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Summary 25 

Innate lymphoid cells (ILCs) are tissue-resident lymphocytes differing from conventional T 26 

lymphocytes in having no antigen-specific receptors. ILCs include natural killer (NK) cells, 27 

helper-like ILC1s, ILC2s, ILC3s and lymphoid tissue-inducer (LTi) cells. Tumor ILCs are 28 

frequently found in various cancers, but their roles in cancer immunity and immunotherapy remain  29 

largely unclear. We report here the single-cell characterization of blood and gut helper-like ILC 30 

subsets in healthy conditions and in colorectal cancer (CRC). The healthy gut contains ILC1s, 31 

ILC3s, and ILC3/NKs, but no ILC2s. Additional tumor-specific ILC1-like and ILC2 subsets were 32 

identified in CRC patients. Signaling lymphocytic activation molecule family member 1 33 

(SLAMF1) was found to be selectively expressed on tumor-specific ILCs and higher levels of 34 

SLAMF1+ ILCs were observed in the blood of CRC patients. The SLAMF1-high group of CRC 35 

patients had a significantly higher survival rate than the SLAMF1-low group, suggesting that 36 

SLAMF1 is an anti-tumor biomarker in CRC.  37 
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Introduction 38 

T cell-based immunotherapy has been very successful clinically for the treatment of malignant 39 

tumors, but only in a small proportion of patients 1-6. Treatments targeting other immune 40 

components are required, to increase the proportion of patients benefiting from immunotherapy. 41 

Innate lymphoid cells (ILCs) are tissue-resident innate antigen-independent lymphocytes that 42 

regulate immunity to pathogens and commensal organisms for tissue homeostasis 7, 8. ILCs form a 43 

heterogeneous population of cells that are currently classified into five major groups, natural killer 44 

(NK) cells, helper-like ILC1s, ILC2s, ILC3s, and lymphoid tissue-inducer (LTi) cells on the basis 45 

of their cytokine production and transcription factor expression profiles 8. ILCs are involved in 46 

immune functions, including pathogen responses, inflammation, tissue development, remodeling, 47 

repair and homeostasis.  48 

Given the large amounts and nature of the cytokines they produce, ILC subsets are likely to be 49 

involved in cancer immunity, but may also contribute to tumor-associated inflammation. NK cells 50 

are known to play a role in cancer, through their tumor-suppressive properties, and are efficient at 51 

controlling metastasis 9. The role of helper-like ILCs in the context of tumorigenesis and cancer 52 

immunity is less clear and appears to depend on the tumor microenvironment. ILC1s produce 53 

large amounts of proinflammatory cytokines, such as IFN-γ and TNF-α, which favor 54 

tumorigenesis 10. However, IFN-γ can also limit tumor growth in certain tumor 55 

microenvironments 11, 12. ILC2s have been shown to be mostly detrimental in various tumor 56 

settings. Indeed, large numbers of ILC2s are present in the peripheral blood of patients with 57 

gastric cancer 13 and acute promyelocytic leukemia 14. ILC2-derived IL-13 stimulates the 58 

immunosuppressive activity of myeloid-derived suppressor cells in acute promyelocytic leukemia 59 

14, and in human bladder cancer and murine prostate tumors 15. However, ILC2-derived IL-5 may 60 
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help to suppress primary and metastatic lung tumors in mouse models 16, 17. ILC2 could also 61 

secrete CXCR2 ligands to reinforce tumor cell-specific apoptosis in solid tumor mouse model 18, 62 

and ILC2s activate tissue-specific tumor immunity in pancreatic cancer 19. ILC3s also have tumor 63 

suppressor properties, in the B16 melanoma mouse model 20, 21 and in non-small cell lung cancer 64 

(NSCLC) patients 22, for example. By contrast, ILC3-derived IL-17 and IL-22 may contribute to 65 

gut cancer development 23, 24. There is, therefore, a clear need to investigate the presence and role 66 

of helper-like ILC subsets in various cancer indications. 67 

Colorectal cancer (CRC) is the third most prevalent cancer in both women and men, and the 68 

second most frequent cause of cancer-related deaths worldwide 25, despite remarkable 69 

improvements in therapeutic strategies. Dysregulated ILC responses have been linked to the 70 

development of intestinal cancers. ILC2s are present at low levels in many pathological 71 

conditions in humans 26, 27. By contrast, CRC patients have large numbers of ILC1s in the 72 

intestines 26-29, and abnormally low levels of ILC3s 28, 29, which normally densely populate the 73 

colon at steady state 27-29. Indeed, decreases in the ILC3/ILC1 ratio have been associated with the 74 

severity of CRC 29. The baseline helper-like ILC landscape, in terms of the composition, 75 

diversity, and functional status of these cells in the human gut, remains incompletely explored 76 

under tumor conditions. 77 

We used unsupervised hierarchical clustering to investigate helper-like ILC heterogeneity at 78 

steady state and during CRC, in the blood, normal mucosa and gut tumors. The healthy gut is 79 

composed of ILC1s, ILC3s, and ILC3/NKs, but no ILC2s. Helper-like ILCs from CRC patients 80 

were found to contain two additional subsets: a CRC tissue-specific ILC1-like subset (ctILC1-81 

like) and an ILC2 (ctILC2) subset. SLAMF1 (signaling lymphocytic activation molecule family 82 

member 1, CD150) was found to be selectively expressed on ctILCs, and higher frequencies of 83 



 6

SLAMF1-expressing helper-like ILCs were found in the blood of CRC patients. The group of 84 

patients with SLAMF1-high colon and rectal cancers had a significantly higher survival rate than 85 

the SLAMF1-low patients, suggesting that SLAMF1 is an anti-tumor biomarker in CRC. 86 
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Results 87 

Healthy gut contains ILC1s, ILC3s, and ILC/NKs, but no ILC2s 88 

We dissected the role of helper-like ILCs in CRC by studying paired CRC tissue and adjacent 89 

mucosal tissue (used as a control) samples, and comparing blood from patients with blood from 90 

age-matched healthy donors (Table S1 and Figure S1A). Lineage negative (Lin-) (TCRγδ- TCR 91 

αβ- CD3- CD19- CD14- CD16- CD94- CD123- CD34- CD303- FcεRI-) CD127+ helper-like ILCs 92 

were more abundant in both normal mucosa and CRC tissue than in blood, consistent with the 93 

known tissue residence properties of ILCs 30 (Figure S1B-C). The percentage of helper-like ILCs 94 

was lower in CRC tissues than in normal mucosa, but similar in normal and CRC blood samples 95 

(Figure S1B-C).  96 

We performed scRNAseq on ∼58,000 total purified helper-like ILCs from blood samples from 97 

CRC patients, healthy blood, normal mucosa and CRC tissue samples (Figure S1D-E). The 98 

heterogeneity of helper-like ILCs in normal mucosa was assessed with a total of 16,145 Lin-99 

CD127+ cells from colon tissues adjacent to the colon tumor in CRC patients (Figure S1E). The 100 

projection of cells onto two dimensions in a uniform manifold approximation and projection 101 

(UMAP) analysis revealed segregation into six distinct clusters: normal mucosa cluster (nmC)0 to 102 

nmC5 (Figure 1A). Two clusters, nmC4 and nmC5, contained cells from all donors, suggesting 103 

that there was no donor-specific transcriptomic profile for these two helper-like ILC populations 104 

