

# Single-cell transcriptomic landscape reveals tumor specific innate lymphoid cells associated with colorectal cancer progression

Jingjing Qi, Adeline Crinier, Bertrand Escalière, Youqiong Ye, Zhengting Wang, Tianyu Zhang, Luciana Batista, Hongzhi Liu, Liwen Hong, Ningbo

Wu, et al.

# ▶ To cite this version:

Jingjing Qi, Adeline Crinier, Bertrand Escalière, Youqiong Ye, Zhengting Wang, et al.. Single-cell transcriptomic landscape reveals tumor specific innate lymphoid cells associated with colorectal cancer progression. Cell Reports Medicine, 2021, 2 (8), pp.100353. 10.1016/j.xcrm.2021.100353. hal-03374574

# HAL Id: hal-03374574 https://amu.hal.science/hal-03374574v1

Submitted on 22 Aug2023

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

# Single cell transcriptomic landscape reveals tumor specific innate lymphoid cells associated with colorectal cancer progression

3 Jingjing Qi<sup>1,2#</sup>, Adeline Crinier<sup>3#</sup>, Bertrand Escalière<sup>3</sup>, Youqiong Ye<sup>1,2</sup>, Zhengting Wang<sup>4</sup>, Tianyu

4 Zhang<sup>4</sup>, Luciana Batista<sup>5</sup>, Hongzhi Liu<sup>1,2</sup>, Liwen Hong<sup>4</sup>, Ningbo Wu<sup>1</sup>, Mingnan Zhang<sup>1</sup>, Lei Chen<sup>1</sup>,

5 Yingbin Liu<sup>7</sup>, Lei Shen<sup>1\*</sup>, Emilie Narni-Mancinelli<sup>3\*</sup>, Eric Vivier<sup>3,5,6\*</sup>, & Bing Su<sup>1,2,8\*</sup>

6

- 7 <sup>1</sup>Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the
- 8 Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong
- 9 University School of Medicine, Shanghai, 200025, China
- 10 <sup>2</sup>Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism,
- 11 Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- <sup>12</sup> <sup>3</sup>Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille,
- 13 13009, France
- <sup>4</sup>Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of
- 15 Medicine, Shanghai, 200025, China
- <sup>5</sup>Innate Pharma Research Laboratories, Innate Pharma, Marseille, 13009, France
- <sup>17</sup> <sup>6</sup>Immunology, Marseille Immunopole, Hôpital de la Timone, Assistance Publique des Hôpitaux de
- 18 Marseille, 13005, France
- <sup>19</sup> <sup>7</sup>Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University
- 20 School of Medicine, Shanghai 200092, China
- 21 <sup>8</sup>Lead Contact
- 22 # These authors contributed equally

- 23 \*Correspondence: lshen@shsmu.edu.cn; narni@ciml.univ-mrs.fr; vivier@ciml.univ-mrs.fr;
- 24 bingsu@sjtu.edu.cn

#### 25 Summary

26 Innate lymphoid cells (ILCs) are tissue-resident lymphocytes differing from conventional T 27 lymphocytes in having no antigen-specific receptors. ILCs include natural killer (NK) cells, 28 helper-like ILC1s, ILC2s, ILC3s and lymphoid tissue-inducer (LTi) cells. Tumor ILCs are 29 frequently found in various cancers, but their roles in cancer immunity and immunotherapy remain 30 largely unclear. We report here the single-cell characterization of blood and gut helper-like ILC 31 subsets in healthy conditions and in colorectal cancer (CRC). The healthy gut contains ILC1s, 32 ILC3s, and ILC3/NKs, but no ILC2s. Additional tumor-specific ILC1-like and ILC2 subsets were 33 identified in CRC patients. Signaling lymphocytic activation molecule family member 1 34 (SLAMF1) was found to be selectively expressed on tumor-specific ILCs and higher levels of SLAMF1<sup>+</sup> ILCs were observed in the blood of CRC patients. The SLAMF1-high group of CRC 35 36 patients had a significantly higher survival rate than the SLAMF1-low group, suggesting that 37 SLAMF1 is an anti-tumor biomarker in CRC.

#### 38 Introduction

39 T cell-based immunotherapy has been very successful clinically for the treatment of malignant tumors, but only in a small proportion of patients <sup>1-6</sup>. Treatments targeting other immune 40 41 components are required, to increase the proportion of patients benefiting from immunotherapy. 42 Innate lymphoid cells (ILCs) are tissue-resident innate antigen-independent lymphocytes that regulate immunity to pathogens and commensal organisms for tissue homeostasis <sup>7,8</sup>. ILCs form a 43 44 heterogeneous population of cells that are currently classified into five major groups, natural killer 45 (NK) cells, helper-like ILC1s, ILC2s, ILC3s, and lymphoid tissue-inducer (LTi) cells on the basis of their cytokine production and transcription factor expression profiles <sup>8</sup>. ILCs are involved in 46 47 immune functions, including pathogen responses, inflammation, tissue development, remodeling, 48 repair and homeostasis.

49 Given the large amounts and nature of the cytokines they produce, ILC subsets are likely to be 50 involved in cancer immunity, but may also contribute to tumor-associated inflammation. NK cells are known to play a role in cancer, through their tumor-suppressive properties, and are efficient at 51 52 controlling metastasis <sup>9</sup>. The role of helper-like ILCs in the context of tumorigenesis and cancer 53 immunity is less clear and appears to depend on the tumor microenvironment. ILC1s produce large amounts of proinflammatory cytokines, such as IFN- $\gamma$  and TNF- $\alpha$ , which favor 54 55 tumorigenesis <sup>10</sup>. However, IFN- $\gamma$  can also limit tumor growth in certain tumor microenvironments <sup>11, 12</sup>. ILC2s have been shown to be mostly detrimental in various tumor 56 settings. Indeed, large numbers of ILC2s are present in the peripheral blood of patients with 57 gastric cancer <sup>13</sup> and acute promyelocytic leukemia <sup>14</sup>. ILC2-derived IL-13 stimulates the 58 59 immunosuppressive activity of myeloid-derived suppressor cells in acute promyelocytic leukemia <sup>14</sup>, and in human bladder cancer and murine prostate tumors <sup>15</sup>. However, ILC2-derived IL-5 may 60

help to suppress primary and metastatic lung tumors in mouse models <sup>16, 17</sup>. ILC2 could also secrete CXCR2 ligands to reinforce tumor cell-specific apoptosis in solid tumor mouse model <sup>18</sup>, and ILC2s activate tissue-specific tumor immunity in pancreatic cancer <sup>19</sup>. ILC3s also have tumor suppressor properties, in the B16 melanoma mouse model <sup>20, 21</sup> and in non-small cell lung cancer (NSCLC) patients <sup>22</sup>, for example. By contrast, ILC3-derived IL-17 and IL-22 may contribute to gut cancer development <sup>23, 24</sup>. There is, therefore, a clear need to investigate the presence and role of helper-like ILC subsets in various cancer indications.

68 Colorectal cancer (CRC) is the third most prevalent cancer in both women and men, and the 69 second most frequent cause of cancer-related deaths worldwide <sup>25</sup>, despite remarkable 70 improvements in therapeutic strategies. Dysregulated ILC responses have been linked to the development of intestinal cancers. ILC2s are present at low levels in many pathological 71 conditions in humans <sup>26, 27</sup>. By contrast, CRC patients have large numbers of ILC1s in the 72 intestines <sup>26-29</sup>, and abnormally low levels of ILC3s <sup>28, 29</sup>, which normally densely populate the 73 colon at steady state <sup>27-29</sup>. Indeed, decreases in the ILC3/ILC1 ratio have been associated with the 74 severity of CRC<sup>29</sup>. The baseline helper-like ILC landscape, in terms of the composition, 75 76 diversity, and functional status of these cells in the human gut, remains incompletely explored under tumor conditions. 77

We used unsupervised hierarchical clustering to investigate helper-like ILC heterogeneity at steady state and during CRC, in the blood, normal mucosa and gut tumors. The healthy gut is composed of ILC1s, ILC3s, and ILC3/NKs, but no ILC2s. Helper-like ILCs from CRC patients were found to contain two additional subsets: a CRC tissue-specific ILC1-like subset (ctILC1like) and an ILC2 (ctILC2) subset. SLAMF1 (signaling lymphocytic activation molecule family member 1, CD150) was found to be selectively expressed on ctILCs, and higher frequencies of

- 84 SLAMF1-expressing helper-like ILCs were found in the blood of CRC patients. The group of
  85 patients with SLAMF1-high colon and rectal cancers had a significantly higher survival rate than
- 86 the SLAMF1-low patients, suggesting that SLAMF1 is an anti-tumor biomarker in CRC.

#### 87 **Results**

#### 88 Healthy gut contains ILC1s, ILC3s, and ILC/NKs, but no ILC2s

We dissected the role of helper-like ILCs in CRC by studying paired CRC tissue and adjacent 89 90 mucosal tissue (used as a control) samples, and comparing blood from patients with blood from 91 age-matched healthy donors (Table S1 and Figure S1A). Lineage negative (Lin<sup>-</sup>) (TCRγδ<sup>-</sup> TCR αβ- CD3- CD19- CD14- CD16- CD94- CD123- CD34- CD303- FcεRI-) CD127+ helper-like ILCs 92 93 were more abundant in both normal mucosa and CRC tissue than in blood, consistent with the 94 known tissue residence properties of ILCs <sup>30</sup> (Figure S1B-C). The percentage of helper-like ILCs 95 was lower in CRC tissues than in normal mucosa, but similar in normal and CRC blood samples 96 (Figure S1B-C).

97 We performed scRNAseq on ~58,000 total purified helper-like ILCs from blood samples from 98 CRC patients, healthy blood, normal mucosa and CRC tissue samples (Figure S1D-E). The 99 heterogeneity of helper-like ILCs in normal mucosa was assessed with a total of 16,145 Lin-100 CD127<sup>+</sup> cells from colon tissues adjacent to the colon tumor in CRC patients (Figure S1E). The 101 projection of cells onto two dimensions in a uniform manifold approximation and projection 102 (UMAP) analysis revealed segregation into six distinct clusters: normal mucosa cluster (nmC)0 to 103 nmC5 (Figure 1A). Two clusters, nmC4 and nmC5, contained cells from all donors, suggesting 104 that there was no donor-specific transcriptomic profile for these two helper-like ILC populations 105 (Figure 1B-C). By contrast, most of the cells from nmC0 to nmC3 were single donor-specific 106 (Figure 1B-C).

