7645 0.8160 0.7501 0.7514 0.8258 0.7307  

(0.1035) (0.0756) (0.1057) (0.1186) (0.0670) (0.1215) 
Moran's I 0.8582 0.8849 0.8488 0.8396 0.8812 0.8280 
if pop >1 m (0.0605) (0.0405) (0.0635) (0.0716) (0.0406) (0.0741) 
Moran's I 0.7343 0.7875 0.7206 0.7044 0.7962 0.6789 
if pop <1 m 

# Cities 
(0.0962)  
1244 

(0.0680) 
270 

(0.0976) 
974 

(0.1117)  
1244 

(0.0591) 
270 

(0.1094)  
974 

Note: The summary statistics are CO2 per capita (non-short cycle CO2 emissions from all sectors, measured in tones), PM2.5 emissions per capita, population in million 
inhabitants, density in people per sq. km, lights per capita (in Digital Number units), the Gini coefficient of spatial inequality in lights, Moran's I as a measure of 
monocentricity vs fragmentation. Standard deviation in parentheses. 

Fig. 1. Map of CO2 Emissions per capita, countries and cities of more than 1 M. 
Note: The map shows CO2 emission per capita. For countries, we rely on data from the World Bank, and, for cities, on data from the Global Human Settlement Layers. 

21 According to estimates, the desirability of polycentric structure becomes 
evident for cities larger than 5 million inhabitants. While this may seem as a 
large number, our global sample includes cities from 300 thousand inhabitants 
to agglomerations of more than 30 million. The actual population size from 
which polycentricity becomes desirable may of course depend on many city 
characteristics. 

Table 1 
Summary Statistics at city level (1244 cities in 146 countries).   



7

scale that come with proximity, and that could justify a reducing-effect of 
density, something that total population density and urban rates, as 
traditionally considered in the literature, cannot properly do. 

3.3.1. Cross-country data and stylized facts 
To study the relationship between population density and air 

pollution at country level, we build a global panel dataset, including 
information for more up to 196 countries with data from 1960 to 2010 in 

5-year observations. For pollution, we focus here on CO2 emissions (in
tons) as the most important Green-House Gas (GHG), but also given data
availability and in line with related papers performing cross-country
analyses (e.g. Cole and Neumayer, 2004; Martínez-Zarzoso et al.,
2007). We look at total population, population density and urbanization
rates, defined as the share of the population living in urban areas. This
data comes from different sources, including the World Bank and the
Penn World Tables. However, one innovation of this paper is to go

Fig. 2. Scatter plots across 1328 cities for the year 2015.  

Table 2 
Main results at city level, CO2 emissions.   

(1) (2) (3) (4) (5) (6) 

Dep. variable: logCO2pc logCO2pc logCO2pc logCO2pc logCO2pc logCO2pc 

log(pop) 0.1592*** 0.1508*** − 0.3409***     
(0.0322) (0.0305) (0.0986)    

log(density)    − 0.5447*** − 0.3389*** − 0.2237***     
(0.0393) (0.0320) (0.0517) 

log(lightspc)  0.1983** 0.1338***  0.1927** 0.1351***   
(0.0890) (0.0429)  (0.0812) (0.0436) 

log(industry)  1.0282*** 1.1179***  1.0607*** 1.0395***   
(0.3359) (0.1280)  (0.3279) (0.1259) 

Year FE YES YES YES YES YES YES 
Country FE YES YES – YES YES – 
City effects NO RE FE NO RE FE 
Observations 3342 1406 1406 3342 1406 1406 
No. of cities 952 788 788 952 788 788 
No. countries 131 106 106 131 106 106 
R-Square 0.694 0.67 0.282 0.694 0.68 0.288 

Note: Robust standard errors (clustered by city) in parentheses. 
*** p < 0.01, ** p < 0.05, * p < 0.1. 
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further in terms of population density: we use the European Commis
sion's novel GHSL data (Florczyk et al., 2019), which combines Landsat 
satellite imagery on built-up area with census information (Pesaresi and 
Freire, 2016). For the years 1975, 1990, 2000 and 2015, the GHSL data 
classifies each pixel in a global grid of 1 km by 1 km resolution according 
to the urban structure it belongs to, in particular whether it is high- 
density urban center (more than 1500 people per sq. km), urban clus
ter (smaller towns or the outskirts of large cities) or rural. This distinc
tion allows us to compute the average population density in urban areas 
as well as in urban centers.22 For our econometric analysis, and 
following our specification, we also control for other variables, like GDP 
per capita, industry share, and others. Table C.1 in Appendix C gives 
definitions and sources for the variables used. 