(Figure 1B-C). By contrast, most of the cells from nmC0 to nmC3 were single donor-specific 105 

(Figure 1B-C).  106 

Using hierarchical clustering (Figure 1C) and gene signature heatmaps (Figure 1D and Table S2), 107 

principal component analysis (PCA) (Figure 1E-F), top 10 expressed gene analysis (Figure 1G), 108 

and module score analysis (Figure 1H), we then compared the gene signatures of nmC0 to nmC5 109 
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with previously described transcriptomic signatures of human helper-like ILC subsets 31. nmC0 to 110 

nmC3 had a common transcriptomic signature characteristic of ILC3s, with REL, encoding a 111 

proto-oncogene member (c-Rel) of the NF-κB family 32 and NF-κB signaling via the IL22 112 

promoter site in ILC3s 33, as a driver gene (Figure 1F), and KIT, CXCL8, IL4I1 and IL1R1 in the 113 

top 10 expressed genes (Figure 1G). nmC4 was characterized by NKG7, encoding a cytolytic 114 

granule membrane protein 34, and KLRD1, encoding CD94, expressed in T and NK cells, as driver 115 

genes, with GNLY, GZMK, XCL2, and CCL4, among the top expressed genes and with a whole 116 

signature common to NK cells and ILC3s from tonsils (Figure 1F-G). nmC4 was, thus, identified 117 

as an ILC3/NK subset. nmC5 resembled ILC1s, with higher levels of expression of T-cell markers 118 

(CD3D, CD3G, and CD3E), as previously described 31, 35, 36, specific transcription factors (IKZF3, 119 

BCL11B, PRDM1, and ID3), and NK/ILC1 cell functional cytokines (GZMM, IFNG, IL32, CCL4, 120 

and CCL5) (Figure 1F-H). nmC0-3 were enriched in response to lipid, glucocorticoid, and 121 

corticosteroid while nmC5 was involved in T cell activation and differentiation (Figure S2A).The 122 

assignments of each cluster were supported by the selective expression of known helper-like ILC 123 

markers, such as IL7R, GATA3, NCR3, EOMES, TBX21, KIT, RORC, NCR1, NCR2 and KLRF1 124 

(Figure S2B). We found differences between nmC5 and previously reported healthy gut ILC1s 37, 125 

probably because the gating strategies used here did not exclude CD5+ cells (Figure S2C-D). Thus, 126 

the normal gut mucosa defined by scRNAseq profiling of Lin-CD127+ contains ILC1s, ILC3s, and 127 

ILCs/NKs but no ILC2s, consistent with the lack of PTGDR2 gene expression (Figure S2B).  128 

 129 

Tumor ILC1-like and ILC2 subsets are present in CRC patients 130 

We then investigated the composition and diversity of 15,101 ILCs from the tumors of CRC 131 

patients. UMAP analysis identified four distinct clusters in CRC tissue (ctC short for CRC tissue 132 
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cluster): ctC0 to ctC3 (Figure 2A). Contrary to what was observed for normal mucosa, no 133 

overwhelming donor-dependent effect was observed, each cluster being present in all samples 134 

(Figure 2B-C). Based on the strategy applied to normal mucosa clusters (Figure 1), ctC0 was 135 

assigned to ILC3s, consistent with its overexpression of KIT, CXCL8, NFIL3, and IL4I1, like 136 

nmC0-3 (Figure 2C-H and Table S2). ctC1 resembled ILC1s and, like nmC5, displayed 137 

differential expression of genes encoding T-cell molecules (CD3D, CD3G), secreted effectors 138 

(CCL4, IFNG), and ILC-related transcription factors (IKZF3, PRDM1 and BCL11B). The other 139 

two subsets present, ctC2 and ctC3, were absent from normal mucosa. ctC2 cells corresponded to 140 

an additional ILC1 subset, hereafter called the ctILC1-like subset (CRC tissue-specific ILC1-like 141 

subset), characterized by an enrichment in the expression of genes encoding inhibitory and 142 

costimulatory markers (TIGIT, CTLA4, and TNFRSF4). ctC3 cells, identified as ILC2s and 143 

hereafter referred to as ctILC2, had high levels of expression for genes encoding transcription 144 

factors required for ILC2 development (GATA3, RORA, and ZBTB16) and ILC2-responsive 145 

cytokine receptor genes (IL1RL1 and IL17RB) (Figure 2C-H and Table S2). ctC1 was enriched in 146 

cytolysis, granulocyte chemotaxis, granzyme-mediated apoptotic signaling pathway, whereas ctC2 147 

and ctC3 were respectively enriched in T cell anergy and interleukin-5 production and interleukin-148 

13 secretion (Figure S2E). Subset assignments were supported by the selective expression of 149 

known ILC markers, such as IL7R, GATA3, NCR3, EOMES, TBX21, KIT, RORC, NCR1, NCR2 150 

and KLRF1 (Figure S2F). In particular, PTGDR2 and higher levels of GATA3 expression were 151 

found in the ILC2s. SLAMF1 (signaling lymphocytic activation molecule family member 1 or 152 

CD150), which encodes a soluble and membrane protein involved in the activation of T cells, B 153 

cells, and NK cells 38, was upregulated both in ctILC1-like and ctILC2 in tumors (Figure 2G). 154 

Thus, like nmILCs, ctILCs formed heterogeneous populations encompassing four different subsets: 155 
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ctC0 (resembling ILC3s), ctC1 (resembling ILC1s), ctC2 (named as ILC1-like), and ctC3 156 

(resembling ILC2s).  157 

Tumor tissue ILC3s seemed to be less heterogeneous than those in the normal mucosa. We 158 

therefore focused on nmC0-3, nmC4 and ctC0, comparing ILC3 heterogeneity between normal 159 

mucosa helper-like ILCs and gut ctILCs, with the same analysis pipeline as described above after 160 

applying a correction that removed the donor batch effect allowing the analysis of ILC3 161 

heterogeneity (Figure S3, Table S2). Four different populations were found in ILC3s from both 162 

types of tissue (Figure S3 A-I), including a potentially immature SELL-expressing population, and 163 

a population enriched in HLA-encoding transcripts also present in human tonsils (Figure S3E and 164 

J). Each subset of normal mucosa ILC3 had a counterpart in tumor tissue (Figure S3K). Given the 165 

overlap in ILC3s heterogeneity between normal mucosa and gut ctILCs, we can conclude that 166 

CRC did not affect the subset heterogeneity of ILC3s. Thus, gut ctILCs differed from nmILCs in 167 

the appearance of a ctILC2 subset and a second ctILC1-like subset.  168 

 169 

Blood helper-like ILC heterogeneity is stable in CRC 170 

We searched for potential biomarkers of the disease, by investigating differences in blood helper-171 

like ILCs between healthy individuals and CRC patients. A UMAP analysis of 19,603 helper-172 

like ILCs from healthy donors revealed three distinct clusters, hereafter referred to as nbC0, 173 

nbC1, and nbC2 (Figure S4A-C and Table S2). nbC0 was considered to correspond to ILC1s, 174 

based on the upregulation of CD3D, CD3E, CD3G, the NK/ILC1 cell effector proteins (CCL5, 175 

GZMK, GZMM, and GZMA), and helper-like ILC transcription factors (BCL11B, PRDM1, and 176 