Using hierarchical clustering (Figure 1C) and gene signature heatmaps (Figure 1D and Table S2),
principal component analysis (PCA) (Figure 1E-F), top 10 expressed gene analysis (Figure 1G),
and module score analysis (Figure 1H), we then compared the gene signatures of nmC0 to nmC5

110 with previously described transcriptomic signatures of human helper-like ILC subsets <sup>31</sup>. nmC0 to 111 nmC3 had a common transcriptomic signature characteristic of ILC3s, with REL, encoding a proto-oncogene member (c-Rel) of the NF-KB family <sup>32</sup> and NF-KB signaling via the IL22 112 113 promoter site in ILC3s<sup>33</sup>, as a driver gene (Figure 1F), and KIT, CXCL8, IL411 and IL1R1 in the 114 top 10 expressed genes (Figure 1G). nmC4 was characterized by NKG7, encoding a cytolytic 115 granule membrane protein <sup>34</sup>, and *KLRD1*, encoding CD94, expressed in T and NK cells, as driver genes, with GNLY, GZMK, XCL2, and CCL4, among the top expressed genes and with a whole 116 117 signature common to NK cells and ILC3s from tonsils (Figure 1F-G). nmC4 was, thus, identified 118 as an ILC3/NK subset. nmC5 resembled ILC1s, with higher levels of expression of T-cell markers (CD3D, CD3G, and CD3E), as previously described <sup>31, 35, 36</sup>, specific transcription factors (IKZF3, 119 120 BCL11B, PRDM1, and ID3), and NK/ILC1 cell functional cytokines (GZMM, IFNG, IL32, CCL4, 121 and CCL5) (Figure 1F-H). nmC0-3 were enriched in response to lipid, glucocorticoid, and 122 corticosteroid while nmC5 was involved in T cell activation and differentiation (Figure S2A).The 123 assignments of each cluster were supported by the selective expression of known helper-like ILC 124 markers, such as IL7R, GATA3, NCR3, EOMES, TBX21, KIT, RORC, NCR1, NCR2 and KLRF1 125 (Figure S2B). We found differences between nmC5 and previously reported healthy gut ILC1s<sup>37</sup>, 126 probably because the gating strategies used here did not exclude CD5<sup>+</sup> cells (Figure S2C-D). Thus, 127 the normal gut mucosa defined by scRNAseq profiling of Lin<sup>-</sup>CD127<sup>+</sup> contains ILC1s, ILC3s, and ILCs/NKs but no ILC2s, consistent with the lack of *PTGDR2* gene expression (Figure S2B). 128

129

# 130 Tumor ILC1-like and ILC2 subsets are present in CRC patients

We then investigated the composition and diversity of 15,101 ILCs from the tumors of CRCpatients. UMAP analysis identified four distinct clusters in CRC tissue (ctC short for CRC tissue

133 cluster): ctC0 to ctC3 (Figure 2A). Contrary to what was observed for normal mucosa, no 134 overwhelming donor-dependent effect was observed, each cluster being present in all samples 135 (Figure 2B-C). Based on the strategy applied to normal mucosa clusters (Figure 1), ctC0 was 136 assigned to ILC3s, consistent with its overexpression of KIT, CXCL8, NFIL3, and IL411, like 137 nmC0-3 (Figure 2C-H and Table S2). ctC1 resembled ILC1s and, like nmC5, displayed 138 differential expression of genes encoding T-cell molecules (CD3D, CD3G), secreted effectors 139 (CCL4, IFNG), and ILC-related transcription factors (IKZF3, PRDM1 and BCL11B). The other 140 two subsets present, ctC2 and ctC3, were absent from normal mucosa. ctC2 cells corresponded to 141 an additional ILC1 subset, hereafter called the ctILC1-like subset (CRC tissue-specific ILC1-like 142 subset), characterized by an enrichment in the expression of genes encoding inhibitory and 143 costimulatory markers (TIGIT, CTLA4, and TNFRSF4). ctC3 cells, identified as ILC2s and 144 hereafter referred to as ctILC2, had high levels of expression for genes encoding transcription 145 factors required for ILC2 development (GATA3, RORA, and ZBTB16) and ILC2-responsive 146 cytokine receptor genes (IL1RL1 and IL17RB) (Figure 2C-H and Table S2). ctC1 was enriched in 147 cytolysis, granulocyte chemotaxis, granzyme-mediated apoptotic signaling pathway, whereas ctC2 148 and ctC3 were respectively enriched in T cell anergy and interleukin-5 production and interleukin-149 13 secretion (Figure S2E). Subset assignments were supported by the selective expression of 150 known ILC markers, such as IL7R, GATA3, NCR3, EOMES, TBX21, KIT, RORC, NCR1, NCR2 151 and KLRF1 (Figure S2F). In particular, PTGDR2 and higher levels of GATA3 expression were 152 found in the ILC2s. SLAMF1 (signaling lymphocytic activation molecule family member 1 or 153 CD150), which encodes a soluble and membrane protein involved in the activation of T cells, B cells, and NK cells <sup>38</sup>, was upregulated both in ctILC1-like and ctILC2 in tumors (Figure 2G). 154 155 Thus, like nmILCs, ctILCs formed heterogeneous populations encompassing four different subsets: ctC0 (resembling ILC3s), ctC1 (resembling ILC1s), ctC2 (named as ILC1-like), and ctC3
(resembling ILC2s).

158 Tumor tissue ILC3s seemed to be less heterogeneous than those in the normal mucosa. We 159 therefore focused on nmC0-3, nmC4 and ctC0, comparing ILC3 heterogeneity between normal 160 mucosa helper-like ILCs and gut ctILCs, with the same analysis pipeline as described above after 161 applying a correction that removed the donor batch effect allowing the analysis of ILC3 162 heterogeneity (Figure S3, Table S2). Four different populations were found in ILC3s from both 163 types of tissue (Figure S3 A-I), including a potentially immature SELL-expressing population, and 164 a population enriched in HLA-encoding transcripts also present in human tonsils (Figure S3E and 165 J). Each subset of normal mucosa ILC3 had a counterpart in tumor tissue (Figure S3K). Given the 166 overlap in ILC3s heterogeneity between normal mucosa and gut ctILCs, we can conclude that 167 CRC did not affect the subset heterogeneity of ILC3s. Thus, gut ctILCs differed from nmILCs in 168 the appearance of a ctILC2 subset and a second ctILC1-like subset.

169

#### 170 Blood helper-like ILC heterogeneity is stable in CRC

171 We searched for potential biomarkers of the disease, by investigating differences in blood helper-172 like ILCs between healthy individuals and CRC patients. A UMAP analysis of 19,603 helper-173 like ILCs from healthy donors revealed three distinct clusters, hereafter referred to as nbC0, 174 nbC1, and nbC2 (Figure S4A-C and Table S2). nbC0 was considered to correspond to ILC1s, 175 based on the upregulation of CD3D, CD3E, CD3G, the NK/ILC1 cell effector proteins (CCL5, 176 GZMK, GZMM, and GZMA), and helper-like ILC transcription factors (BCL11B, PRDM1, and 177 IKZF3) (Figure S4D-H). nbC1 was identified as ILC3s, and was characterized by ILC3 178 transcription factors (MAFF, RUNX3) and costimulation markers (TNFRSF4, TNFRSF18). nbC2

displayed an upregulation of genes from the ILC2 signature (*GATA3*, *RORA*), and genes
encoding regulatory receptors (*KLRB1*, *KLRG1*) (Figure S4D-H). These assignments were
supported by the selective expression of known helper-like ILC markers, such as *IL7R*, *GATA3*, *NCR3*, *EOMES*, *TBX21*, *PTGDR2*, *KIT*, *RORC*, *NCR1*, and *KLRF1* (Figure S4I).

183 A UMAP plot of 6,899 blood helper-like ILCs from CRC donors also identified three subsets, 184 hereafter referred to as cbC0, cbC1 and cbC2 (Figure S5A-C and Table S2). Driver genes, top 185 ten genes and module score signatures highlighted the similarity of cbILCs to nbILCs (Figure 186 S5D-H). cbC0, like nbC1, had an ILC3 profile with enrichment for *MAFF*, *RUNX3*, *TNFRSF18*. 187 cbC1 were identified as ILC2s, with high levels of RORA, KLRB1, KLRG1, and PTGDR2 188 expression, like nbC2. Of note, similar to ctILC2, cbC1 exhibited high levels of SLAMF1. cbC2, 189 like nbC0, displayed an enrichment in the genes of the ILC1 signature: CD3D, CD3G, CD3E, 190 CCL5, GZMK, GZMA, GZMA, BCL11B, PRDM1, and IKZF3 (Figure S5D-I). These 191 assignments were also supported by the selective expression of IL7R, GATA3, NCR3, EOMES, 192 TBX21, PTGDR2, KIT, RORC, NCR1, and KLRF1 (Figure S51). However, despite the similarity 193 of cbILC subsets to nbILC subsets, velocity analysis predicted a possible conversion of ILC1s 194 into ILC3s only in the context of CRC, in tumor blood (Figure S5J and data not shown). In 195 summary, the blood helper-like ILCs of both healthy donors and CRC patients formed 196 heterogeneous populations containing ILC1, ILC2 and ILC3 subsets.

197

# 198 Identification of a population of CRC tissue-specific ILC1s

Tumor tissue helper-like ILCs contained two additional populations not present in the helper-like
ILCs of the normal mucosa, with transcriptomic signatures resembling those of ILC2s and ILC1s
(Figure 1 and Figure 2). We investigated the relatedness of these two tumor tissue-specific

202 clusters and the helper-like ILC subsets from healthy blood and blood from CRC patients, by grouping the 41,603 helper-like ILCs into a single global analysis. This analysis revealed organ-203 204 specific imprinting in helper-like ILCs, with an overlap between the two types of blood samples, 205 and ctILCs clustering separately (Figure 3A and Table S2). There was a high degree of similarity 206 between nbILCs and cbILCs in gene signature, it was remarkably different from that of ctILCs 207 (Figure 3B-C). We further investigated the relationship between defined ILC subsets from CRC 208 tissue, normal blood and CRC blood samples. The ctILC1-like subset appeared to segregate 209 away from the other clusters, including TILC1 in particular, despite having a core ILC1-210 transcriptomic signature in common with this subset (Figure 3D). Likewise, another TILC-211 specific subset, ctILC2, clustered away from the other ctILCs and the ILC2 in the blood. In the 212 blood, each nbILC clustered with the corresponding cbILC subset (Figure 3D). We investigated 213 whether the tumor-specific helper-like ILCs shared more genes to their normal blood or CRC 214 blood counterparts, by creating Venn diagrams comparing their whole transcriptomic signatures 215 (Figure 3E-F). The ctILC1-like subset shared more genes with cbILC1 (57 genes in common) 216 than with nbILC1 (34 genes in common) (Figure 3E), suggesting a tumor imprinting, whereas 217 ctILC2 shared comparable numbers of genes with cbILC2 and nbILC2, with which this subset 218 had 39 and 34 genes, respectively, in common (Figure 3F).