Table C.2 in Appendix C presents main descriptive statistics for our 
main variables at the country level, distinguishing between developed 
and developing countries based on the World Bank classification. 
Figs. C.1.a and C.1.b, in Appendix C, provide maps of CO2 emission per 
capita and per GDP, respectively, in the year 2010. Some clear stylized 

facts emerge. First, we see a clear increase in CO2 emissions in the last 
50 years, with in CO2 emissions per capita more than doubling. While 
developed regions still have higher levels of CO2 emissions per capita, 
the increase has been particularly pronounced in developing countries. 
In terms of CO2 per GDP, the increase has been more subdued and was 
entirely driven by developing countries: CO2 per GDP in developing 
countries in 2010 has even overtaken the corresponding emissions in 
developed countries. Differences in emissions per GDP reflect important 
difference in fossil-fuel energy efficiency across countries. Regarding 
density, while we also see a clear increase in population density, our new 
variable density in urban areas has actually decreased worldwide. This is 
in line with recent findings (see for instance OECD, 2018) and probably 
reflecting sub-urbanization in many countries in the last decades. Dis
tinguishing countries by level of development, density in urban areas, as 
well as density in urban centers, is much higher in developing countries. 
This is illustrated in Fig. 3, which maps the global distribution of density 
in urban areas. We see that reaches high values in many African, Latin 
American and South Asian countries. Countries such as Egypt and Sudan 
might have a large landmass and therefore a rather low total population 
density, but with the desert covering most of landmass, density in urban 
areas is extraordinarily high. 

Table C.3 in Appendix C shows correlations between our main var
iables, while Fig. C.2 presents some scatter plots among them. There is a 

(1) (2) (3) (4) (5) (6) 

Dep. variable: logPM2.5pc logPM2.5pc logPM2.5pc logPM2.5pc logPM2.5pc logPM2.5pc 

log(pop) 0.2115*** 0.2348*** − 0.0497     
(0.0322) (0.0377) (0.2608)    

log(density)    − 0.4085*** − 0.2956*** − 0.2306**     
(0.0377) (0.0547) (0.0959) 

log(lightspc)  0.1272** 0.0500  0.1332** 0.0614   
(0.0608) (0.0429)  (0.0629) (0.0402) 

log(industry)  0.7272** 0.7603***  0.7855** 0.7580***   
(0.3336) (0.1073)  (0.3407) (0.1234) 

Year FE YES YES YES YES YES YES 
Country FE YES YES – YES YES – 
City effect NO RE FE NO RE FE 
Observations 3491 1450 1450 3491 1450 1450 
No. of cities 952 809 809 952 809 809 
No. countries 142 117 117 142 117 117 
R-Square 0.63 0.701 0.342 0.639 0.681 0.36 

Note: Robust standard errors (clustered by city) in parentheses. 
*** p < 0.01, ** p < 0.05, * p < 0.1. 

Table 4 
The role of city structure.   

(1) (3) (2) (4) (5) 

Dependent variable: logCO2pc logCO2pc logCO2pc logCO2pc logCO2transport_pc 

log(pop) − 0.5479*** − 1.4775***   − 1.5688***  
(0.0966) (0.2875)   (0.1485) 

log(density)   − 0.6111*** − 0.4157     
(0.0961) (0.3568)  

Moran's I − 2.2502*** − 18.1739*** − 1.8964*** 0.6078 − 15.3478***  
(0.3139) (4.4946) (0.3123) (3.7921) (2.4525) 

log(pop)*Moran's I  1.1951***   1.0053***   
(0.3444)   (0.1861) 

log(density)*Moran's I    − 0.2611      
(0.4049)  

Year FE YES YES YES YES YES 
City FE YES YES YES YES YES 
Controls YES YES YES YES YES 
Observations 2588 2588 2588 2588 3722 
No. of cities 943 943 943 943 1242 
No. of countries 129 129 129 129 146 
R-Square 0.209 0.216 0.25 0.251 0.479 

Note: Robust standard errors (clustered by city) in parentheses. 
*** p < 0.01, ** p < 0.05, * p < 0.1. 

22 For density in urban areas, we aggregate all population living in areas 
identified as urban and dived by total area identified as urban. For density in 
center areas we do the same but only considering center areas. 