IKZF3) (Figure S4D-H). nbC1 was identified as ILC3s, and was characterized by ILC3 177 

transcription factors (MAFF, RUNX3) and costimulation markers (TNFRSF4, TNFRSF18). nbC2 178 
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displayed an upregulation of genes from the ILC2 signature (GATA3, RORA), and genes 179 

encoding regulatory receptors (KLRB1, KLRG1) (Figure S4D-H). These assignments were 180 

supported by the selective expression of known helper-like ILC markers, such as IL7R, GATA3, 181 

NCR3, EOMES, TBX21, PTGDR2, KIT, RORC, NCR1, and KLRF1 (Figure S4I).  182 

A UMAP plot of 6,899 blood helper-like ILCs from CRC donors also identified three subsets, 183 

hereafter referred to as cbC0, cbC1 and cbC2 (Figure S5A-C and Table S2). Driver genes, top 184 

ten genes and module score signatures highlighted the similarity of cbILCs to nbILCs (Figure 185 

S5D-H). cbC0, like nbC1, had an ILC3 profile with enrichment for MAFF, RUNX3, TNFRSF18. 186 

cbC1 were identified as ILC2s, with high levels of RORA, KLRB1, KLRG1, and PTGDR2 187 

expression, like nbC2. Of note, similar to ctILC2, cbC1 exhibited high levels of SLAMF1. cbC2, 188 

like nbC0, displayed an enrichment in the genes of the ILC1 signature: CD3D, CD3G, CD3E, 189 

CCL5, GZMK, GZMM, GZMA, BCL11B, PRDM1, and IKZF3 (Figure S5D-I). These 190 

assignments were also supported by the selective expression of IL7R, GATA3, NCR3, EOMES, 191 

TBX21, PTGDR2, KIT, RORC, NCR1, and KLRF1 (Figure S5I). However, despite the similarity 192 

of cbILC subsets to nbILC subsets, velocity analysis predicted a possible conversion of ILC1s 193 

into ILC3s only in the context of CRC, in tumor blood (Figure S5J and data not shown). In 194 

summary, the blood helper-like ILCs of both healthy donors and CRC patients formed 195 

heterogeneous populations containing ILC1, ILC2 and ILC3 subsets.  196 

 197 

Identification of a population of CRC tissue-specific ILC1s 198 

Tumor tissue helper-like ILCs contained two additional populations not present in the helper-like 199 

ILCs of the normal mucosa, with transcriptomic signatures resembling those of ILC2s and ILC1s 200 

(Figure 1 and Figure 2). We investigated the relatedness of these two tumor tissue-specific 201 
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clusters and the helper-like ILC subsets from healthy blood and blood from CRC patients, by 202 

grouping the 41,603 helper-like ILCs into a single global analysis. This analysis revealed organ-203 

specific imprinting in helper-like ILCs, with an overlap between the two types of blood samples, 204 

and ctILCs clustering separately (Figure 3A and Table S2). There was a high degree of similarity 205 

between nbILCs and cbILCs in gene signature, it was remarkably different from that of ctILCs 206 

(Figure 3B-C). We further investigated the relationship between defined ILC subsets from CRC 207 

tissue, normal blood and CRC blood samples. The ctILC1-like subset appeared to segregate 208 

away from the other clusters, including TILC1 in particular, despite having a core ILC1-209 

transcriptomic signature in common with this subset (Figure 3D). Likewise, another TILC-210 

specific subset, ctILC2, clustered away from the other ctILCs and the ILC2 in the blood. In the 211 

blood, each nbILC clustered with the corresponding cbILC subset (Figure 3D). We investigated 212 

whether the tumor-specific helper-like ILCs shared more genes to their normal blood or CRC 213 

blood counterparts, by creating Venn diagrams comparing their whole transcriptomic signatures 214 

(Figure 3E-F). The ctILC1-like subset shared more genes with cbILC1 (57 genes in common) 215 

than with nbILC1 (34 genes in common) (Figure 3E), suggesting a tumor imprinting, whereas 216 

ctILC2 shared comparable numbers of genes with cbILC2 and nbILC2, with which this subset 217 

had 39 and 34 genes, respectively, in common (Figure 3F).  218 

 219 

Helper-like ILC signature is modified in CRC tumor  220 

We searched for tumor-specific tissue features of ILCs, by clustering the 31,246 helper-like ILC 221 

cells from normal mucosa and tumor tissues. These two tissues had some helper-like ILC 222 

populations in common, but UMAP highlighted a shift between the two tissues, suggesting 223 

differences at the transcriptomic level (Figure 4A). Unsupervised hierarchical clustering also 224 
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showed the tissue-of-origin signature to be stronger than the helper-like ILC subset identity 225 

signature (Figure 4B-C, Table S2). The clustering of nbILCs and cbILCs revealed a similar pattern 226 

of separation for the 26,502 helper-like ILCs in the UMAP analysis (Figure 4D), and in 227 

unsupervised hierarchical clustering, which segregated blood samples according to health status, 228 

revealing differences in transcription between the two subsets (Figure 4E-F). One gene was found 229 

to be upregulated in normal blood and mucosa (AQP3). Four genes were identified as upregulated 230 

in both CRC blood and gut ctILCs relative to their healthy counterparts (SLAMF1, HPGD, TLE4, 231 

and PRDM1) (Figure 4G). Feature plots of these five genes of interest confirmed the specific 232 

upregulation of SLAMF1, HPGD, TLE4, and PRDM1 in gut ctILCs, and the downregulation of 233 

AQP3 (Figure 4H-I). SLAMF1 was the principal surface protein gene upregulated in tumors. This 234 

gene was expressed in ctILC2, ctILC1-like subsets and cbILC2 (Figure 2G, 4H and Figure S5), 235 

but only weakly in their healthy counterparts (Figure 4H), suggesting that SLAMF1 expression at 236 

the helper-like ILC cell surface can differentiate healthy individuals from CRC patients.  237 

 238 

SLAMF1 is a biomarker of CRC 239 

We confirmed, by flow cytometry, the expansion of the ILC1 subset accompanied by reduction 240 

of the ILC3 subset in tumor tissues from CRC patients relative to adjacent normal mucosa 241 

(Figure 5A-B). Consistent with the scRNAseq analysis revealing higher levels of TIGIT in an 242 

ILC1-like subset and the presence of ctILC2s (Figure 2G), we observed by flow cytometry a 243 

population of TIGIT+ ctILC1-like cells and ctILC2 in tumors, but not in normal tissue (Figure 244 

5A-B). Higher levels of expression of the ILC2-activating cytokine IL33 in tumors were 245 

correlated with longer survival in CRC patients from The Cancer Genome Atlas (TCGA) dataset, 246 

suggesting that ctILC2 might be indicative of a good prognosis in CRC patients (Figure 5C). In 247 
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contrast to the findings for gut helper-like ILCs, the frequency of each  helper-like ILC subset 248 

among total helper-like ILCs in blood was similar in CRC patients and healthy donors (Figure 249 

5D). Larger numbers of ILCs expressing SLAMF1 at their surface was found in tumors than in 250 

the adjacent tissues, from which SLAMF1 was almost absent (Figure 5E-F). By contrast, 251 

SLAMF1 was expressed by blood ILCs from healthy donors, but high frequencies of SLAMF1-252 

expressing helper-like ILCs were also found in the blood of CRC patients (Figure 5G). 253 