219

# 220 Helper-like ILC signature is modified in CRC tumor

We searched for tumor-specific tissue features of ILCs, by clustering the 31,246 helper-like ILC cells from normal mucosa and tumor tissues. These two tissues had some helper-like ILC populations in common, but UMAP highlighted a shift between the two tissues, suggesting differences at the transcriptomic level (Figure 4A). Unsupervised hierarchical clustering also 225 showed the tissue-of-origin signature to be stronger than the helper-like ILC subset identity 226 signature (Figure 4B-C, Table S2). The clustering of nbILCs and cbILCs revealed a similar pattern 227 of separation for the 26,502 helper-like ILCs in the UMAP analysis (Figure 4D), and in 228 unsupervised hierarchical clustering, which segregated blood samples according to health status, 229 revealing differences in transcription between the two subsets (Figure 4E-F). One gene was found 230 to be upregulated in normal blood and mucosa (AQP3). Four genes were identified as upregulated 231 in both CRC blood and gut ctILCs relative to their healthy counterparts (SLAMF1, HPGD, TLE4, 232 and *PRDM1*) (Figure 4G). Feature plots of these five genes of interest confirmed the specific 233 upregulation of SLAMF1, HPGD, TLE4, and PRDM1 in gut ctILCs, and the downregulation of 234 AQP3 (Figure 4H-I). SLAMF1 was the principal surface protein gene upregulated in tumors. This 235 gene was expressed in ctILC2, ctILC1-like subsets and cbILC2 (Figure 2G, 4H and Figure S5), 236 but only weakly in their healthy counterparts (Figure 4H), suggesting that SLAMF1 expression at 237 the helper-like ILC cell surface can differentiate healthy individuals from CRC patients.

238

## 239 SLAMF1 is a biomarker of CRC

240 We confirmed, by flow cytometry, the expansion of the ILC1 subset accompanied by reduction 241 of the ILC3 subset in tumor tissues from CRC patients relative to adjacent normal mucosa (Figure 5A-B). Consistent with the scRNAseq analysis revealing higher levels of *TIGIT* in an 242 243 ILC1-like subset and the presence of ctILC2s (Figure 2G), we observed by flow cytometry a 244 population of TIGIT<sup>+</sup> ctILC1-like cells and ctILC2 in tumors, but not in normal tissue (Figure 245 5A-B). Higher levels of expression of the ILC2-activating cytokine IL33 in tumors were 246 correlated with longer survival in CRC patients from The Cancer Genome Atlas (TCGA) dataset, 247 suggesting that ctILC2 might be indicative of a good prognosis in CRC patients (Figure 5C). In 248 contrast to the findings for gut helper-like ILCs, the frequency of each helper-like ILC subset 249 among total helper-like ILCs in blood was similar in CRC patients and healthy donors (Figure 250 5D). Larger numbers of ILCs expressing SLAMF1 at their surface was found in tumors than in 251 the adjacent tissues, from which SLAMF1 was almost absent (Figure 5E-F). By contrast, 252 SLAMF1 was expressed by blood ILCs from healthy donors, but high frequencies of SLAMF1-253 expressing helper-like ILCs were also found in the blood of CRC patients (Figure 5G). 254 Signatures of SLAMF1<sup>+</sup> and SLAMF1<sup>-</sup> ILCs from CRC tissue were then compared. While RORA 255 and IL32 expression were relatively high in SLAMF1<sup>+</sup> ILCs, XCL2 and XCL1 expression were 256 enriched in SLAMF1<sup>-</sup> ILCs (Figure 5H). IL-32 was reported to be anti-tumor in several cancer 257 types, including cervical, colon, prostate, liver and pancreatic cancer, as well as melanoma and chronic myeloid leukemia <sup>39</sup>, suggesting that SLAMF1<sup>+</sup> ILCs might exhibit an IL-32 dependent 258 259 anti-tumor effect. We then investigated the potential role of SLAMF1 in CRC disease 260 development and progression further, by studying the clinical outcome of cancer patients from 261 the TCGA database. Survival was much higher in patients with SLAMF1-high colon and rectal 262 cancer than in those with *SLAMF1*-low tumors (Figure 5I-J), strongly suggesting that SLAMF1 263 is an anti-tumor biomarker in CRC.

#### 264 **Discussion**

Over the last decade, helper-like ILCs have emerged as key elements in protection against pathogens, tissue remodeling and homeostasis <sup>8</sup>. The contribution of helper-like ILCs to cancer remains poorly understood, as they may promote tumor-associated inflammation or, conversely, may display anti-tumor properties, depending on the tumor microenvironment.

269 We investigated the heterogeneity of helper-like ILCs in the human gut and blood by building a single cell transcriptomic landscape of Lin<sup>-</sup>CD127<sup>+</sup> cells at steady state and in CRC patients. 270 271 This unbiased helper-like ILC characterization differed from the analysis of gut ILC 272 transcriptomes provided by another recent study, in which these cells were subjected to sorting 273 by flow cytometry on the basis of the CD103, CD300LF and CD196 cell surface markers before transcriptomic profiling <sup>40</sup>. We show here by single-cell RNA sequencing that the healthy gut 274 275 contains ILC1s, ILC3s, a population of ILC3/NKs, but no ILC2s. Indeed, only few ILC2s can be detected by flow cytometry as Lin<sup>-</sup> CRTH2<sup>+</sup> in our analysis and in <sup>41</sup>. In a recent study <sup>37</sup>, only 2 276 donors out of 18 exhibited reliable ILC2 population in colon lamina propria (2.7% and 3.9% of 277 278 Lin<sup>-</sup> CRTH2<sup>+</sup>), but the vast majority (16 donors) did not possessed a solid ILC2 subset (0 to 0.6% 279 of Lin<sup>-</sup> CRTH2<sup>+</sup>). Thus, purification of these cells for RNA sequencing was not successfully 280 achieved <sup>37</sup>. Importantly, even if few ILC2s may be present in the intestine of some donors, these 281 cells did not give rise to a robust cluster detectable by scRNA sequencing taking into account the 282 minimal percentage of cells needed to exclude a possible doublet contamination. Indeed, and by 283 contrast to what has been reported for mice, ILC2s are almost entirely absent from healthy 284 human tissues, with the exception of the lungs, adipose tissue and the blood connective tissue <sup>41</sup>. 285 In our study, we detected tumor infiltrating ctILC2 in CRC patients. ctILC2 were also observed in breast <sup>42</sup>, gastric <sup>42</sup>, and pancreatic <sup>19</sup> tumors and in urine from bladder cancer patients <sup>15</sup>. 286

Several data support a model in which ILC2s infiltrate tumors via an IL-33-dependent pathway<sup>15,</sup> 287 <sup>16, 19</sup> and mediate tumor immune surveillance by promoting cytolytic CD8<sup>+</sup> T-cell responses. IL-288 289 33 expression showed different survival prognosis in different cancer types, with better 290 prognosis in melanoma patients but not in lung squamous cell carcinoma and pancreatic adenocarcinoma <sup>43</sup>. IL-33 is overexpressed in colorectal tumors <sup>44</sup> and high levels of IL-33 are 291 frequently observed in low-grade adenocarcinomas and early colorectal tumors <sup>45</sup>. Survival rate 292 293 is higher in the IL-33-high group of colon cancer patients than in IL-33-low patients, suggesting 294 that ctILC2 might be indicative of a good prognosis in CRC. However, PD-1 expression on 295 ctILC2 form late stage of CRC may be of bad prognosis <sup>46</sup>. There is, therefore, a clear need to 296 investigate further the role of ctILC2s in anti-tumor immunity in CRC and other cancer 297 indications.

We identified an additional helper-like ILC1 subset, named ctILC1-like TIGIT<sup>+</sup>, present in tumors 298 299 from CRC patients, but absent from the blood. ctILC1-like TIGIT+ had a transcriptional profile 300 more closely resembling the ILC1 gene signature than that of any other ILCs, but they segregated 301 away from ctILC1, suggesting that they differed markedly from 'conventional' gut ctILC1. ILC1-302 like cells known as 'intermediate ILC1s' (intILC1s) have also been described in a mouse model of 303 methylcholanthrene (MCA)-induced tumors <sup>47</sup>. In humans, CD56<sup>+</sup>CD16<sup>-</sup> ILC1-like cells have 304 been found in solid tumors and in peritoneal and pleural fluids from cancer patients <sup>48</sup>, and the 305 cytotoxic functions of these cells are altered in the peripheral blood of donors with acute myeloid 306 leukemia<sup>49</sup>. Intratumoral intILC1 may emerge from NK cell differentiation driven by TGF-β signaling, a phenomenon known as ILC plasticity <sup>47, 50</sup>. The conversion of ILC3s into ILC1s upon 307 308 TGF- $\beta$  signaling has been demonstrated in humanized mice and a transitional ILC3-ILC1 309 population has been identified in the human intestine <sup>40</sup>. We observed no such phenomenon in our

310 gut ILC dataset and none of the algorithms tested was able to establish a relatedness between 311 ctILC1-like TIGIT<sup>+</sup> and another gut ILC subset reflecting possible differentiation (data not shown). 312 The mechanisms by which ctILC1-like TIGIT<sup>+</sup> emerge in CRC tumors thus remain to be 313 determined. We observed a plasticity of ILC1 towards ILC3 in the blood of CRC patients, but not 314 in healthy donors, suggesting the presence of soluble signals driving ILC1-ILC3 plasticity, such as 315 sustained IL-23 levels <sup>51</sup>. The biological relevance of such ILC1-ILC3 plasticity in the blood of 316 CRC patients is not clear.