Table 3 
Main results at city level, PM2.5 emissions.   
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clear association between income per capita and emissions per capita. 
However, countries with higher income per capita tend to be more en
ergy efficient; they show lower levels of emissions per GDP. The share of 
industry to GDP and the level of urbanization are also positively asso
ciated with emissions per capita. Regarding density, we see no clear 
association with emissions per capita. However, and interestingly, we do 
see a clear and negative association between density in urban areas (and 
urban centers) and emissions per capita. 

3.3.2. Econometric results at the country level 
Table 5 presents our main econometric results at the country level, 

using CO2 emissions (in tons) as the dependent variable. As shown in 
column 1, a larger population is associated with higher CO2 emissions, 
with a coefficient larger than one, meaning that population growth 
entails an increase in emissions that is more than proportional. In other 
words, emissions per capita increase. Moreover, because at the country 
level an increase of population basically translates into an increase in 
population density, results in column 1 suggest that emissions per capita 
increase with population density. As column 2 shows, our result for 
population holds when controlling for technology and affluence, as 
suggested by the IPAT model; higher income per capita, and higher 
share of industry to GDP, are all associated with higher CO2 emissions, 
as expected. Interestingly, the simple STIRPAT specification is able to 
explain up to 76% of the within-variance in CO2 emissions. In column 3 
we replace total population with population density; the coefficient for 
density is virtually identical to the coefficient for population in column 
2. In column 4, we control for the urban rate, finding a positive and
highly significant coefficient. Controlling for the urban rate also reduces
the magnitude of the coefficient for density. Finally, in columns 5 and 6,
we benefit from the GHSL data and introduce density in urban areas,
considering all urban areas (column 5) or central areas only – i.e., those
with more than 1500 people per sq. km (column 6). Using GHSL data
significantly reduces our sample size, but still leaves us with information
for 160 countries in column 5 and 144 in column 6. In both cases the
coefficient is negative and statistically significant, being highly signifi
cant in the case of density in central areas.

In Table C.4 in Appendix C, we allow for more flexible specifications. 
First, we consider income per capita in linear and quadratic form to 
control for the EKC. Results yield the right signs for the EKC, but co
efficients are non-significant.23 We then allow the coefficient for density 

to vary for developing vs. developed countries and find a coefficient 
larger than one for developing countries while smaller than one for 
developed countries. This suggests a differential density-emissions 
relationship, with emissions per capita going up with density in devel
oping countries while going down in developed countries, in line with 
previous findings (Shi, 2003; Martínez-Zarzoso et al., 2007). In the same 
spirit, we allow the coefficient for the urban rate and for density in urban 
areas to vary for developing vs. developed countries. The emissions- 
increasing role of urbanization seems to be driven mainly by devel
oping countries (in line with Ponce de León and Marshall, 2014, and 
Poumanyvong and Kaneko, 2010). Similarly, the emissions-decreasing 
role of density in urban areas seems also driven by developing 
countries.24 

In summary, our results at the country level suggest that while higher 
density at the national level is associated with higher emissions per 
capita, the opposite happens with density in urban areas; higher density 
in urban areas is associated with lower emissions (both total and per 
capita), especially when considering central areas. These results are in 
line with and reinforce our city-level results. Our result on density in 
urban areas is novel and seems to suggest that increasing density in 
urban areas helps countervail the emissions-increasing effect of overall 
population density. The size of the coefficients suggests that a 1% in
crease in density in urban areas is associated with around a 0.22% 
decrease in emissions, a non-negligible magnitude.25 

4. Discussion and conclusions

In this paper, we have taken a global view at air pollution looking at
countries and cities worldwide. We have focused on emissions (CO2 and 
PM2.5) and studied the role played by the spatial distribution of popu
lation and economic activity. We have done so using i) a large sample of 
1244 (big) cities in 146 countries around the world with data for the last 
two decades, and ii) a large panel of (196) countries with data from 1960 
to 2010. With these different units of analysis, we better understand and 
detail the spatial distribution of the population-emissions relationship. 

We have contributed to the literature in several ways. First, we have 

Fig. 3. Density in urban areas, 2015. 
Note: The map shows data on density in urban areas in 2015 as constructed by us using data from the Global Human Settlement Layers. 

23 In a regression where we only consider income per capita in linear and 
quadratic form, without further controls, we do find a significant coefficient in 
line with the literature. 