Signatures of SLAMF1+ and SLAMF1- ILCs from CRC tissue were then compared. While RORA 254 

and IL32 expression were relatively high in SLAMF1+ ILCs, XCL2 and XCL1 expression were 255 

enriched in SLAMF1- ILCs (Figure 5H). IL-32 was reported to be anti-tumor in several cancer 256 

types, including cervical, colon, prostate, liver and pancreatic cancer, as well as melanoma and 257 

chronic myeloid leukemia 39, suggesting that SLAMF1+ ILCs might exhibit an IL-32 dependent 258 

anti-tumor effect. We then investigated the potential role of SLAMF1 in CRC disease 259 

development and progression further, by studying the clinical outcome of cancer patients from 260 

the TCGA database. Survival was much higher in patients with SLAMF1-high colon and rectal 261 

cancer than in those with SLAMF1-low tumors (Figure 5I-J), strongly suggesting that SLAMF1 262 

is an anti-tumor biomarker in CRC.  263 
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Discussion 264 

Over the last decade, helper-like ILCs have emerged as key elements in protection against 265 

pathogens, tissue remodeling and homeostasis 8. The contribution of helper-like ILCs to cancer 266 

remains poorly understood, as they may promote tumor-associated inflammation or, conversely, 267 

may display anti-tumor properties, depending on the tumor microenvironment.  268 

We investigated the heterogeneity of helper-like ILCs in the human gut and blood by building a 269 

single cell transcriptomic landscape of Lin-CD127+ cells at steady state and in CRC patients. 270 

This unbiased helper-like ILC characterization differed from the analysis of gut ILC 271 

transcriptomes provided by another recent study, in which these cells were subjected to sorting 272 

by flow cytometry on the basis of the CD103, CD300LF and CD196 cell surface markers before 273 

transcriptomic profiling 40. We show here by single-cell RNA sequencing that the healthy gut 274 

contains ILC1s, ILC3s, a population of ILC3/NKs, but no ILC2s. Indeed, only few ILC2s can be 275 

detected by flow cytometry as Lin- CRTH2+ in our analysis and in 41. In a recent study 37, only 2 276 

donors out of 18 exhibited reliable ILC2 population in colon lamina propria (2.7% and 3.9% of 277 

Lin- CRTH2+), but the vast majority (16 donors) did not possessed a solid ILC2 subset (0 to 0.6% 278 

of Lin- CRTH2+). Thus, purification of these cells for RNA sequencing was not successfully 279 

achieved 37. Importantly, even if few ILC2s may be present in the intestine of some donors, these 280 

cells did not give rise to a robust cluster detectable by scRNA sequencing taking into account the 281 

minimal percentage of cells needed to exclude a possible doublet contamination. Indeed, and by 282 

contrast to what has been reported for mice, ILC2s are almost entirely absent from healthy 283 

human tissues, with the exception of the lungs, adipose tissue and the blood connective tissue 41. 284 

In our study, we detected tumor infiltrating ctILC2 in CRC patients. ctILC2 were also observed 285 

in breast 42, gastric 42, and pancreatic 19 tumors and in urine from bladder cancer patients 15. 286 
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Several data support a model in which ILC2s infiltrate tumors via an IL-33-dependent pathway 15, 287 

16, 19 and mediate tumor immune surveillance by promoting cytolytic CD8+ T-cell responses. IL-288 

33 expression showed different survival prognosis in different cancer types, with better 289 

prognosis in melanoma patients but not in lung squamous cell carcinoma and pancreatic 290 

adenocarcinoma 43. IL-33 is overexpressed in colorectal tumors 44 and high levels of IL-33 are 291 

frequently observed in low-grade adenocarcinomas and early colorectal tumors 45. Survival rate 292 

is higher in the IL-33-high group of colon cancer patients than in IL-33-low patients, suggesting 293 

that ctILC2 might be indicative of a good prognosis in CRC. However, PD-1 expression on 294 

ctILC2 form late stage of CRC may be of bad prognosis 46. There is, therefore, a clear need to 295 

investigate further the role of ctILC2s in anti-tumor immunity in CRC and other cancer 296 

indications.  297 

We identified an additional helper-like ILC1 subset, named ctILC1-like TIGIT+, present in tumors 298 

from CRC patients, but absent from the blood. ctILC1-like TIGIT+ had a transcriptional profile 299 

more closely resembling the ILC1 gene signature than that of any other ILCs, but they segregated 300 

away from ctILC1, suggesting that they differed markedly from ‘conventional’ gut ctILC1. ILC1-301 

like cells known as ‘intermediate ILC1s’ (intILC1s) have also been described in a mouse model of 302 

methylcholanthrene (MCA)-induced tumors 47. In humans, CD56+CD16− ILC1-like cells have 303 

been found in solid tumors and in peritoneal and pleural fluids from cancer patients 48, and the 304 

cytotoxic functions of these cells are altered in the peripheral blood of donors with acute myeloid 305 

leukemia 49. Intratumoral intILC1 may emerge from NK cell differentiation driven by TGF-β 306 

signaling, a phenomenon known as ILC plasticity 47, 50. The conversion of ILC3s into ILC1s upon 307 

TGF-β signaling has been demonstrated in humanized mice and a transitional ILC3-ILC1 308 

population has been identified in the human intestine 40. We observed no such phenomenon in our 309 
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gut ILC dataset and none of the algorithms tested was able to establish a relatedness between 310 

ctILC1-like TIGIT+ and another gut ILC subset reflecting possible differentiation (data not shown). 311 

The mechanisms by which ctILC1-like TIGIT+ emerge in CRC tumors thus remain to be 312 

determined. We observed a plasticity of ILC1 towards ILC3 in the blood of CRC patients, but not 313 

in healthy donors, suggesting the presence of soluble signals driving ILC1-ILC3 plasticity, such as 314 

sustained IL-23 levels 51. The biological relevance of such ILC1-ILC3 plasticity in the blood of 315 

CRC patients is not clear. 316 

intILC1s and ILC1s produced large amounts of TNF-α and were found to be ineffective at 317 

controlling carcinogenesis, potentially even promoting metastasis in mouse models 47. In human, 318 

CD56+CD16− ILC1-like cells express the pro-angiogenic factor VEGF, which may also favor 319 

tumor growth 48. In CRC patients, the frequency of ILC1s has been shown to be higher in tumor 320 

tissues than in the normal mucosa 28, 29, and to increase, at the expense of ILC3s, with tumor 321 

progression 29. These results suggest that high ILC1 levels may be predictive of a poor prognosis 322 

in cancer. The issue of the specific biological function of the ctILC1-like subset relative to 323 

classical TILC1 in CRC tumors also needs to be addressed, because ctILC1-like cells have high 324 

levels of PD1 and TIGIT, and may be further unleashed by anti-PD1 and anti-TIGIT 325 

immunotherapies. 326 

We characterized the levels of three subsets: ILC3, ILC3/NK and ILC1, in the normal mucosa of 327 

all donors. A donor-specific effect was observed in the ILC3 subsets, suggesting possible ILC3-328 

imprinting by the microbiota. This effect was absent in blood ILC3 population from healthy 329 

donors, which was similar to CRC patient blood. Thus, alteration of gut-microbiota did not seem 330 

to influence ILC3 population in the blood. One explanation could reside in the fact that ILC3 are 331 

largely resident in tissues 52. Interestingly, CRC tumors had much lower levels of ILC3s and 332 
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displayed a loss of this apparent donor specificity. CRC is frequently associated with tumor 333 

dysbiosis, involving massive changes to the composition of the microbiota 53-57. ILC3s are major 334 

regulators of intestinal barrier integrity and immune homeostasis. It might therefore be beneficial 335 

to promote both ILC3 recolonization and diversification in CRC patients. ILC3 heterogeneity 336 

could potentially be boosted by increasing microbial diversity.  337 

We also defined a population of ILC3/NK cells in healthy gut mucosa. These cells had 338 

transcriptomic features in common with both ILC3 and NK cells. They differ from ILC3s mostly 339 

in terms of their NKG7, KLRD1 (CD94), GNLY, GZMK, XCL2 and CCL4 expression. The 340 

biological role of this ILC3/NK subset and its relatedness to ‘classical’ ILC3 remain to be 341 

addressed. 342 

A recent study in a mouse model of CRC confirmed the diversity of ILC populations present 343 

within the tumor 46. The authors identified 6 subsets of helper ILC encompassing 1 ILC1, 3 ILC2 344 