317 intILC1s and ILC1s produced large amounts of TNF-a and were found to be ineffective at 318 controlling carcinogenesis, potentially even promoting metastasis in mouse models <sup>47</sup>. In human, 319 CD56+CD16- ILC1-like cells express the pro-angiogenic factor VEGF, which may also favor tumor growth <sup>48</sup>. In CRC patients, the frequency of ILC1s has been shown to be higher in tumor 320 tissues than in the normal mucosa <sup>28, 29</sup>, and to increase, at the expense of ILC3s, with tumor 321 322 progression <sup>29</sup>. These results suggest that high ILC1 levels may be predictive of a poor prognosis 323 in cancer. The issue of the specific biological function of the ctILC1-like subset relative to 324 classical TILC1 in CRC tumors also needs to be addressed, because ctILC1-like cells have high 325 levels of PD1 and TIGIT, and may be further unleashed by anti-PD1 and anti-TIGIT 326 immunotherapies.

We characterized the levels of three subsets: ILC3, ILC3/NK and ILC1, in the normal mucosa of all donors. A donor-specific effect was observed in the ILC3 subsets, suggesting possible ILC3imprinting by the microbiota. This effect was absent in blood ILC3 population from healthy donors, which was similar to CRC patient blood. Thus, alteration of gut-microbiota did not seem to influence ILC3 population in the blood. One explanation could reside in the fact that ILC3 are largely resident in tissues <sup>52</sup>. Interestingly, CRC tumors had much lower levels of ILC3s and displayed a loss of this apparent donor specificity. CRC is frequently associated with tumor dysbiosis, involving massive changes to the composition of the microbiota <sup>53-57</sup>. ILC3s are major regulators of intestinal barrier integrity and immune homeostasis. It might therefore be beneficial to promote both ILC3 recolonization and diversification in CRC patients. ILC3 heterogeneity could potentially be boosted by increasing microbial diversity.

We also defined a population of ILC3/NK cells in healthy gut mucosa. These cells had transcriptomic features in common with both ILC3 and NK cells. They differ from ILC3s mostly in terms of their *NKG7*, *KLRD1* (CD94), *GNLY*, *GZMK*, *XCL2* and *CCL4* expression. The biological role of this ILC3/NK subset and its relatedness to 'classical' ILC3 remain to be addressed.

343 A recent study in a mouse model of CRC confirmed the diversity of ILC populations present within the tumor <sup>46</sup>. The authors identified 6 subsets of helper ILC encompassing 1 ILC1, 3 ILC2 344 (A, B and C), 1 ILC3 and 1 'ILCreg'. This study also presented results obtained by flow 345 346 cytometry in human colorectal tumors that corroborated the presence of PD1<sup>+</sup> ILC2 and ILCreg 347 in patients with advanced CRC. We did not found these populations in our study, which is based 348 on the analysis of donors with early stage disease. However, these results suggest the need for an 349 additional comparative scRNAseq study to understand the evolution of the heterogeneity of 350 helper-like ILC as the disease progresses.

351 SLAMF1 was the only cell surface marker for which transcript levels were higher in ctILCs and 352 blood ILCs from CRC patients. ILCs expressing SLAMF1 on their surface were also present at 353 higher frequency in tumors and blood from CRC patients than in healthy donors. SLAMF1 is a 354 single-chain type I transmembrane receptor bearing two immunoreceptor tyrosine-based switch 355 motifs (ITSM) in its cytoplasmic tail, thus recruiting Src homology 2 (SH2) domain-containing 356 signal transduction molecules like SLAM-associated protein (SAP) to initiate downstream signaling cascades <sup>38, 58, 59</sup>. SLAMF1 is a self-ligand but also a microbial receptor for 357 morbilliviruses and a bacterial sensor involved in the elimination of Gram-negative bacteria <sup>38, 60-</sup> 358 359 <sup>62</sup>. SLAMF1 is expressed by almost all hematopoietic cells except NK cells, particularly those 360 with an activated phenotype, and is upregulated upon cell activation <sup>38, 63</sup>. A large proportion of 361 ILCs in the bloodstream expressed SLAMF1 on their surface at steady state, but no such 362 expression was observed on ILCs from normal gut mucosa. By contrast, SLAMF1 was expressed 363 on ctILCs from CRC patients, suggesting that ctILCs may be more activated in the tumor bed than in the normal adjacent mucosa. Nevertheless, the effect of SLAMF1 engagement at the cell 364 365 surface of helper-like ILCs on the biology of these cells remains to be investigated. High levels 366 of SLAMF1 were correlated with better survival of CRC patients. Our results therefore suggest 367 that SLAMF1 is an anti-tumor biomarker in CRC.

368 ILCs have emerged as tissue-specific modulators of cancer immunity that can control various 369 aspects of immunotherapy. As ILCs and T cells co-exist in human cancers and have stimulatory 370 and inhibitory pathways in common, immunotherapy strategies targeting anti-cancer ILCs may be 371 as important as strategies targeting T cells. Our results suggest that ILCs are part of the tumor 372 microenvironment, as subsets of ctILCs are present in CRC. It is tempting to speculate that they 373 may regulate immunity at the tumor bed or have a direct effect on tumor cells. Further studies are 374 required to determine whether it is possible to define more tumor-specific subsets differing in 375 terms of activation status, with either pro- or anti-tumor immunity effects, in cancers arising in 376 different tissues.

377

## 378 Limitations of the Study

This study mainly used the scRNAseq technology to decipher the heterogeneity of ILCs in healthy
donor and CRC patients. We did not found ILC2s in normal mucosa by scRNAseq but in tumors.
The mechanisms involved in the recruitment/differentiation of ILC2s in CRC tumors remain to be
investigated. The functions of tumor-specific ILC1-like cells and *SLMAF1*<sup>+</sup> ILCs have not been
addressed in this first study.

384

# 385 Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No.
31930035, 91942311, and 81971487) and Shanghai Science and Technology Commission
(20JC1410100).

#### 389 Author contributions

- 390 Conceptualization, J.Q., A.C., E.V., and B.S.; Investigation, J.Q., A.C.; Formal Analysis, J.Q.,
- A.C. B.E., Y.Y., and L.B.; Validation, J.Q.; Resources, Z.W., T.Z, L.H., Y.L., H.L., N.W., M.Z.,
- 392 L.C.; Writing Original Draft, J.Q., A.C., L.S., Y.Y., B.S., E.N.M., E.V.; Writing –Review &
- 393 Editing, J.Q., A.C., L.S., B.S., E.N.M., E.V.; Funding Acquisition, L.S., and B.S.; Supervision,
- 394 L.S., E.N.M., E.V., and B.S.
- 395

# **396 Declaration of Interests**

- 397 Eric Vivier is Innate Pharma employee. The others authors declare no competing interests.398 Patents related to this work were under application.
- 399
- 400 Main figure tiles and figure legends

# 401 Figure 1. scRNAseq analysis reveals the presence of ILC1s, ILC3s and ILC3/NKs, but not 402 ILC2s, in normal mucosa.

403 (A) Uniform manifold approximation and projection (UMAP) plot of 16,145 ILCs from normal 404 mucosa from four patients. Cells are color-coded according to the defined subset. (B) UMAP with 405 color coding according to donor origin. (C) Unsupervised hierarchical clustering of the 6 clusters 406 from each donor based on mean expression levels for genes with variable expression within cells. 407 Samples are color-coded according to their relatedness to a particular subset. (D) Heatmap of the 408 542 genes (256 in nmC0-3, 97 in nmC4, 189 in nmC5) tested with a Wilcoxon rank-sum test 409 distinguishing the three groups of ILCs in normal mucosa. Cells are plotted in columns and genes 410 are shown in rows and ranked by adjusted p value < 0.05. Gene expression is color-coded with a 411 scale based on z-score distribution from -2.5 (purple) to 2.5 (yellow). Squares identify specific 412 transcriptomic signatures of ILC subsets. (E) Principal component analysis (PCA) on the 3 groups 413 of ILC clusters of each sample based on the mean level of expression for genes with variable 414 expression. (F) Driving genes for each cell subset, accounting for 20% of the total information in 415 each PC from (E). (G) Top 10 expressed genes from the total gene set, and top 10 expressed genes 416 encoding transcription factors, secreted proteins and cell membrane markers significantly 417 differentiating between the groups of ILCs. Gene symbols and annotations were retrieved from 418 public databases. Transcription factor genes are color-coded in red, secreted protein genes in 419 orange, cell membrane protein genes in blue, and other protein-encoding genes in black. Genes 420 encoded both secreted and cell membrane proteins are color-coded in violet. Genes are ranked by 421 p-value. (H) Module score for tonsil ILC gene expression programs for each of the 3 groups of 422 ILCs, at the single-cell level. Kruskal-Wallis with Dunn's multiple-comparison tests were

423 performed with Benjamini-Hochberg adjusted *p*-values. Each comparison was statistically
424 significant and values are shown in Supplementary Table 3.

425

426 Figure 2. scRNA-seq analysis reveals tumor-specific ILC1 and ILC2 subsets in CRC tissues. 427 (A) UMAP plot of 15,101 CRC tissue ILCs (ctILCs) from the CRC tissues of 4 patients. Cells 428 are color-coded according to the defined subset. (B) UMAP with color coding for donor origin. 429 (C) Unsupervised hierarchical clustering of the 4 clusters from each donor based on mean 430 expression levels for genes with variable expression. (D) Heatmap of the 982 genes (463 in ctC0, 431 100 in ctC1, 314 in ctC2, 105 in ctC3) tested with a Wilcoxon rank-sum test distinguishing 432 between the 4 ctILC subsets in tumor tissue. Cells are plotted in columns and genes are shown in 433 rows and ranked by adjusted p values (< 0.05). Gene expression is color-coded with a scale based on z-score distribution from -2.5 (purple) to 2.5 (yellow). Squares identify specific 434 435 transcriptomic signatures of ctILC subsets. (E) Principal component analysis (PCA) on the 4 436 ctILC subsets of each sample based on the mean level of expression of genes with variable 437 expression. (F) Driving genes for each cell subset accounting for 20% of the total information in 438 each PC from (E). (G) Top 10 expressed genes from the total gene set, and top 10 expressed 439 genes encoding transcription factors, secreted proteins and cell membrane markers significantly 440 differentiating between the groups of ctILCs. Gene symbols and annotations were retrieved from 441 public databases. Transcription factor genes are color-coded in red, secreted protein genes in 442 orange, cell membrane protein genes in blue and other protein-encoding genes in black. Genes 443 encoded both secreted and cell membrane proteins are color-coded in violet. Genes are ranked by 444 *p*-value. (H) Module score for tonsil ILC gene expression programs, at the single-cell level, for 445 each of the 4 ctILCs subsets. Kruskal-Wallis with Dunn's multiple-comparison tests were 446 performed with Benjamini-Hochberg adjusted *p* values. Each comparison was statistically447 significant and values are shown in Supplementary Table 3.