24 Our results may also highlight different population dynamics between 
developing and developed countries: in the former, population growth is much 
higher and a fast process of urbanization has recently been taking place (see e.g. 
Castells-Quintana, 2017).  
25 We do not pretend to interpret our coefficients in causal terms. However, 

endogeneity concerns are mitigated as we control for time-invariant charac
teristics and a large list of time-variant factors. 
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provided a global analysis of pollution looking at up to 196 countries 
and more than 1200 cities (when previous papers have at most looked at 
75 cities). Second, we bridge the gap between a country- and city-level 
analysis by introducing novel measures for density in urban areas at the 
country level. By considering density in urban areas, we can disentangle 
the effect of overall population density and more people living in urban 
areas (i.e., the urban rate), as traditionally done in the country-level 
literature, from the effect of population density in urban areas. In 
addition, backed by a theoretical framework, we have studied the role of 
city characteristics, such as population size, density and urban structure, 
as determining factors in the evolution of emissions per capita. 

Our unique data set has revealed large differences in air pollution not 
only across countries, but more importantly across cities worldwide. We 
have shown that denser cities exhibit lower emissions per capita. This 
negative relationship between city density and emissions per capita is 
robust to several controls and different estimation techniques and 
identification strategies. Using our global sample of cities, we have also 
found evidence of the Environmental Kuznets Curve (EKC), suggesting 
that emissions per capita go up with income levels at early stages of 
development, but then decline as development proceeds. This is the first 
time that the EKC curve is reported in a global sample of cities. More
over, we have found that the spatial structure of cities also plays an 
important role; on average, a relatively small-monocentric (compact) 
city pollutes less compared to relatively small-dispersed one. But large- 
polycentric cities pollute less compared to large-monocentric ones. This 
differentiated result by city size seems to be related to transport emis
sions. Our results are the city-level are supported by new insights we 
gain at the country-level: While higher total population density and 
urbanization are associated with higher CO2 emissions per capita, the 
opposite happens when we look at density in urban areas; higher density 
in urban areas is associated with lower emissions per capita. In line with 
theoretical insights, this suggests that while urban life, especially at 
early stages of development, may be more polluting, higher density in 
urban areas comes with lower emissions per capita. 

In terms of policy implications, our results suggest that policy- 
makers concerned with pollution should pay attention not only at pop
ulation dynamics but also at the evolution of the spatial distribution of 
population, both at the country and city level. Based on our results, 
fostering denser urban areas may lead to lower emissions per capita. 
Similarly, as cities grow, a more spatially decentralized (i.e., poly
centric) structure should be encouraged. 

Finally, our results call for further research. While we have taken a 
global view, the evolution of emissions per capita is likely to depend on 
several specificities of countries and cities that deserve careful analysis 
on a case to case basis. The role of different types of infrastructure, 
institutional settings, production and consumption patterns, as well as 
social preferences, not studied in this paper, deserves a more detailed 
analysis. In sum, a better understanding of emissions patterns will prove 
to be of upmost value to guide policies aimed at reducing air pollution 
and its dangerous consequences. 
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Appendix A. Data and additional results at city level   

(1) (2) (3) (4) (5) (6) 

Dependent variable: log(CO2) log(CO2) log(CO2) log(CO2) log(CO2) log(CO2) 

log(pop) 1.2258*** 1.2378***      
(0.1906) (0.1844)     

log(density)   1.2671*** 1.0601*** 1.0964*** 1.2412***    
(0.1818) (0.1760) (0.2333) (0.2423) 

log(income)  0.7599*** 0.7627*** 0.7581*** 0.7756*** 0.7230***   
(0.0852) (0.0834) (0.0833) (0.1043) (0.1061) 

log(industry_share)  0.3449*** 0.3175*** 0.2758*** 0.2188* 0.1812   
(0.0882) (0.0838) (0.0782) (0.1149) (0.1263) 

log(urb)    0.5304*** 0.7188*** 0.6341***     
(0.1467) (0.1887) (0.2311) 

log(density in urban areas)     − 0.2018*       
(0.1052)  

log(density in center areas)      − 0.2238***       
(0.0562) 

Year FE YES YES YES YES YES YES 
Country FE YES YES YES YES YES YES 
Observations 1879 1140 1140 1114 340 307 
No. of countries 192 176 176 176 160 144 
R-Square (within) 0.688 0.764 0.737 0.749 0.694 0.679 

Note: The dependent variable is CO2 emissions in tons. 
Robust standard errors (clustered by country) in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. 