(A, B and C), 1 ILC3 and 1 ‘ILCreg’. This study also presented results obtained by flow 345 

cytometry in human colorectal tumors that corroborated the presence of PD1+ ILC2 and ILCreg 346 

in patients with advanced CRC. We did not found these populations in our study, which is based 347 

on the analysis of donors with early stage disease. However, these results suggest the need for an 348 

additional comparative scRNAseq study to understand the evolution of the heterogeneity of 349 

helper-like ILC as the disease progresses.   350 

SLAMF1 was the only cell surface marker for which transcript levels were higher in ctILCs and 351 

blood ILCs from CRC patients. ILCs expressing SLAMF1 on their surface were also present at 352 

higher frequency in tumors and blood from CRC patients than in healthy donors. SLAMF1 is a 353 

single-chain type I transmembrane receptor bearing two immunoreceptor tyrosine-based switch 354 

motifs (ITSM) in its cytoplasmic tail, thus recruiting Src homology 2 (SH2) domain-containing 355 
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signal transduction molecules like SLAM-associated protein (SAP) to initiate downstream 356 

signaling cascades 38, 58, 59. SLAMF1 is a self-ligand but also a microbial receptor for 357 

morbilliviruses and a bacterial sensor involved in the elimination of Gram-negative bacteria 38, 60-358 

62. SLAMF1 is expressed by almost all hematopoietic cells except NK cells, particularly those 359 

with an activated phenotype, and is upregulated upon cell activation 38, 63. A large proportion of 360 

ILCs in the bloodstream expressed SLAMF1 on their surface at steady state, but no such 361 

expression was observed on ILCs from normal gut mucosa. By contrast, SLAMF1 was expressed 362 

on ctILCs from CRC patients, suggesting that ctILCs may be more activated in the tumor bed 363 

than in the normal adjacent mucosa. Nevertheless, the effect of SLAMF1 engagement at the cell 364 

surface of helper-like ILCs on the biology of these cells remains to be investigated. High levels 365 

of SLAMF1 were correlated with better survival of CRC patients. Our results therefore suggest 366 

that SLAMF1 is an anti-tumor biomarker in CRC. 367 

ILCs have emerged as tissue-specific modulators of cancer immunity that can control various 368 

aspects of immunotherapy. As ILCs and T cells co-exist in human cancers and have stimulatory 369 

and inhibitory pathways in common, immunotherapy strategies targeting anti-cancer ILCs may be 370 

as important as strategies targeting T cells. Our results suggest that ILCs are part of the tumor 371 

microenvironment, as subsets of ctILCs are present in CRC. It is tempting to speculate that they 372 

may regulate immunity at the tumor bed or have a direct effect on tumor cells. Further studies are 373 

required to determine whether it is possible to define more tumor-specific subsets differing in 374 

terms of activation status, with either pro- or anti-tumor immunity effects, in cancers arising in 375 

different tissues. 376 

 377 

Limitations of the Study 378 
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This study mainly used the scRNAseq technology to decipher the heterogeneity of ILCs in healthy 379 

donor and CRC patients. We did not found ILC2s in normal mucosa by scRNAseq but in tumors. 380 

The mechanisms involved in the recruitment/differentiation of ILC2s in CRC tumors remain to be 381 

investigated. The functions of tumor-specific ILC1-like cells and SLMAF1+ ILCs have not been 382 

addressed in this first study. 383 
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Figure 1. scRNAseq analysis reveals the presence of ILC1s, ILC3s and ILC3/NKs, but not 401 

ILC2s, in normal mucosa. 402 

(A) Uniform manifold approximation and projection (UMAP) plot of 16,145 ILCs from normal 403 

mucosa from four patients. Cells are color-coded according to the defined subset. (B) UMAP with 404 

color coding according to donor origin. (C) Unsupervised hierarchical clustering of the 6 clusters 405 

from each donor based on mean expression levels for genes with variable expression within cells. 406 

Samples are color-coded according to their relatedness to a particular subset. (D) Heatmap of the 407 

542 genes (256 in nmC0-3, 97 in nmC4, 189 in nmC5) tested with a Wilcoxon rank-sum test 408 

distinguishing the three groups of ILCs in normal mucosa. Cells are plotted in columns and genes 409 

are shown in rows and ranked by adjusted p value < 0.05. Gene expression is color-coded with a 410 

scale based on z-score distribution from -2.5 (purple) to 2.5 (yellow). Squares identify specific 411 

transcriptomic signatures of ILC subsets. (E) Principal component analysis (PCA) on the 3 groups 412 

of ILC clusters of each sample based on the mean level of expression for genes with variable 413 

expression. (F) Driving genes for each cell subset, accounting for 20% of the total information in 414 

each PC from (E). (G) Top 10 expressed genes from the total gene set, and top 10 expressed genes 415 

encoding transcription factors, secreted proteins and cell membrane markers significantly 416 

differentiating between the groups of ILCs. Gene symbols and annotations were retrieved from 417 

public databases. Transcription factor genes are color-coded in red, secreted protein genes in 418 

orange, cell membrane protein genes in blue, and other protein-encoding genes in black. Genes 419 

encoded both secreted and cell membrane proteins are color-coded in violet. Genes are ranked by 420 

p-value. (H) Module score for tonsil ILC gene expression programs for each of the 3 groups of 421 

ILCs, at the single-cell level. Kruskal-Wallis with Dunn’s multiple-comparison tests were 422 
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performed with Benjamini-Hochberg adjusted p-values. Each comparison was statistically 423 

significant and values are shown in Supplementary Table 3.  424 

 425 

Figure 2. scRNA-seq analysis reveals tumor-specific ILC1 and ILC2 subsets in CRC tissues. 426 

(A) UMAP plot of 15,101 CRC tissue ILCs (ctILCs) from the CRC tissues of 4 patients. Cells 427 

are color-coded according to the defined subset. (B) UMAP with color coding for donor origin. 428 

(C) Unsupervised hierarchical clustering of the 4 clusters from each donor based on mean 429 

expression levels for genes with variable expression. (D) Heatmap of the 982 genes (463 in ctC0, 430 