448

#### 449 **Figure 3**. Characterization of tumor tissue-specific ILC subsets.

450 (A) UMAP plot of 41,603 ILCs from normal blood, CRC blood and CRC tissue. Cells are color-451 coded according to the defined subset. (B) Unsupervised hierarchical clustering of normal blood, 452 CRC blood and CRC tissue ILCs from each donor, based on the mean level of expression of genes 453 with variable expression. (C) Heatmap of the 899 genes (44 in normal blood, 70 in CRC blood, 454 775 in CRC tissue) tested in a Wilcoxon rank-sum test distinguishing between the three organs. 455 Cells are plotted in columns and genes are shown in rows and ranked by adjusted p values (< 0.05). 456 Gene expression is color-coded with a scale based on z-score distribution from -2.5 (purple) to 2.5 457 (yellow). Squares identify specific transcriptomic signatures of ILC subsets. (D) Unsupervised 458 hierarchical clustering of normal blood ILCs (nbILCs), CRC blood ILCs (cbILCs) and CRC tissue 459 ILCs (ctILCs) from each donor, at the subset level, based on the mean expression level for genes 460 with variable expression. (E) Venn diagram representing the intersection between the gene 461 signatures of the 4 ILC1 subsets from normal blood, CRC blood, normal mucosa, and CRC tissue. 462 (F) Venn diagram representing the intersection between the gene signatures of the 3 ILC2 subsets 463 from normal blood, CRC blood, and CRC tissue.

464

#### 465 **Figure 4. Specific gene signature of ILC in CRC.**

(A) UMAP plot of 31,246 ILCs from normal mucosa and CRC tissue. Cells are color-coded
according to the defined subset. (B) Unsupervised hierarchical clustering of normal mucosa and
CRC tissue ILCs from each donor based on the mean level of expression for genes with variable

469 expression. (C) Heatmap of the 331 genes (266 in CRC tumor, 51 in normal mucosa) tested with 470 a Wilcoxon rank-sum test distinguishing between the two organs. Cells are plotted in columns 471 and genes are shown in rows and ranked by adjusted p value (< 0.05). Gene expression is color-472 coded with a scale based on z-score distribution from -2.5 (purple) to 2.5 (yellow). Squares 473 identify specific transcriptomic signatures of ILC subsets. (D) UMAP plot of 26,502 ILCs from 474 normal blood and CRC blood. Cells are color-coded according to the defined subsets. (E) 475 Unsupervised hierarchical clustering of normal blood and CRC blood ILCs from each donor, 476 based on the mean level of expression of genes with variable expression. (F) Heatmap of the 254 477 genes (233 in CRC blood, 23 in normal blood) tested with a Wilcoxon rank sum test 478 distinguishing between the 2 organs. Cells are plotted in columns and genes are shown in rows 479 and ranked by adjusted p value (< 0.05). Gene expression is color-coded with a scale based on z-480 score distribution from -2.5 (purple) to 2.5 (yellow). Squares identify specific transcriptomic 481 signatures of ILC subsets. (G) Venn diagram representing the intersection of gene signatures 482 between normal blood and CRC blood, and between normal mucosa and CRC tissue. (H) Feature 483 plots of relative levels of SLAMF1 expression on each of the ILCs from normal blood, CRC 484 blood, normal mucosa, and tumor tissue. (I) Feature plots of the relative expression levels of 485 AQP3, HPGD, TLE4 and PRDM1 in normal blood, blood from CRC patients, normal mucosa 486 and tumor tissue.

487

## 488 **Figure 5. SLAMF1 is a biomarker in CRC.**

(A) Representative flow cytometry profile of TIGIT cell surface expression on the ctILC1-like
subset. (B) Flow cytometry analysis of ILC subsets from normal mucosa (n=8-16) and CRC
tissues (n=7-16). Data show the frequencies of the indicated subset among total ILCs. (C)

492 Kaplan-Meier curves of overall survival stratified by IL-33 expression in CRC patients from 493 TCGA. The optimal cut-off for patient stratification was obtained with a Cox proportional 494 hazards model and the *p*-value was calculated in a log-rank test. IL-33-high group (*n*=369); IL-495 33-low group (n=84). (**D**) Flow cytometry analysis of blood ILC subsets from healthy donors (n=18) and CRC patients (n=16). (E) Representative FACS profile of SLAMF1 cell surface 496 497 expression on ILCs. (F) Flow cytometry analysis of SLAMF1 expression on total ILCs from 498 normal mucosa (n=7) and CRC tissues (n=7). The data show frequencies of SLAMF1<sup>+</sup> cells 499 among total ILCs. g, Flow cytometry analysis of SLAMF1 expression on total blood ILCs from 500 healthy donors (n=14) and CRC patients (n=5). Data show frequencies of SLAMF1<sup>+</sup> cells among 501 total ILCs. (H) Differentially expressed (DE) genes between SLAMF1<sup>+</sup> ILCs and SLAMF1<sup>-</sup> ILCs 502 in CRC tissues. The DE transcriptional factors and cytokines are labeled by red and orange text, respectively. Red dots mean genes up-regulated in SLAMF1+ ILCs, and blue dots represent genes 503 504 up-regulated in SLAMF1<sup>-</sup> ILCs. Kaplan-Meier curves for overall survival stratified by SLAMF1 505 expression level in colon (I) and rectum (J) cancer patients from TCGA. The optimal cut-off for 506 patient stratification was obtained with a Cox proportional hazards model and the *p*-value was 507 calculated in a log-rank test. In (I), SLAMF1-high group (n=393); SLAMF1-low group (n=60). In 508 (**J**), *SLAMF1*-high group (n=119); *SLAMF1*-low group (n=46).

509 In (**B**), (**D**), statistical significance was calculated in Kruskal-Wallis tests with Dunn's multiple 510 comparison tests, and *p*-values were adjusted with the Benjamini-Hochberg method. In (**F**), (**G**), 511 Mann-Whitney tests of unpaired nonparametric *t* tests were used. In (H), statistical analysis is 512 performed by Wilcoxon test.

<sup>513 \*</sup>*p*-value<0.05; \*\**p*-value<0.01; \*\*\**p*-value<0.001; \*\*\*\**p*-value<0.0001.

#### 514 STAR Methods

#### 515 **RESOURCE AVAILABILITY**

- 516 Lead Contact
- 517 Further information and resource requests should be directed to and will be fulfilled by the Lead
- 518 Contact, Bing Su (bingsu@sjtu.edu.cn).

#### 519 Materials Availability

520 This study did not generate new materials.

### 521 Data and Code Availability

- 522 Raw sequence data of each sample is available to download at Genome Sequence Archive for
- 523 Human, GSA-Human (Accession number, HRA000919).

## 524 EXPERIMENTAL MODEL AND SUBJECT DETAILS

525 Clinical samples were obtained from colorectal cancer (CRC) patients without chemo-radiation 526 therapy before resection of the tumor and healthy individuals who gave informed consent, after 527 approval had been obtained from the local medical ethics committee of Ruijin Hospital and 528 Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. Four CRC 529 patients were recruited for scRNAseq at diagnosis (Table S1). Adjacent tissue (normal mucosa), 530 and CRC tissue were collected from these four CRC donors whereas blood samples were collected 531 except P4. Healthy blood for scRNAseq were recruited from individuals undergoing routine 532 colonoscopy who were generally in good health, with no other relevant medical history, such as 533 inflammatory bowel disease (IBD) or CRC (Table S1).

# 534 METHOD DETAILS

# 535 Isolation of human lymphocytes

536 Fresh intestine tissues were quickly placed into 50 mL tubes containing RPMI 1640 medium plus 537 10% FBS, and were transported on ice to laboratory for cell preparation usually within 2 hours. 538 Adipose tissue and visible blood vessels were removed from the tissue manually. Specimens were 539 weighed and washed with PBS and then cut into small pieces. Normal tissue was incubated with 540 10 mL freshly prepared intraepithelial lymphocyte solution (5 mM EDTA, 15 mM HEPES, 10% 541 FBS, 1 mM DTT in PBS), for 1 hour at 37°C, with shaking at 200 rpm. CRC tissue was washed 542 with 10 mL freshly prepared 6.5 mM DTT in PBS for 15 min at 37°C, with shaking. After 543 incubation, the tissue pieces were rinsed twice with PBS and subjected to enzymatic digestion for 544 1 hour at 37°C, with shaking (0.38 mg/mL collagenase VIII, 0.1 mg/mL DNase I, 100 U/ml 545 penicillin, 100 mg/mL streptomycin, 10% FBS in RPMI 1640 medium). The digested tissues were 546 then shaken vigorously by hand for 5 min and mechanically dissociated with a 21-gauge syringe. The resulting cell suspension was filtered through a cell strainer with 100 µm pores into a new 50 547 548 mL conical tube, and PBS was added to a final volume of 30 mL. Cells were then centrifuged at 549 1,800 rpm for 5 min. The supernatants were discarded and the cell pellets were resuspended in 550 RMPI 1640 medium supplemented with 10% FBS. Cells were centrifuged on a Ficoll gradient and 551 then washed with PBS before use.

Peripheral blood mononuclear cells (PBMCs) were obtained from human blood samples centrifuged on a Ficoll gradient. Briefly, blood was mixed with an equal volume of 2% FBS in PBS and gently layered on the Ficoll gradient. Cells were centrifuged at 1000 x g for 25 min, without braking. The cells in the middle layer were then washed once with PBS and resuspended in 2% FBS in PBS for use.

557

#### 558 Sorting of ILCs

559 Freshly prepared human cells were resuspended in PBS and incubated with a live/dead cell marker, 560 Fixable Viability stain 520 (BD 564407), for 10 min at 4°C. Cells were washed and suspended in 561 2% FBS, 2 mM EDTA in PBS (FACS buffer), supplemented with 10% mouse serum and 40% 562 Brilliant Strain Buffer. Cells were first stained with 1:50 human Fc Block for 10 min at 4°C and 563 then incubated with antibodies directed against CD45, CD127, CD117, CRTH2, and against 564 lineage markers (TCRYδ, TCR αβ, CD3, CD19, CD14, CD16, CD94, CD123, CD34, CD303 and 565 FceRI) for 30 min at room temperature. Human cells were washed with FACS buffer, centrifuged 566 and resuspended in FACS buffer. Live ILCs in RPMI 1640 supplemented with 20% FBS were 567 sorted in a BD FACSAria III cell sorter (BD Biosciences).