Table 5 
Main results at country level.   
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Variable Time Span Source 

CO2 per capita 1975, 1990, 2000, 
2015 

Constructed using the European Commission's GHSL Urban Centre Database, which is itself based on the European 
Commission's in-house Emissions Database for Global Atmospheric Research (EDGAR v4.3.2) 

PM 2.5 per capita 1975, 1990, 2000, 
2015 

Constructed using the European Commission's GHSL Urban Centre Database, which is itself based on based the Global Burden of 
Disease (GBD) 2017 data 

Population 1975, 1990, 2000, 
2015 

European Commission's GHSL Urban Centre Database (see Florczyk et al., 2019 for details) 

Density 1975, 1990, 2000, 
2015 

Constructed using the European Commission's GHSL Urban Centre Database 

Lights per capita 1992–2013 Constructed using Satellite Data of Night-time lights, top-coding-corrected (see Bluhm and Krause, 2018) 
Spatial Gini coefficient in 

light 
1992–2013 Constructed using Satellite Data of Night-time lights, top-coding-corrected 

Moran's I: spatial 
autocorrelation 

1992–2013 Constructed using Satellite Data of Night-time lights, top-coding-corrected  

Table A.2 
Correlation of Variables, 1244 Cities, all available years.   

CO2 pc PM2.5 pc Population Density Light pc Light Gini 

PM2.5 pc 0.437      
Population 0.011 − 0.004     
Density − 0.286 − 0.161 0.085    
Light pc 0.300 0.000 0.048 − 0.368   
Light Gini − 0.054 0.090 0.251 − 0.045 0.092  
Moran's I 0.197 0.164 0.400 − 0.345 0.296 0.449 

Note: CO2_pc are the per capita non-short cycle CO2 emissions for all sectors, PM 2.5 pc the corresponding per capita emissions of particulate matter, Density denotes 
population density, Light p.c. is the light per capita measured in DN, Gini is the Gini coefficient of inequality in lights, Moran is Moran's I Spatial Autocorrelation 
Coefficient. 

Fig. A.1. Spatial structure of four different cities. 
Note: The four pictures present maps of four different cities (Paris, Delhi, Medellín and Niamey), illustrating the distribution of night-time lights across the pixels of 
the built-up area. Night-time lights in the year 2013 are depicted with respect to each city's maximum luminosity, with brighter colors (yellow, orange, red) denoting 
higher values and darker colors (purple, black) lower values. The urban extent of the city based on the GHSL data of 2015 forms the backdrop. The strongest 
monocentricity of these four cities is exhibited by Paris (Moran's I of 0.9502), followed by Delhi (0.9352) while both Medellín (Moran's I of 0.7686) and Niamey 
(Moran's I of 0.6617) are rather fragmented.  

Table A.1 
Definitions and Sources for the variables used in our city-level analysis.  
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Fig. A.2. Time trends of different emission types.   

Table A.3 
Correlations by industry.   

Energy Residential Industry Transport 

Residential 0.492    
Industry 0.478 0.589   
Transport 0.489 0.795 0.652  
Agriculture 0.154 0.101 0.174 0.263 

Note: correlation of Non-Short Cycle CO2 Emissions by Sector, 1244 Cities, all years.  

Table A.4 
The EKC at city level.   

(1) (2) (3) (4) (5) (6) (7) (8) 

Dependent variable: logCO2pc logCO2pc logCO2pc logCO2pc logPM2.5pc logPM2.5pc logPM2.5pc logPM2.5pc 

log(pop) 0.1488*** − 0.5626***   0.2283*** − 0.2789**    
(0.0289) (0.0972)   (0.0285) (0.1186)   

log(density)   − 0.5133*** − 0.6544***   − 0.3556*** − 0.4288***    
(0.0719) (0.1025)   (0.0526) (0.0788) 

log(lightspc) 0.7004*** 0.4862*** 0.5285*** 0.4081*** 0.3517*** 0.3204*** 0.3304*** 0.2972***  
(0.1182) (0.1682) (0.0813) (0.1557) (0.0699) (0.0578) (0.0624) (0.0526) 

log(lightspc)2 − 0.0617*** − 0.0551** − 0.0478*** − 0.0438** − 0.0293** − 0.0554*** − 0.0264*** − 0.0538***  
(0.0184) (0.0234) (0.0120) (0.0216) (0.0121) (0.0096) (0.0096) (0.0086) 

Year FE YES YES YES YES YES YES YES YES 
Country FE YES – YES – YES – YES – 
City FE NO YES NO YES NO YES NO YES 
Observations 2588 2588 2588 2588 2694 2694 2694 2694 
No. of cities 943 943 943 943 968 968 968 968 
No. of countries 129 129 129 129 142 142 142 142 
R-Square 0.701 0.174 0.822 0.431 0.67 0.188 0.656 0.235 
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(1) FD (2) FD-IV (3) Deep Diff (4) Deep CS. (5) IV (6) IV 