100 in ctC1, 314 in ctC2, 105 in ctC3) tested with a Wilcoxon rank-sum test distinguishing 431 

between the 4 ctILC subsets in tumor tissue. Cells are plotted in columns and genes are shown in 432 

rows and ranked by adjusted p values (< 0.05). Gene expression is color-coded with a scale 433 

based on z-score distribution from -2.5 (purple) to 2.5 (yellow). Squares identify specific 434 

transcriptomic signatures of ctILC subsets. (E) Principal component analysis (PCA) on the 4 435 

ctILC subsets of each sample based on the mean level of expression of genes with variable 436 

expression. (F) Driving genes for each cell subset accounting for 20% of the total information in 437 

each PC from (E). (G) Top 10 expressed genes from the total gene set, and top 10 expressed 438 

genes encoding transcription factors, secreted proteins and cell membrane markers significantly 439 

differentiating between the groups of ctILCs. Gene symbols and annotations were retrieved from 440 

public databases. Transcription factor genes are color-coded in red, secreted protein genes in 441 

orange, cell membrane protein genes in blue and other protein-encoding genes in black. Genes 442 

encoded both secreted and cell membrane proteins are color-coded in violet. Genes are ranked by 443 

p-value. (H) Module score for tonsil ILC gene expression programs, at the single-cell level, for 444 

each of the 4 ctILCs subsets. Kruskal-Wallis with Dunn’s multiple-comparison tests were 445 
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performed with Benjamini-Hochberg adjusted p values. Each comparison was statistically 446 

significant and values are shown in Supplementary Table 3.  447 

 448 

Figure 3. Characterization of tumor tissue-specific ILC subsets. 449 

(A) UMAP plot of 41,603 ILCs from normal blood, CRC blood and CRC tissue. Cells are color-450 

coded according to the defined subset. (B) Unsupervised hierarchical clustering of normal blood, 451 

CRC blood and CRC tissue ILCs from each donor, based on the mean level of expression of genes 452 

with variable expression. (C) Heatmap of the 899 genes (44 in normal blood, 70 in CRC blood, 453 

775 in CRC tissue) tested in a Wilcoxon rank-sum test distinguishing between the three organs. 454 

Cells are plotted in columns and genes are shown in rows and ranked by adjusted p values (< 0.05). 455 

Gene expression is color-coded with a scale based on z-score distribution from -2.5 (purple) to 2.5 456 

(yellow). Squares identify specific transcriptomic signatures of ILC subsets. (D) Unsupervised 457 

hierarchical clustering of normal blood ILCs (nbILCs), CRC blood ILCs (cbILCs) and CRC tissue 458 

ILCs (ctILCs) from each donor, at the subset level, based on the mean expression level for genes 459 

with variable expression. (E) Venn diagram representing the intersection between the gene 460 

signatures of the 4 ILC1 subsets from normal blood, CRC blood, normal mucosa, and CRC tissue. 461 

(F) Venn diagram representing the intersection between the gene signatures of the 3 ILC2 subsets 462 

from normal blood, CRC blood, and CRC tissue.  463 

 464 

Figure 4. Specific gene signature of ILC in CRC. 465 

(A) UMAP plot of 31,246 ILCs from normal mucosa and CRC tissue. Cells are color-coded 466 

according to the defined subset. (B) Unsupervised hierarchical clustering of normal mucosa and 467 

CRC tissue ILCs from each donor based on the mean level of expression for genes with variable 468 
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expression. (C) Heatmap of the 331 genes (266 in CRC tumor, 51 in normal mucosa) tested with 469 

a Wilcoxon rank-sum test distinguishing between the two organs. Cells are plotted in columns 470 

and genes are shown in rows and ranked by adjusted p value (< 0.05). Gene expression is color-471 

coded with a scale based on z-score distribution from -2.5 (purple) to 2.5 (yellow). Squares 472 

identify specific transcriptomic signatures of ILC subsets. (D) UMAP plot of 26,502 ILCs from 473 

normal blood and CRC blood. Cells are color-coded according to the defined subsets. (E) 474 

Unsupervised hierarchical clustering of normal blood and CRC blood ILCs from each donor, 475 

based on the mean level of expression of genes with variable expression. (F) Heatmap of the 254 476 

genes (233 in CRC blood, 23 in normal blood) tested with a Wilcoxon rank sum test 477 

distinguishing between the 2 organs. Cells are plotted in columns and genes are shown in rows 478 

and ranked by adjusted p value (< 0.05). Gene expression is color-coded with a scale based on z-479 

score distribution from -2.5 (purple) to 2.5 (yellow). Squares identify specific transcriptomic 480 

signatures of ILC subsets. (G) Venn diagram representing the intersection of gene signatures 481 

between normal blood and CRC blood, and between normal mucosa and CRC tissue. (H) Feature 482 

plots of relative levels of SLAMF1 expression on each of the ILCs from normal blood, CRC 483 

blood, normal mucosa, and tumor tissue. (I) Feature plots of the relative expression levels of 484 

AQP3, HPGD, TLE4 and PRDM1 in normal blood, blood from CRC patients, normal mucosa 485 

and tumor tissue. 486 

 487 

Figure 5. SLAMF1 is a biomarker in CRC. 488 

(A) Representative flow cytometry profile of TIGIT cell surface expression on the ctILC1-like 489 

subset. (B) Flow cytometry analysis of ILC subsets from normal mucosa (n=8-16) and CRC 490 

tissues (n=7-16). Data show the frequencies of the indicated subset among total ILCs. (C) 491 
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Kaplan-Meier curves of overall survival stratified by IL-33 expression in CRC patients from 492 

TCGA. The optimal cut-off for patient stratification was obtained with a Cox proportional 493 

hazards model and the p-value was calculated in a log-rank test. IL-33-high group (n=369); IL-494 

33-low group (n=84). (D) Flow cytometry analysis of blood ILC subsets from healthy donors 495 

(n=18) and CRC patients (n=16). (E) Representative FACS profile of SLAMF1 cell surface 496 

expression on ILCs. (F) Flow cytometry analysis of SLAMF1 expression on total ILCs from 497 

normal mucosa (n=7) and CRC tissues (n=7). The data show frequencies of SLAMF1+ cells 498 

among total ILCs. g, Flow cytometry analysis of SLAMF1 expression on total blood ILCs from 499 

healthy donors (n=14) and CRC patients (n=5). Data show frequencies of SLAMF1+ cells among 500 

total ILCs. (H) Differentially expressed (DE) genes between SLAMF1+ ILCs and SLAMF1- ILCs 501 

in CRC tissues. The DE transcriptional factors and cytokines are labeled by red and orange text, 502 

respectively. Red dots mean genes up-regulated in SLAMF1+ ILCs, and blue dots represent genes 503 

up-regulated in SLAMF1- ILCs.  Kaplan-Meier curves for overall survival stratified by SLAMF1 504 

expression level in colon (I) and rectum (J) cancer patients from TCGA. The optimal cut-off for 505 

patient stratification was obtained with a Cox proportional hazards model and the p-value was 506 

calculated in a log-rank test. In (I), SLAMF1-high group (n=393); SLAMF1-low group (n=60). In 507 

(J), SLAMF1-high group (n=119); SLAMF1-low group (n=46). 508 

In (B), (D), statistical significance was calculated in Kruskal-Wallis tests with Dunn’s multiple 509 

comparison tests, and p-values were adjusted with the Benjamini-Hochberg method. In (F), (G),  510 

Mann-Whitney tests of unpaired nonparametric t tests were used. In (H), statistical analysis is 511 

performed by Wilcoxon test. 512 

*p-value<0.05; **p-value<0.01; ***p-value<0.001; ****p-value<0.0001.  513 
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STAR Methods 514 