568

#### 569 Flow cytometry for ILCs

570 For cell surface staining of ILCs, freshly prepared human cells were stained with live/dead cell 571 markers, Fixable Viability stain 520 (BD 564407), and Fc Block as for ILCs sorting. Cells were 572 stained with surface antibodies against CD45, CD127, CD117, CRTH2, CD5, TIGIT and 573 SLAMF1 and antibodies against same lineage markers for ILCs sorting for 30 min at room 574 temperature. For each of the staining, paired samples from same patients were used. PBMC from 575 more healthy donors was stained at same time. Cells were kept at 4°C and analyzed on a BD Symphony (BD Biosciences). Flow data was analyzed with FlowJo software (FlowJo LLC). 576 Statistical analysis was performed by Mann-Whitney tests of unpaired nonparametric t tests or 577 578 Kruskal-Wallis tests with Dunn's multiple comparison tests. p-values were adjusted with the 579 Benjamini-Hochberg method for multiple comparison tests. \* p-value < 0.05, \*\* p-value < 0.01, 580 \*\*\* *p*-value < 0.001, \*\*\*\* *p*-value < 0.0001.

581

#### 582 Single-cell RNA sequencing

Purified ILCs were resuspended in PBS supplemented with 0.04% BSA, and kept on ice. Cells were counted and cell density was adjusted to that recommended for 10x Genomics Chromium single-cell 3' v3 processing and library preparation. Sequencing was performed on an Illumina platform (NovaSeq 6000), by GENERGY BIO (Shanghai, China), at a sequencing depth of about 90,000 reads per single cell.

588

#### 589 Raw 10X read alignment, quality control and normalization

590 Raw sequencing reads were subjected to quality control with FastQC software v0.11.9 591 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequencing data in a bcl file were 592 converted to FASTQ format with Illumina bcl2fastq2 Conversion Software v2.20 593 (https://support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html). We then 594 used Cell Ranger Single Cell Software Suite v. 2.2 to process, align, and summarize unique 595 molecular identifier (UMI) counts, according to the standard pipeline and default parameters 596 described https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines at 597 /latest/. Briefly, we used the standard Cell Ranger Count pipeline to align FASTQ reads with the 598 GRch38 genome. We then filtered sequencing reads on the basis of base-calling quality scores, 599 and assigned cell barcodes and UMIs to each read. The Cell Ranger aggr pipeline was used to 600 normalize all scRNAseq data with default parameters, to obtain a uniform sequencing depth. The 601 combined feature-barcode matrix was used for downstream analysis.

602 During quality control with Seurat analysis, raw UMI count matrices were filtered to remove 603 genes expressed in fewer than three cells, cells with fewer than 200 genes, cells with more than 4000 genes, and cells with high percentages of mitochondrial genes (more than 8%). The resulting
matrix was then normalized by a global-scaling method, converted with a scaling factor (10,000
by default) and log-transformed with the "LogNormalize" function in Seurat for downstream
analysis.

608

# 609 Filtering contaminated cells

We used the R package SingleR<sup>67</sup> and default parameters to assign individual cells to cell types, 610 611 with the Human Primary Cell Atlas Data as the reference dataset. Each single cell was annotated 612 with a cell type in "label.main" of the dataset. As the dataset did not include the human ILC 613 dataset, and, given the similarities between ILCs and T cells or NK cells, we retained cells labeled 614 as both NK and T cells. We removed cells considered as doublets with an range from 0.14% to 615 3.69%. In addition, when analyzing the ILC3 in tumor tissue, two small clusters with percentage 616 ranging from 0.35% to 3.59% that were not present in each donor were removed. Donor-specific 617 clusters with a strong specific NK cell signature were considered to be true NK cell contaminants 618 and were removed from downstream analysis.

619

#### 620 **Reduction of the number of dimensions and clustering**

The top 2000 variable genes were selected with the "FindVariableGenes" function of Seurat <sup>68</sup> and used for principal component analysis (PCA). For ILCs in normal mucosa, we retained the first 40 PCs. For normal blood, CRC blood and tumor tissue, we retained the top 20 PCs. Clusters were identified with the "FindClusters" function, with the algorithm based on the optimization of nearest-neighbor modularity implemented in Seurat and visualized with the uniform manifold approximation and projection (UMAP) algorithm. For comparisons of different tissues, the "merge"
function was used to pool the individual Seurat objects. For donor and tissue data visualization,
the "group.by" parameters were set as intended information when plotting with "DimPlot"
function in Seurat.

630

#### 631 Batch effect correction for ILC3 subsets in normal and tumor mucosa

ILC3 clusters in tumor tissue and both ILC3 and ILC3/NK clusters in normal mucosa were
subsampled for downstream clustering. The batch effect was corrected with the "IntegrateData"
function of the standard workflow of Seurat, based on previously identified anchors (Butler et al.,
2018).

636

# 637 Unsupervised hierarchical clustering

Mean gene expression was analyzed for single cells in each cluster. Only genes previously shown to display variable expression were used. We used the Heatmap.plus package to plot the unsupervised clustering map. The Euclidean distance was calculated for genes in all clusters. For normal mucosa, only the major donor-derived ILCs for cluster 0-4 were used for analysis.

642

#### 643 **Principal component analysis**

644 Principal component analysis (PCA) was performed on the mean level of expression of variable 645 genes in clusters. The top 20 genes contributing to PC1 and PC2 or PC1 and PC3 were plotted. 646 For the analysis of ILCs in normal mucosa, we removed ILCs from donors other than the major 647 source of cluster 0-4. PCA gene loadings for the PCs corresponded to the 20 genes making the largest contribution to the total amount of information represented by PC1 and PC2 or PC1 andPC3.

650

#### 651 Differential expression analysis

We used the "FindAllMarkers" function in Seurat to identify genes differentially expressed between samples, for each cluster. The non-parametric Wilcoxon rank-sum test was used to obtain p-values for comparisons, and the adjusted *p*-values, based on Bonferroni correction, for all genes in the dataset. We used the following parameters for the calculation of log fold-change (logFC) in expression values and to obtain *p*-values for all the variable genes for each cluster: min.pct = 0.05, min.diff.pct = 0.1, logfc.threshold = 0.25. The log-transformed and scaled expression values of the genes were used to generate a heatmap.

659

#### 660 Gene annotations

661 Genes encoding transcription factors (TFs) were retrieved from four TF-related public datasets: JASPAR<sup>69</sup> 70 662 (http://jaspar.genereg.net/), DBD (http://www.transcriptionfactor.org/), 71 72 (http://bioinfo.life.hust.edu.cn/AnimalTFDB/), 663 AnimalTFDB and **TF2DNA** 664 (http://www.fiserlab.org/tf2dna\_db/). Genes encoding cell membrane and secreted proteins were 73 665 obtained from The Human Protein Atlas 666 (https://www.proteinatlas.org/humanproteome/tissue/secretome). Genes were ranked by the adjusted *p*-value for each ILCs cluster in tissue. The top 10 genes within each category (TF, cell 667 668 membrane, or secreted protein) was selected based on their original adjusted p-value in each 669 cluster.

670

#### 671 **RNA velocity estimation**

We analyzed expression dynamics, using scRNA-seq data, by estimating the RNA velocities of single cells by distinguishing between unspliced and spliced transcripts on the basis of the previously aligned bam files of scRNA-seq data. The RNA velocity values for each gene in each cell and the embedding of RNA velocity vectors in a low-dimension space were calculated with the R package velocyto.R <sup>74</sup> (https://github.com/velocyto-team/velocyto.R). RNA velocities were then visualized on the UMAP projection by Gaussian smoothing on a regular grid.

678

#### 679 Scoring samples for ILC signatures

ILC and NK cell signatures from tonsil tissue were defined by Björklund et al., <sup>31</sup>. ILC1 and ILC3 680 681 signatures from jejunum, and ILC2 signatures from spleen were obtained from Yudanin et al., <sup>37</sup>. 682 Module scores were calculated with "AddModuleScore" in Seurat, for each ILC. Briefly, the mean 683 level of gene expression in a single cell was calculated, and the aggregate expression of control 684 feature sets was then subtracted from it. The control features were selected at random from all 685 features. For the module scores of ILC3 subsets from normal mucosa, the differentially expressed 686 gene signatures for each ILC3 subset were used, at single-cell level, on each ILC3 subset in CRC 687 tissues. Violin plots were used to visualize the module scores of each cluster.

688

# 689 TCGA analysis

RNAseq data from primary tumors and clinical annotations were downloaded using the package
TCGAbiolinks in September 2019. Kaplan-Meier curves were plotted using the R package

- 692 survminer. In order to split the expression levels in two groups, the cut-off which gave the lowest
- 693 p-value was used. Optimal cut-off for patient stratification was obtained with a Cox proportional
- hazards model and p-value indicated in the plot was calculated with a log-Rank test.

# 695 **Quantification and statistical analysis**

- 696 Data are presented as the mean  $\pm$  standard error of the means (SEM), or standard deviations (SD).
- 697 GraphPad Prism 6 was used for statistical analysis, two-sided Wilcoxon test and Mann–Whitney
- test were used for unpaired data. Kruskal-Wallis tests with Dunn's multiple comparison tests was
- 699 used for multiple comparisons. Kaplan-Meier survival data were analyzed using two-sided log-
- 700 rank test. p values < 0.05 were considered significantly statistical difference.

# 701 SUPPLEMENTARY FILES

- 702 Table S1. Clinical characteristics of CRC patients and healthy blood donors analyzed by
- 703 scRNAseq, Related to STAR Methods.
- Table S2. Gene signatures of each clusters, related to Figure 1, 2, 3, 4 and Figure S3, S4, S5.
- 705 Adjusted p-values for non-parametric Wilcoxon rank-sum tests are provided.
- Table S3. Statistical analysis of the module score for each cluster, Related to Figure 1H, Figure
- 707 2H, Figure S2B, S3K, S4H and S5H.
- 708 Kruskal-Wallis with Dunn's multiple-comparison tests were performed with Benjamini-
- 709 Hochberg adjusted p-values.