Dep. variable: logCO2pc logCO2pc logCO2pc logCO2pc logCO2pc logCO2pc 

log(density) − 0.5429*** − 1.4800*** − 0.2775*** − 0.3342*** − 0.7399* − 0.7400**  
(0.0659) (0.2655) (0.0807) (0.0539) (0.4468) (0.4262) 

log(lightspc) 0.1952*** 0.1122*** 0.0365 0.2011***  − 0.0002  
(0.0363) (0.0442) (0.0579) (0.0679)  (0.0715) 

Year FE YES YES – – – – 
Country FE – – YES YES YES YES 
Observations 1633 1632 814 905 328 328 
No. of cities 831 788 814 905 328 328 
No. countries 119 119 108 119 86 86 
F-test of excluded instruments 54.01***   6.87** 11.15*** 

Note: Columns 1 and 2 are estimated by first-differences using our panel data. In column 3, all variables are calculated as changes between 1990 and 2015. In columns 4 
to 6, logCO2pc is measured in 2015 and right-hand-side variables are measured in 1990, with log(density) instrumented with historical population data. Robust 
standard errors (clustered by city in columns 1 and 2 and by country in columns 3 and 4) in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. 

Appendix B. The role of the structure of cities 

A theoretical framework 
We briefly characterize the conceptual framework behind our empirical analysis at the city level. The model follows the consensus of the literature 

and is in particular based on the insights of Borck and Tabuchi (2018). 
We consider an economy with R number of cities. In each city, population size, P, is endogenous, while total population N is exogenous. Each city is 

characterized by a Central Business District (CBD) and an endogenous border denoted x. All individuals commute to the CBD and have identical 
preferences26: 

U = qαh1− αI − μ, (B1)  

where q is the numéraire, h the housing consumption and I the negative externality coming from pollution. Consumers maximize their utility under the 
following budget constraint, 

w = q+ rh+ tx, (B2)  

where r is the housing price, t is the commuting cost per unit of distance, and x is the distance to the border. After maximization, the housing con
sumption is given by 

h =
α(w − tx)

r
, (B3)  

and considering that workers are mobile across and within locations, the housing rent is now equal to 

r = (w − tx)
1
αI −

β
αv− 1

α, (B4)  

with v = α− α(1 − α)(1− α)U . The bid rent depends on the wage rate, the commuting time at the border and pollution. Notice that at the spatial 
equilibrium the rent will be equal to the opportunity cost of land rA. 

The city border x solves the total population constraint given by 

P =

∫

0

x1
h

dx, (B5)  

where 1h is the population density at x, such that P is the total population that fits into a border x. 
Assuming that production in each city is characterized by external economies of scale capturing agglomeration effects, with γ < α: 

Y = P1+γ , and the individual wage rate w = Pγ 

Solving the city border Eq. (5) by using the housing rent (3, 4) implies that the equilibrium city border is given by 

x =
Pγ [1 − rA

α(rA + tn)− α
]

t
(B6) 

To fully solve the equilibrium, optimal housing demand (3) and optimal rent (4) are replaced into the utility function (1), which gives the indirect 
utility in equilibrium, given by 

26 A Cobb-Douglas function is quite common, without being determinant. Denant et al. (2018) have chosen a quasi-linear utility specification that does not affect 
qualitatively their results. 

Note: Robust standard errors (clustered by city) in parentheses. 
*** p < 0.01, ** p < 0.05, * p < 0.1. 
Table A.5 
Further robustness checks.   
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(B7) 

We can observe the traditional market trade-off: as population P increases, utility increases due to agglomeration forces while it decreases because 
of longer commuting distances t and competing for land r. 

This simple model allows to identify the equilibrium population at the city level, using the migration condition that relies on the indirect utility 
differential V(Pi) − V(Pj). Setting V

′(Pi) = 0, and considering first pollution has a global phenomenon that affect utility but does not affect location 
choices, the equilibrium population level that solves the differential is equal to 

P =
γr

(α − γ)t
(B8) 

As underlined by Henderson (1974) and Borck and Tabuchi (2018), the equilibrium population is not necessarily equal to the optimal city size, 
which is derived from the maximization of indirect utility with respect to population. 