RESOURCE AVAILABILITY 515 

Lead Contact 516 

Further information and resource requests should be directed to and will be fulfilled by the Lead 517 

Contact, Bing Su (bingsu@sjtu.edu.cn). 518 

Materials Availability 519 

This study did not generate new materials. 520 

Data and Code Availability 521 

Raw sequence data of each sample is available to download at Genome Sequence Archive for 522 

Human, GSA-Human (Accession number, HRA000919). 523 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 524 

Clinical samples were obtained from colorectal cancer (CRC) patients without chemo-radiation 525 

therapy before resection of the tumor and healthy individuals who gave informed consent, after 526 

approval had been obtained from the local medical ethics committee of Ruijin Hospital and 527 

Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. Four CRC 528 

patients were recruited for scRNAseq at diagnosis (Table S1). Adjacent tissue (normal mucosa), 529 

and CRC tissue were collected from these four CRC donors whereas blood samples were collected 530 

except P4. Healthy blood for scRNAseq were recruited from individuals undergoing routine 531 

colonoscopy who were generally in good health, with no other relevant medical history, such as 532 

inflammatory bowel disease (IBD) or CRC (Table S1).   533 

METHOD DETAILS 534 

Isolation of human lymphocytes 535 
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Fresh intestine tissues were quickly placed into 50 mL tubes containing RPMI 1640 medium plus 536 

10% FBS, and were transported on ice to laboratory for cell preparation usually within 2 hours. 537 

Adipose tissue and visible blood vessels were removed from the tissue manually. Specimens were 538 

weighed and washed with PBS and then cut into small pieces. Normal tissue was incubated with 539 

10 mL freshly prepared intraepithelial lymphocyte solution (5 mM EDTA, 15 mM HEPES, 10% 540 

FBS, 1 mM DTT in PBS), for 1 hour at 37°C, with shaking at 200 rpm. CRC tissue was washed 541 

with 10 mL freshly prepared 6.5 mM DTT in PBS for 15 min at 37°C, with shaking. After 542 

incubation, the tissue pieces were rinsed twice with PBS and subjected to enzymatic digestion for 543 

1 hour at 37°C, with shaking (0.38 mg/mL collagenase VIII, 0.1 mg/mL DNase I, 100 U/ml 544 

penicillin, 100 mg/mL streptomycin, 10% FBS in RPMI 1640 medium). The digested tissues were 545 

then shaken vigorously by hand for 5 min and mechanically dissociated with a 21-gauge syringe. 546 

The resulting cell suspension was filtered through a cell strainer with 100 µm pores into a new 50 547 

mL conical tube, and PBS was added to a final volume of 30 mL. Cells were then centrifuged at 548 

1,800 rpm for 5 min. The supernatants were discarded and the cell pellets were resuspended in 549 

RMPI 1640 medium supplemented with 10% FBS. Cells were centrifuged on a Ficoll gradient and 550 

then washed with PBS before use. 551 

Peripheral blood mononuclear cells (PBMCs) were obtained from human blood samples 552 

centrifuged on a Ficoll gradient. Briefly, blood was mixed with an equal volume of 2% FBS in 553 

PBS and gently layered on the Ficoll gradient. Cells were centrifuged at 1000 x g for 25 min, 554 

without braking. The cells in the middle layer were then washed once with PBS and resuspended 555 

in 2% FBS in PBS for use. 556 

 557 

Sorting of ILCs 558 
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Freshly prepared human cells were resuspended in PBS and incubated with a live/dead cell marker, 559 

Fixable Viability stain 520 (BD 564407), for 10 min at 4°C. Cells were washed and suspended in 560 

2% FBS, 2 mM EDTA in PBS (FACS buffer), supplemented with 10% mouse serum and 40% 561 

Brilliant Strain Buffer. Cells were first stained with 1:50 human Fc Block for 10 min at 4°C and 562 

then incubated with antibodies directed against CD45, CD127, CD117, CRTH2, and against 563 

lineage markers (TCRϒδ, TCR αβ, CD3, CD19, CD14, CD16, CD94, CD123, CD34, CD303 and 564 

FcεRI) for 30 min at room temperature. Human cells were washed with FACS buffer, centrifuged 565 

and resuspended in FACS buffer. Live ILCs in RPMI 1640 supplemented with 20% FBS were 566 

sorted in a BD FACSAria III cell sorter (BD Biosciences).  567 

 568 

Flow cytometry for ILCs 569 

For cell surface staining of ILCs, freshly prepared human cells were stained with live/dead cell 570 

markers, Fixable Viability stain 520 (BD 564407), and Fc Block as for ILCs sorting. Cells were 571 

stained with surface antibodies against CD45, CD127, CD117, CRTH2, CD5, TIGIT and 572 

SLAMF1 and antibodies against same lineage markers for ILCs sorting for 30 min at room 573 

temperature. For each of the staining, paired samples from same patients were used. PBMC from 574 

more healthy donors was stained at same time. Cells were kept at 4°C and analyzed on a BD 575 

Symphony (BD Biosciences). Flow data was analyzed with FlowJo software (FlowJo LLC). 576 

Statistical analysis was performed by Mann-Whitney tests of unpaired nonparametric t tests or 577 

Kruskal-Wallis tests with Dunn’s multiple comparison tests. p-values were adjusted with the 578 

Benjamini-Hochberg method for multiple comparison tests. * p-value < 0.05, ** p-value < 0.01, 579 

*** p-value < 0.001, **** p-value < 0.0001.  580 

 581 
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Single-cell RNA sequencing 582 

Purified ILCs were resuspended in PBS supplemented with 0.04% BSA, and kept on ice. Cells 583 

were counted and cell density was adjusted to that recommended for 10x Genomics Chromium 584 

single-cell 3’ v3 processing and library preparation. Sequencing was performed on an Illumina 585 

platform (NovaSeq 6000), by GENERGY BIO (Shanghai, China), at a sequencing depth of about 586 

90,000 reads per single cell.  587 

 588 

Raw 10X read alignment, quality control and normalization 589 

Raw sequencing reads were subjected to quality control with FastQC software v0.11.9 590 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequencing data in a bcl file were 591 

converted to FASTQ format with Illumina bcl2fastq2 Conversion Software v2.20 592 

(https://support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html). We then 593 

used Cell Ranger Single Cell Software Suite v. 2.2 to process, align, and summarize unique 594 

molecular identifier (UMI) counts, according to the standard pipeline and default parameters 595 

described at https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines 596 

/latest/. Briefly, we used the standard Cell Ranger Count pipeline to align FASTQ reads with the 597 

GRch38 genome. We then filtered sequencing reads on the basis of base-calling quality scores, 598 

and assigned cell barcodes and UMIs to each read. The Cell Ranger aggr pipeline was used to 599 

normalize all scRNAseq data with default parameters, to obtain a uniform sequencing depth. The 600 

combined feature-barcode matrix was used for downstream analysis.  601 

During quality control with Seurat analysis, raw UMI count matrices were filtered to remove 602 

genes expressed in fewer than three cells, cells with fewer than 200 genes, cells with more than 603 
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4000 genes, and cells with high percentages of mitochondrial genes (more than 8%). The resulting 604 

matrix was then normalized by a global-scaling method, converted with a scaling factor (10,000 605 

by default) and log-transformed with the “LogNormalize” function in Seurat for downstream 606 

analysis. 607 

 608 

Filtering contaminated cells  609 

We used the R package SingleR 67 and default parameters to assign individual cells to cell types, 610 

with the Human Primary Cell Atlas Data as the reference dataset. Each single cell was annotated 611 

with a cell type in “label.main” of the dataset. As the dataset did not include the human ILC 612 

dataset, and, given the similarities between ILCs and T cells or NK cells, we retained cells labeled 613 

as both NK and T cells. We removed cells considered as doublets with an range from  0.14% to 614 