# 710 **References**

711 1. Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH. Coinhibitory Pathways in 712 Immunotherapy for Cancer. Annu Rev Immunol. 2016;34:539-73. 713 Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. 2. 714 Nature. 2017;541(7637):321-30. 715 Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: 3. 716 the unique properties of PD-1 and their advantages for clinical application. Nat Immunol. 717 2013;14(12):1212-8. 718 Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 4. 719 2015;348(6230):69-74. 720 5. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward 721 combination strategies with curative potential. Cell. 2015;161(2):205-14. 722 6. Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int 723 Immunol. 2007;19(7):813-24. 724 Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid 7. 725 cells--a proposal for uniform nomenclature. Nature reviews Immunology. 2013;13(2):145-9. 726 Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate Lymphoid 8. 727 Cells: 10 Years On. Cell. 2018;174(5):1054-66. 728 Lopez-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of Metastasis by NK Cells. 9. 729 Cancer Cell. 2017;32(2):135-54. 730 Chiossone L, Dumas PY, Vienne M, Vivier E. Natural killer cells and other innate 10. 731 lymphoid cells in cancer. Nat Rev Immunol. 2018;18(11):671-88. 732 11. Castro F, Cardoso AP, Goncalves RM, Serre K, Oliveira MJ. Interferon-Gamma at the 733 Crossroads of Tumor Immune Surveillance or Evasion. Front Immunol. 2018;9:847. 734 12. Zaidi MR. The Interferon-Gamma Paradox in Cancer. J Interferon Cytokine Res. 735 2019;39(1):30-8. 736 Bie Q, Zhang P, Su Z, Zheng D, Ying X, Wu Y, et al. Polarization of ILC2s in peripheral 13. 737 blood might contribute to immunosuppressive microenvironment in patients with gastric 738 cancer. J Immunol Res. 2014;2014:923135. 739 14. Trabanelli S, Chevalier MF, Martinez-Usatorre A, Gomez-Cadena A, Salome B, Lecciso M, 740 et al. Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-741 MDSC axis. Nat Commun. 2017;8(1):593. 742 Chevalier MF, Trabanelli S, Racle J, Salome B, Cesson V, Gharbi D, et al. ILC2-modulated 15. 743 T cell-to-MDSC balance is associated with bladder cancer recurrence. J Clin Invest. 744 2017;127(8):2916-29. 745 Saranchova I, Han J, Huang H, Fenninger F, Choi KB, Munro L, et al. Discovery of a 16. 746 Metastatic Immune Escape Mechanism Initiated by the Loss of Expression of the Tumour 747 Biomarker Interleukin-33. Sci Rep. 2016;6:30555. 748 Ikutani M, Yanagibashi T, Ogasawara M, Tsuneyama K, Yamamoto S, Hattori Y, et al. 17. 749 Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and 750 antitumor immunity. J Immunol. 2012;188(2):703-13.

18. Kim J, Kim W, Moon UJ, Kim HJ, Choi HJ, Sin JI, et al. Intratumorally Establishing Type 2
Innate Lymphoid Cells Blocks Tumor Growth. J Immunol. 2016;196(5):2410-23.

Moral JA, Leung J, Rojas LA, Ruan J, Zhao J, Sethna Z, et al. ILC2s amplify PD-1 blockade
by activating tissue-specific cancer immunity. Nature. 2020;579(7797):130-5.

20. Eisenring M, vom Berg J, Kristiansen G, Saller E, Becher B. IL-12 initiates tumor rejection
via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat Immunol.
2010;11(11):1030-8.

Nussbaum K, Burkhard SH, Ohs I, Mair F, Klose CSN, Arnold SJ, et al. Tissue
microenvironment dictates the fate and tumor-suppressive function of type 3 ILCs. J Exp Med.
2017;214(8):2331-47.

Carrega P, Loiacono F, Di Carlo E, Scaramuccia A, Mora M, Conte R, et al. NCR(+)ILC3
concentrate in human lung cancer and associate with intratumoral lymphoid structures. Nat
Commun. 2015;6:8280.

Chan IH, Jain R, Tessmer MS, Gorman D, Mangadu R, Sathe M, et al. Interleukin-23 is
sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through
activation of innate lymphoid cells. Mucosal Immunol. 2014;7(4):842-56.

767 24. Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, Szabady RL, et al. Innate
768 lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J
769 Exp Med. 2013;210(5):917-31.

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics
2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185

772 countries. CA Cancer J Clin. 2018;68(6):394-424.

Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, et al. Intraepithelial type 1
innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing
cells. Immunity. 2013;38(4):769-81.

Simoni Y, Fehlings M, Kloverpris HN, McGovern N, Koo SL, Loh CY, et al. Human Innate
Lymphoid Cell Subsets Possess Tissue-Type Based Heterogeneity in Phenotype and Frequency.
Immunity. 2017;46(1):148-61.

Carrega P, Orecchia P, Quatrini L, Tumino N, Vene R, Benelli R, et al. Characterisation of
 innate lymphoid cell subsets infiltrating colorectal carcinoma. Gut. 2020.

781 29. Ikeda A, Ogino T, Kayama H, Okuzaki D, Nishimura J, Fujino S, et al. Human NKp44+

group 3 innate lymphoid cells associate with tumor-associated tertiary lymphoid structures incolorectal cancer. Cancer Immunol Res. 2020.

78430.Gasteiger G, Fan X, Dikiy S, Lee SY, Rudensky AY. Tissue residency of innate lymphoid785cells in lymphoid and nonlymphoid organs. Science. 2015;350(6263):981-5.

786 31. Bjorklund AK, Forkel M, Picelli S, Konya V, Theorell J, Friberg D, et al. The heterogeneity

of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing. Nat Immunol.
2016;17(4):451-60.

32. Grinberg-Bleyer Y, Oh H, Desrichard A, Bhatt DM, Caron R, Chan TA, et al. NF-kappa B cRel Is Crucial for the Regulatory T Cell Immune Checkpoint in Cancer. Cell. 2017;170(6):1096108.

792 33. Victor AR, Nalin AP, Dong W, McClory S, Wei M, Mao C, et al. IL-18 Drives ILC3

793 Proliferation and Promotes IL-22 Production via NF-kappaB. J Immunol. 2017;199(7):2333-42.

794 34. Medley QG, Kedersha N, O'Brien S, Tian Q, Schlossman SF, Streuli M, et al. 795 Characterization of GMP-17, a granule membrane protein that moves to the plasma membrane 796 of natural killer cells following target cell recognition. Proc Natl Acad Sci U S A. 1996;93(2):685-797 9. 798 35. Ercolano G, Wyss T, Salome B, Romero P, Trabanelli S, Jandus C. Distinct and shared 799 gene expression for human innate versus adaptive helper lymphoid cells. J Leukoc Biol. 2020. 800 36. Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK, et al. Transcriptional 801 programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat 802 Immunol. 2015;16(3):306-17. 803 37. Yudanin NA, Schmitz F, Flamar AL, Thome JJC, Tait Wojno E, Moeller JB, et al. Spatial and 804 Temporal Mapping of Human Innate Lymphoid Cells Reveals Elements of Tissue Specificity. 805 Immunity. 2019;50(2):505-19 e4. 806 38. Gordiienko I, Shlapatska L, Kovalevska L, Sidorenko SP. SLAMF1/CD150 in hematologic 807 malignancies: Silent marker or active player? Clin Immunol. 2019;204:14-22. 808 Hong JT, Son DJ, Lee CK, Yoon DY, Lee DH, Park MH. Interleukin 32, inflammation and 39. 809 cancer. Pharmacol Ther. 2017;174:127-37. 810 40. Cella M, Gamini R, Secca C, Collins PL, Zhao S, Peng V, et al. Subsets of ILC3-ILC1-like 811 cells generate a diversity spectrum of innate lymphoid cells in human mucosal tissues. Nat 812 Immunol. 2019;20(8):980-91. 813 41. Trabanelli S, Gomez-Cadena A, Salome B, Michaud K, Mavilio D, Landis BN, et al. Human 814 innate lymphoid cells (ILCs): Toward a uniform immune-phenotyping. Cytometry B Clin Cytom. 815 2018;94(3):392-9. 816 42. Salimi M, Wang R, Yao X, Li X, Wang X, Hu Y, et al. Activated innate lymphoid cell 817 populations accumulate in human tumour tissues. BMC Cancer. 2018;18(1):341. 818 Wagner M, Ealey KN, Tetsu H, Kiniwa T, Motomura Y, Moro K, et al. Tumor-Derived 43. 819 Lactic Acid Contributes to the Paucity of Intratumoral ILC2s. Cell Rep. 2020;30(8):2743-57 e5. 820 44. Cui G, Qi H, Gundersen MD, Yang H, Christiansen I, Sorbye SW, et al. Dynamics of the IL-821 33/ST2 network in the progression of human colorectal adenoma to sporadic colorectal cancer. 822 Cancer Immunol Immunother. 2015;64(2):181-90. 823 Mertz KD, Mager LF, Wasmer MH, Thiesler T, Koelzer VH, Ruzzante G, et al. The IL-45. 824 33/ST2 pathway contributes to intestinal tumorigenesis in humans and mice. Oncoimmunology. 825 2016;5(1):e1062966. 826 46. Wang S, Qu Y, Xia P, Chen Y, Zhu X, Zhang J, et al. Transdifferentiation of tumor 827 infiltrating innate lymphoid cells during progression of colorectal cancer. Cell Res. 828 2020;30(7):610-22. 829 Gao Y, Souza-Fonseca-Guimaraes F, Bald T, Ng SS, Young A, Ngiow SF, et al. Tumor 47. 830 immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat 831 Immunol. 2017;18(9):1004-15. 832 48. Levi I, Amsalem H, Nissan A, Darash-Yahana M, Peretz T, Mandelboim O, et al. 833 Characterization of tumor infiltrating natural killer cell subset. Oncotarget. 2015;6(15):13835-834 43. 835 49. Salome B, Gomez-Cadena A, Loyon R, Suffiotti M, Salvestrini V, Wyss T, et al. CD56 as a 836 marker of an ILC1-like population with NK cell properties that is functionally impaired in AML. 837 Blood Adv. 2019;3(22):3674-87.

So. Cortez VS, Cervantes-Barragan L, Robinette ML, Bando JK, Wang Y, Geiger TL, et al.
Transforming Growth Factor-beta Signaling Guides the Differentiation of Innate Lymphoid Cells
in Salivary Glands. Immunity. 2016;44(5):1127-39.