Now, to obtain the optimal value of P we replace I = (PθAφT) in the indirect utility we obtain: 

V(P) = T − μ(A)− φμPγ− θμ(rA + tP)− α

which once maximized with respect to P gives the optimal population: 

P* =
(γ + (1 − θ)μ )rA

(α − γ − (1 − θ)μ )t
(B9)  

which depends on θ and μ, namely the pollution elasticity and its disutility, α -the housing share, γ -the economies of scale, and t -the commuting costs. 
Population P is strictly defined within a border x so that it can be interpreted as city size but also population density. 

To analyze under which conditions population is optimal, basically comparing P and P*, values for parameters α, γ and μ must be set. Following the 
literature, we can set α = 0.24 (according to Davis and Ortalo-Magné, 2011); γ = 0.05 (according to Combes and Gobillon, 2015) and μ = 0.022 
(according to Borck and Tabuchi, 2018). In this case, the equilibrium population density is sub-optimal for any value of θ > 1 and positive values of 
rent and commuting costs. In other words, if the pollution elasticity is higher than one, it means that city size (or population density) is not high enough to lead 
to a decrease in emissions per capita. 

So far, this version of the model of Borck and Tabuchi (2018) has considered cities to be symmetric. But what if locations are considered to differ 
from each other? To answer this, we go beyond the existing literature and assume that locations differ from each other, by their amenities or by their 
structure. In particular, we assume that cities are characterized by the following indirect utility: 

V(Pi) = BiPi
γ(rA + tPi)

− αIi
− μ (B10)  

where B = Zρ is the interaction between a level of amenities (infrastructures, geographic position…) and a degree of polycentricity. The main idea here 
is to assume that a polycentric city offers a better access to amenities and more efficient infrastructures (Fujita et al., 2001; Dieleman et al., 2002; Li 
et al., 2018). 

As above, pollution is given by I = (PθAφT) and, considering free migration, we obtain the equilibrium value of B, 

Bi =

(
P1

Pi

)γ(rA + tPi

rA + tP1

)α Pi
θAi

φTi

P1
θA1

φT1
ρi (B11) 

Replacing Bi in the indirect utility (10) and maximizing with respect to Pi, we find a new optimality condition, up to a normalization. With θ < 1, 
such that emissions per capita decrease with density (as suggested by our empirical results), α = 0.24, γ = 0.05 and μ = 0.022, the optimal density is 
higher than equilibrium population in polycentric cities. This suggests that, for larger cities, polycentricity may be more desirable and lead to a decrease in 
emissions per capita.

Fig. B.1. Marginal effects of structure depending on city size. 
Note: Marginal effects of Moran's I (our measure of monocentricity) depending on total population size of cities, and using coefficients from Table 5.  

 V = Pγ (r + tP)−  αI−  μ
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Variable Time Span Source 

Total CO2 Emissions 1960–2010 World Bank – World Development Indicators based on data from the Carbon Dioxide Information Analysis Center, Environmental Sciences 
Division, Oak Ridge National Laboratory, Tennessee, U.S. 

CO2 Emissions per 
capita 

1960–2010 World Bank – World Development Indicators 

CO2 Emissions per GDP 1960–2010 World Bank – World Development Indicators 
Total Particulate Matter 

(2.5) 
1960–2010 World Bank – World Development Indicators 

Total Population 1960–2010 World Bank – World Development Indicators 
Income per capita 1960–2010 Real GDP per capita from Penn World Tables 7.1 
Industry Share 1965–2010 World Bank – World Development Indicators 
Urban Rate 1960–2010 World Bank – World Development Indicators 
Density 1965–2010 World Bank – World Development Indicators 
Density in Urban Areas 1975, 1990, 

2000, 2015 
Constructed using data from Global Human Settlement Layers, see Pesaresi and Freire (2016) for details 

Density in Urban Centers 1975, 1990, 
2000, 2015 

Constructed using data from Global Human Settlement Layers, see Pesaresi and Freire (2016) for details   

Table C.2 
Descriptive statistics at country level (182 countries), main variables.   