3.69%. In addition, when analyzing the ILC3 in tumor tissue, two small clusters with percentage 615 

ranging from  0.35% to 3.59% that were not present in each donor were removed. Donor-specific 616 

clusters with a strong specific NK cell signature were considered to be true NK cell contaminants 617 

and were removed from downstream analysis.  618 

 619 

Reduction of the number of dimensions and clustering 620 

The top 2000 variable genes were selected with the “FindVariableGenes” function of Seurat 68 and 621 

used for principal component analysis (PCA). For ILCs in normal mucosa, we retained the first 40 622 

PCs. For normal blood, CRC blood and tumor tissue, we retained the top 20 PCs. Clusters were 623 

identified with the “FindClusters” function, with the algorithm based on the optimization of 624 

nearest-neighbor modularity implemented in Seurat and visualized with the uniform manifold 625 
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approximation and projection (UMAP) algorithm. For comparisons of different tissues, the “merge” 626 

function was used to pool the individual Seurat objects. For donor and tissue data visualization, 627 

the “group.by” parameters were set as intended information when plotting with “DimPlot” 628 

function in Seurat.  629 

 630 

Batch effect correction for ILC3 subsets in normal and tumor mucosa 631 

ILC3 clusters in tumor tissue and both ILC3 and ILC3/NK clusters in normal mucosa were 632 

subsampled for downstream clustering. The batch effect was corrected with the “IntegrateData” 633 

function of the standard workflow of Seurat, based on previously identified anchors (Butler et al., 634 

2018). 635 

 636 

Unsupervised hierarchical clustering  637 

Mean gene expression was analyzed for single cells in each cluster. Only genes previously shown 638 

to display variable expression were used. We used the Heatmap.plus package to plot the 639 

unsupervised clustering map. The Euclidean distance was calculated for genes in all clusters. For 640 

normal mucosa, only the major donor-derived ILCs for cluster 0-4 were used for analysis. 641 

 642 

Principal component analysis 643 

Principal component analysis (PCA) was performed on the mean level of expression of variable 644 

genes in clusters. The top 20 genes contributing to PC1 and PC2 or PC1 and PC3 were plotted. 645 

For the analysis of ILCs in normal mucosa, we removed ILCs from donors other than the major 646 

source of cluster 0-4. PCA gene loadings for the PCs corresponded to the 20 genes making the 647 



 32

largest contribution to the total amount of information represented by PC1 and PC2 or PC1 and 648 

PC3. 649 

 650 

Differential expression analysis 651 

We used the “FindAllMarkers” function in Seurat to identify genes differentially expressed 652 

between samples, for each cluster. The non-parametric Wilcoxon rank-sum test was used to obtain 653 

p-values for comparisons, and the adjusted p-values, based on Bonferroni correction, for all genes 654 

in the dataset. We used the following parameters for the calculation of log fold-change (logFC) in 655 

expression values and to obtain p-values for all the variable genes for each cluster: min.pct = 0.05, 656 

min.diff.pct = 0.1, logfc.threshold = 0.25. The log-transformed and scaled expression values of the 657 

genes were used to generate a heatmap. 658 

 659 

Gene annotations 660 

Genes encoding transcription factors (TFs) were retrieved from four TF-related public datasets: 661 

JASPAR69 (http://jaspar.genereg.net/), DBD 70 (http://www.transcriptionfactor.org/), 662 

AnimalTFDB 71 (http://bioinfo.life.hust.edu.cn/AnimalTFDB/), and TF2DNA 72 663 

(http://www.fiserlab.org/tf2dna_db/). Genes encoding cell membrane and secreted proteins were 664 

obtained from The Human Protein Atlas 73 665 

(https://www.proteinatlas.org/humanproteome/tissue/secretome).  Genes were ranked by the 666 

adjusted p-value for each ILCs cluster in tissue. The top 10 genes within each category (TF, cell 667 

membrane, or secreted protein) was selected based on their original adjusted p-value in each 668 

cluster. 669 
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 670 

RNA velocity estimation  671 

We analyzed expression dynamics, using scRNA-seq data, by estimating the RNA velocities of 672 

single cells by distinguishing between unspliced and spliced transcripts on the basis of the 673 

previously aligned bam files of scRNA-seq data. The RNA velocity values for each gene in each 674 

cell and the embedding of RNA velocity vectors in a low-dimension space were calculated with 675 

the R package velocyto.R 74 (https://github.com/velocyto-team/velocyto.R). RNA velocities were 676 

then visualized on the UMAP projection by Gaussian smoothing on a regular grid.  677 

 678 

Scoring samples for ILC signatures 679 

ILC and NK cell signatures from tonsil tissue were defined by Björklund et al., 31. ILC1 and ILC3 680 

signatures from jejunum, and ILC2 signatures from spleen were obtained from Yudanin et al., 37. 681 

Module scores were calculated with “AddModuleScore” in Seurat, for each ILC. Briefly, the mean 682 

level of gene expression in a single cell was calculated, and the aggregate expression of control 683 

feature sets was then subtracted from it. The control features were selected at random from all 684 

features. For the module scores of ILC3 subsets from normal mucosa, the differentially expressed 685 

gene signatures for each ILC3 subset were used, at single-cell level, on each ILC3 subset in CRC 686 

tissues. Violin plots were used to visualize the module scores of each cluster. 687 

 688 

TCGA analysis 689 

RNAseq data from primary tumors and clinical annotations were downloaded using the package 690 

TCGAbiolinks in September 2019. Kaplan-Meier curves were plotted using the R package 691 
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survminer. In order to split the expression levels in two groups, the cut-off which gave the lowest 692 

p-value was used. Optimal cut-off for patient stratification was obtained with a Cox proportional 693 

hazards model and p-value indicated in the plot was calculated with a log-Rank test. 694 

Quantification and statistical analysis 695 

Data are presented as the mean ± standard error of the means (SEM), or standard deviations (SD). 696 

GraphPad Prism 6 was used for statistical analysis, two-sided Wilcoxon test and Mann–Whitney 697 

test were used for unpaired data. Kruskal-Wallis tests with Dunn’s multiple comparison tests was 698 

used for multiple comparisons. Kaplan–Meier survival data were analyzed using two-sided log-699 

rank test. p values <0.05 were considered significantly statistical difference. 700 

SUPPLEMENTARY FILES 701 

Table S1. Clinical characteristics of CRC patients and healthy blood donors analyzed by 702 

scRNAseq, Related to STAR Methods.  703 

Table S2. Gene signatures of each clusters, related to Figure 1, 2, 3, 4 and Figure S3, S4, S5.  704 

Adjusted p-values for non-parametric Wilcoxon rank-sum tests are provided. 705 

Table S3. Statistical analysis of the module score for each cluster, Related to Figure 1H, Figure 706 

2H, Figure S2B, S3K, S4H and S5H. 707 

Kruskal-Wallis with Dunn’s multiple-comparison tests were performed with Benjamini-708 

Hochberg adjusted p-values.  709 
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