841 51. Koh J, Kim HY, Lee Y, Park IK, Kang CH, Kim YT, et al. IL23-Producing Human Lung Cancer

842 Cells Promote Tumor Growth via Conversion of Innate Lymphoid Cell 1 (ILC1) into ILC3. Clin843 Cancer Res. 2019;25(13):4026-37.

- 52. Dutton EE, Gajdasik DW, Willis C, Fiancette R, Bishop EL, Camelo A, et al. Peripheral
  lymph nodes contain migratory and resident innate lymphoid cell populations. Sci Immunol.
  2019;4(35).
- Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, et al. Gut microbiome development
  along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015;6:6528.

Liang Q, Chiu J, Chen Y, Huang Y, Higashimori A, Fang J, et al. Fecal Bacteria Act as Novel
Biomarkers for Noninvasive Diagnosis of Colorectal Cancer. Clin Cancer Res. 2017;23(8):206170.

852 55. Nakatsu G, Li X, Zhou H, Sheng J, Wong SH, Wu WK, et al. Gut mucosal microbiome
853 across stages of colorectal carcinogenesis. Nat Commun. 2015;6:8727.

56. Yazici C, Wolf PG, Kim H, Cross TL, Vermillion K, Carroll T, et al. Race-dependent association of sulfidogenic bacteria with colorectal cancer. Gut. 2017;66(11):1983-94.

856 57. Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, et al. Metagenomic analysis of faecal
857 microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut.
858 2017;66(1):70-8.

859 58. Vilar ML, Frutuoso MS, Arruda SM, Lima DM, Bezerra CS, Pompeu MM. The role of the
860 SLAM-SAP signaling pathway in the modulation of CD4+ T cell responses. Braz J Med Biol Res.
861 2011;44(4):276-82.

862 59. Romero X, Sintes J, Engel P. Role of SLAM family receptors and specific adapter SAP in 863 innate-like lymphocytes. Crit Rev Immunol. 2014;34(4):263-99.

864 60. Yurchenko M, Skjesol A, Ryan L, Richard GM, Kandasamy RK, Wang NH, et al. SLAMF1 is
865 required for TLR4-mediated TRAM-TRIF-dependent signaling in human macrophages. J Cell Biol.
866 2018;217(4):1411-29.

867 61. Berger SB, Romero X, Ma CY, Wang GX, Faubion WA, Liao GX, et al. SLAM is a microbial
868 sensor that regulates bacterial phagosome functions in macrophages. Nature Immunology.
869 2010;11(10):920-U70.

870 62. Song TF, Dong CS, Xiong SD. Signaling lymphocyte-activation molecule SLAMF1

augments mycobacteria BCG-induced inflammatory response and facilitates bacterial clearance.
Int J Med Microbiol. 2015;305(6):572-80.

63. Romero X, Benitez D, March S, Vilella R, Miralpeix M, Engel P. Differential expression of SAP and EAT-2-binding leukocyte cell-surface molecules CD84, CD150 (SLAM), CD229 (Ly9) and

875 CD244 (2B4). Tissue Antigens. 2004;64(2):132-44.

876 64. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic 877 data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411-20.

878 65. Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association.

879 Bioinformatics. 2007;23(2):257-8.

66. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis of lung
single-cell sequencing reveals a transitional profibrotic macrophage. Nature Immunology.
2019;20(2):163-+.

883 67. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis of lung

single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol.
 2010-20(2):163-72

885 2019;20(2):163-72.

886 68. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, et al.

887 Comprehensive Integration of Single-Cell Data. Cell. 2019;177(7):1888-902 e21.

Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, et al.
JASPAR 2018: update of the open-access database of transcription factor binding profiles and
its web framework. Nucleic Acids Res. 2018;46(D1):D260-D6.

Wilson D, Charoensawan V, Kummerfeld SK, Teichmann SA. DBD--taxonomically broad
 transcription factor predictions: new content and functionality. Nucleic Acids Res.

893 2008;36(Database issue):D88-92.

894 71. Hu H, Miao YR, Jia LH, Yu QY, Zhang Q, Guo AY. AnimalTFDB 3.0: a comprehensive

resource for annotation and prediction of animal transcription factors. Nucleic Acids Res.
2019;47(D1):D33-D8.

- 897 72. Pujato M, Kieken F, Skiles AA, Tapinos N, Fiser A. Prediction of DNA binding motifs from
  898 3D models of transcription factors; identifying TLX3 regulated genes. Nucleic Acids Res.
  899 2014;42(22):13500-12.
- 900 73. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al.
- 901 Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.
- 902 74. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, et al. RNA velocity
- 903 of single cells. Nature. 2018;560(7719):494-8.

904



|        | Тор 10 | factors | Secreted | membrane |          |
|--------|--------|---------|----------|----------|----------|
|        | CXCL8  | ZFAND5  | CXCL8    | CD83     |          |
| nmC0-3 | IL4I1  | HES1    | IL4I1    | LST1     | ore      |
|        | CD83   | ZNF331  | IL1R1    | IL1R1    | Sc       |
|        | LST1   | ATF3    | CXCL2    | ATP1B3   | e,       |
|        | IL1R1  | RBPJ    | VEGFA    | PCDH9    | Ę        |
|        | CXCL2  | NR4A3   | LGALS3   | KIT      | na       |
|        | ATP1B3 | ID2     | TNFRSF25 | MPV17L   | ig.      |
|        | NRIP1  | NFKB1   | CSF2     | ICOS     | s,       |
|        | VEGFA  | NFIL3   | SDC4     | SCN1B    | ្រ       |
|        | NCOA7  | IRF4    | TNFSF13B | TNFRSF25 | =        |
|        | GNLY   | HOPX    | GNLY     | KLRD1    |          |
|        | KLRD1  | IRF8    | CCL4     | NKG7     |          |
|        | CCL4   | CEBPB   | CTSW     | HCST     |          |
|        | CMC1   | GATA3   | CST7     | EMP3     |          |
| nmC4   | NKG7   | YBX3    | XCL2     | CD7      |          |
|        | CTSW   | ZEB2    | LGALS1   | IFITM2   |          |
|        | HCST   |         | CD55     | CRTAM    | Le l     |
|        | EMP3   |         | GZMK     | LITAF    | ្ល       |
|        | CD7    |         | NUCB2    | SELL     | 0,       |
|        | IFITM2 |         | TNFRSF1B | FCER1G   | Ľ.       |
|        | CCL4   | IKZF3   | CCL4     | CD3D     | ja;      |
| nmC5   | CD3D   | BCL11B  | CCL5     | CD3G     | <u>.</u> |
|        | CD3G   | BAIF    | CD40LG   | SYNE2    | s s      |
|        | SYNE2  | ZNF831  | CS17     | CD3E     | 0        |
|        | CCL5   | PRDM1   | LGALST   | IRAI1    | <u> </u> |
|        | HSPA1B | PBX4    | IFNG     | GPR1/1   |          |
|        | CD3E   | ID3     | 1L32     | \$100A10 |          |
|        | ⊢YB1   | SP140   | GZMM     | CLEC2D   |          |
|        | IRAT1  |         | IL6ST    | CD48     |          |
|        | DNAJB1 |         | CD6      | CD40LG   |          |





0.4













ctC0 ctC1

ctC2 ctC3

G 15,101 cells

|      |           | Transcription |          | Cell     |
|------|-----------|---------------|----------|----------|
|      | Тор 10    | factors       | Secreted | membrane |
|      | ADEC      | NEK P1        | VCI 1    | APEC     |
| ctC0 | KIT       | MAEE          | GNIX     | KIT      |
|      | XCI 1     | EOSB          | XCL2     | TYPORP   |
|      | GNIX      | PEI           | CTSW     | I ST1    |
|      | XCL2      |               | CYCI8    | PCDHO    |
|      | TYPORP    | 7NE331        |          | ECER1G   |
|      | NEKB1     | RRPI          | VEGEA    | CD81     |
|      | CTSW      | NEIL3         | FREG     | SELENOS  |
|      | CXCI8     | AFE3          | TNESE11  | CD83     |
|      | ZEP36L1   | RERE          | SPINK2   | EREG     |
|      |           |               | CCLA     | CD2D     |
| ctC1 |           |               |          | CD3C     |
|      | GZMK      | PRYA          | GZMK     | NKG7     |
|      | CD3D      | BATE          | IENG     | TRAT1    |
|      | IENG      | IKZE3         | CCI 5    | SYNE2    |
|      | CC15      | BCI 11B       | GZMA     | GPR171   |
|      | GZMA      | SP140         | GZMH     | CD3F     |
|      | CD3G      | 51 140        | CST7     | RARRES3  |
|      | NKG7      |               | ANXA1    | CD401 G  |
|      | GZMH      |               | GZMM     | CD8A     |
|      | BATF      | BATF          | IL32     | TIGIT    |
|      | TIGIT     | FOXP3         | LAIR2    | CTLA4    |
|      | CARD16    | PRDM1         | TNFRSF1B | MAGEH1   |
|      | SAT1      | ZBTB38        | SLAMF1   | CD27     |
| ctC2 | CTLA4     | IKZF2         | IL1R2    | TNFRSF4  |
|      | MAGEH1    | BLOC1S1       | LGALS1   | TNFRSF9  |
|      | CTSC      | MAF           | ISG15    | CLEC2D   |
|      | LINC01943 | CREM          | NAMPT    | TNFRSF1B |
|      | CD27      | ETV7          | C4orf48  | CD3D     |
|      | ICA1      | PBX4          | SPOCK2   | IL2RA    |
|      | IL1RL1    | GATA3         | IL1RL1   | IL1RL1   |
| ctC3 | HPGDS     | HES4          | SLAMF1   | SLAMF1   |
|      | SLAMF1    | RORA          | IL2      | IL17RB   |
|      | PLIN2     | ZBTB16        | TNFSF10  | C1orf162 |
|      | IL17RB    | EGR1          | IL32     | CD69     |
|      | PTGS2     | PPARG         | DPP4     | KLRB1    |
|      | PMAIP1    | KLF9          | FSTL4    | PTGER2   |
|      | ZFP36L2   |               | ANXA1    | CYSLTR1  |
|      | IL2       |               |          | FFAR3    |
|      | HPGD      |               |          | TNFSF10  |



ctC2 ctC3

ctC0 ctC1

F









Inter-tissue common signature

Validation & clinical relevance