Beginning of Sample End of Sample  

World Dev'd Dev'ing World Dev'd Dev'ing 

CO2 44.37 148.80 12.23 163.99 304.10 122.34  
(251.59) (498.27) (74.66) (766.81) (849.99) (738.27) 

CO2 pc 2.0906 6.2927 0.8373 4.9744 10.4519 3.3460  
(4.5115) (7.6636) (1.5584) (6.4040) (7.2383) (5.1294) 

CO2/GDP 0.4240 0.4506 0.4146 0.5045 0.3343 0.55754  
(0.7044) (0.3009) (0.8026) (0.4299) (0.2162) (0.4654) 

Pop 15.26 18.72 14.25 34.87 26.45 37.32  
(60.28) (36.08) (65.74) (134.30) (54.30) (149.86) 

GDPpc 4.15 10.09 1.97 13.39 33.73 6.95  
(4.66) (4.92) (1.76) (16.80) (20.68) (8.07) 

Industry 21.73 17.26 21.87 28.38 27.52 28.66  
(10.40) (0.00) (10.54) (13.53) (11.42) (14.18) 

Urban rate 36.03 60.94 28.76 57.09 76.91 51.32  
(23.77) (18.39) (19.97) (23.89) (15.12) (22.89) 

Density 164.32 261.52 136.36 312.16 475.78 264.49  
(810.71) (685.99) (843.23) (1470.65) (1449.37) (1478.14) 

Density 3276.84 2695.49 3458.13 2700.42 2337.65 3014.42 
Urb.Areas (3427.02) (3161.42) (3175.92) (2292.86) (2337.93) (2372.55) 
Density 8901.46 4353.15 10,531.83 5779.49 3962.14 6452.98 
Urb.Centers (18,709.2) (3486.37) (22,086.59) (3825.70) (2804.69) (3951.34) 

Note: The table presents country-level summary statistics at the beginning and end of sample period. The beginning is 1960 (exception: density and industry from 1965, 
density in urban areas and urban centers from 1975), the end is 2010 (exception: density in urban areas and urban centers from 2015). Standard deviations in pa
rentheses. The variables are total CO2 emissions (in millions of tons), CO2 per capita (tons per capita), CO2 per GDP (kg per US$ of GDP), PM25 per capita (micrograms 
per cubic meter per 1000 people), population in million inhabitants, real GDP in 1000 USD, the urban rate in percent, industry share as percentage of GDP, density as 
well as density in urban areas and urban centers in people per sq-km.  

Table C.3 
Correlations, main variables at country level.   

CO2 pc GDPpc Industry Urb Density D.Urb.Areas 

GDPpc 0.755      
Industry 0.379 0.206     
Urb 0.492 0.639 0.332    
Density 0.010 0.177 − 0.059 0.231   
Density in Urb Areas − 0.065 − 0.151 − 0.020 − 0.030 0.508  
Density in Urb Center − 0.100 − 0.123 0.000 − 0.135 0.126 0.489 

Notes: The correlations are computed across all available countries and time periods. 
For more information on the variables, see Table B.1.  

Appendix C. Data and additional results at country level  
Table C.1 
Definitions and sources, variables at country level.  
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Fig. C.1.a and C.1.b. Maps of CO2 Emissions per capita and per GDP, 2010.   
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Fig. C.2. Scatter plots between country-level variables.  
Table C.4 
Robustness checks at country level.   

(1) (2) (3) (4) 

Dependent variable: log(CO2) log(CO2) log(CO2) log(CO2) 

log(pop) 1.2320***     
(0.2062)    

log(density)*developing  1.3232*** 1.0909*** 1.1690***   
(0.1970) (0.2114) (0.3033) 

log(density) *developed  0.7103*** 0.7944*** 1.3005*   
(0.2022) (0.2178) (0.6788) 

log(income) 0.8096 0.7148 0.5284 1.0313  
(0.5049) (0.4460) (0.4230) (0.8812) 

log(income)2 − 0.0031 0.0045 0.015 − 0.0183  
(0.0309) (0.0276) (0.0257) (0.0511) 

log(industry_share) 0.3441*** 0.2903*** 0.2665*** 0.1726  
(0.0875) (0.0841) (0.0807) (0.1341) 

log(urb)*developing   0.5080*** 0.6168***    
(0.1467) (0.2260) 

log(urb)*developed   − 0.2505 − 0.2923    
(0.4867) (0.9235) 

log(density in center)*dev'ing    − 0.2109***     
(0.0559) 

log(density in center) *dev'ed    − 0.5426     
(0.8937) 

Year FE YES YES YES YES 
Country FE YES YES YES YES 
Controls YES YES YES YES 
Observations 1140 1114 1114 304 
No. of countries 176 176 176 144 
R-Square (within) 0.87 0.741 0.751 0.681 

Note: The dependent variable is CO2 emissions in tons. Robust standard errors (clustered by country) in parentheses. *** p < 0.01, ** p < 0.05, * 
p < 0.1. 
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